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1 INTRODUCTION

Let S denote the family of analytic and univalent functions f(z) = z + a2 22+ ... of the
unit disk . S is compact with respect to the topology of locally uniform convergence so
that k,, := maxyes la, (f)| exists. In 1916 Bieberbach [3] proved that ky = 2, with equality
if and only if f is a rotation of the Koebe function

K@= = = ; (‘1 ) )=y (1)
= - = - — = nz ,
a2 T a\U-z =" ‘

and in a footnote he mentioned “Vielleicht ist tiberhaupt k, = n”. This statement is known

as the Bieberbach conjecture.
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In 1923 Lowner [14] proved the Bieberbach conjecture for n = 3. His method was to
embed a univalent function f(z) into a Lowner chain, i.e., a family {f(z, )|t > 0} of
univalent functions of the form

o

L7 4 IS S : . /74N R v — TN 4~ NN e = TR < Ay
J\&s ) = e g dnb)L W S W, @ ZVU,dp\l) <\l Z 2))

n=2

which start with f

f(z.0) = f(2).
and for which the relation

e oo f ST
Re plen=Re (5= ) >

Y ™Y

{c e )

™
N

is satisficd. Here ’ and “denote the partial derivatives with respect to z and r, respectively.
Equation (2) is referred to as the Lowner differential equation. and geometrically it states
that the image domains of f; expand as 1 increases.

The history of the Bieberbach conjecture showed that it was easier to obtain results
about the logarithmic coefficients of a univalent function f, i.e., the coefflcients d,, of the
expansion

F@ =
0@ =In "= = D dyz

n=l1

rather than for the coefficients a, of f itself. So Lebedev and Milin [13] in the mid sixties
developed methods to exponentiate such information. They proved that if for f € § the
Milin conjecture

n

o, 4 _
Z(n+l—k) kldi? =) <0

k=1

on its logarithmic coefficients is satisfied for some n € N, then the Bieberbach conjecture
for the index n + 1 follows.

In 1984 de Branges [4] verified the Milin, and therefore the Bieberbach conjecture, and
in 1990, Weinstein [18] gave a different proof. A reference concerning de Branges’ proof
is [5], and a German language summary of the history of the Bieberbach conjecture and its
proofs was given in [8].

Both proofs use special function systems, and independently. Todorov [171 and Wilf [19]

showed that theae o eocent i the oy
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In this article, we present an elementary proof of this statement. Our considerations are
based on the defining differential equations system rather than the closed representation
of de Brangcs’ function system. Our proof neither uses special functions (like Wilf’s) nor
the residue theorem (like Todorov’s) nor the closed representation (like both), but is purely
algebraic. On the other hand, by a similar algebraic treatment. the closed representation of

de Branges’ function systeml derived.

iooked at as the «iy j\/ of proper iies of the Kache function.

Our wholc con Ti
Thereforc, in a very elementary manner it is shown that the known proofs of the Bieberbach
and Milin conjectures can be understood as a consequence of the Lowner differential

equation, plus properties of the Koebe function.

2 THE LOWNER CHAIN OF THE KOEBE FUNCTION
In thix gection, we consider the Lowner chain

wiz, =K (e 'K zeDr=0 (3)
of bounded univalent functions in the unit disk D which is defined in terms of the Koebe
function (1). Since K maps the unit disk onto the entire piane slit along the negative x-axis

in the interval (—oo, 1/4], w(ID, 7) is the unit disk with a radial slit increasing with . The
function w(z, r) is implicitly given by the equation

S
S
S
—~
=
S’

and satisfies the Léwner type differential equation (we omit the arguments)

. 1 —w -
w:—]+1”w (5
(compare e.g. [15], Chapter 6) which is obtained differentiating (4) with respect to ¢
0= K(w) + e K'(u)w, (6)
hence
K{w) w (- w) I —w

TKw)  (1l—w? 14w 1+w

In this section, we deduce a closed representation of the Taylor coefficients A, () of

0
oz N g (T
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In particular, by the normalization of the Koebe function, we have 5% = 1, hence by
4)

K(z) o Kw(z, 1) o K(w(z, 1)) w(z, 1)

b4 b4 w(z. 1) 4

andletting z — Othercfore gives A () = e~'. To deduce the general result in an elementary
way (for a shorter deduction using Gegenbauer polynomials, see Section 3), we begin with
some lemmas. The first lemma states a linear partial differential equation (different from
the nonlinear Léwner differential equation (5)) for w(z, ¢):

Lemma 1 (Partial differential equation). The function w(z, t) satisfies the linear partial
differential equation

{z— bjizwi{z.1y ={(z+ Dwiz. ) (8;
wilh the initial function
wiz. 0) = z.
Proof  Differentiating (4) with respect to both z and ¢ yields the equations
K'(z) = ¢'K'(w(z, ) w'(z, 1)

and (6). from which we deduce

Wi K@ K'wen) o K'@
w(z, t) 'K (w(z, 1)) K(w(z, 1)) erK(w(z, 1))
_ K@@ 1+:
K@  1-:
where we used (4) once again, and (1). The initial function is determined trivially. ]

As a consequence we have for the coefficients A, () of w(z, t):

Lemma 2 (Differential equations system for coefficient functions). The coefficients A (t)
satisfy the system of linear differential equations

(n—DA—1(t) —nA,(t) = Ay (1) + A1), A 0)=0 (n>2) ©)
and

—A(() =A(1). A(0)=1. )
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Proof This follows directly by sumning (8) for n = 0, ... ,c0, and equating coefﬁciems-

Starting with the solution Aj{t) = ¢ ' of (10}, by induction we see that 4,(1) 1s 2
polynomial of degree n in ¢ '. Therefore we may introduce the variable y := e ', and
define the polynomials B, () by

n 4
. con PN AR A S . 5 B N
Apt) = By(y) = Bule ) = 2 a; ¢ = = a; ¥, (L)
i=1 j=1

so that in terms of B,(y), Lemma 2 reads as follows:

Lemma 3 (Differential equations system for coefficient functions).  The functions B, (¥}

1-00

satisfy the sysiem of linear differeniial equations
VBV + B, ((¥) =nBu(¥) —(n — DB, 1(v), By(1)=0 (n=2) (12)

- {7)
For the nunibers ;" . we deduce

LimMa 4 (Recurrence equations).  For the numbers a ' defined by {11}, the simple
recurrence equation

n—jra" = m-1+pa"" (Q=<j<n—1nz2) (13)

is valid. Therefore, we have
2 = "*/—l\n‘“ (1< ji<nn>2) (14)
‘”I n_} } B T AL Y K

and the initial value

Proof For j = n, Equation (14) is wivial. Therefore assume 1 < j < n - 1,n = 2.
Substituting (11) into (12), and equating coefficients of yj (I = j <n—1)results in (13).
From (13), we get the telescoping product

a(n) _ n—1 +ja(n—1) — (n— 1 +])(n_2+./)(2_])a(j)
J n—j - pn—j—1--1

/n—l+j) ()
== a

n—j J

i DIV te e v,
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Using A (t) = e™', we get a:” = 1, so that by (14), we finally have

L n RN
a = a =i,
! n—1/""

e

Lemma 5 (Ordinary differential equation for coefficient functions).

|

he function B, (y)(n >
1) satisfies the ordinary differential equation

y2 (1= y)B(y) + y(1 = y)B.(y) + (n®y — 1)B,(y) = 0. (15)

Proof Forn = 1, the statement 1is true, so assume n > 2. We consider the function
]

3 2 , i
/ . f— A N oy ) LR R PP IND . 'S V"
‘—\Aﬁ(ﬁ} =5 {1 3 )B,«,f byl 3 }Bn (vi+in vy — 138,(y), {10}

and show in a {irst siep that A,y ) sausfies the relation

. ’ N N 3
y(A, )+ A, () JAn—1(¥) = 0.

,.
—
~J

=

(In other words, we show that A, (y) satisfies the same system of differential equations (12)

as By (y).)
To prove (17), we first solve (12) for B, _, (y):

n n—1 ,
B, _,(y) = ;Bn(y) - TBH_Im — B (y).

We take this equation and the first two derivatives thereof as replacement rules for any
occurrence of B, _,(y), B,_,(y). and B,” | (y) in the left hand side of (17). The resulting
term reduces to zero. This procedure can be easily done with the aid of a computer algebra
system, and we leave these elementary algebraic transformations to the reader.

Therefore, by (15)-(16) we have A|(y) = 0 and further A, (1) = 0 for all n € N. From

the induction hypothesis A, _;(y) = 0, we get the initial value problem
yAL(y) —nA,(y) =0, and A,(1) =0,
and by integration the unique solution A, (y) = 0 is deduced. =
Obviously there is a corresponding ordinary differential equation for A, (7). namely

(1 —e)A,@1) + (¢ —n*)A,(t) =0,

which is simpler than (15) in the sense that it does not contain the first derivative explicitly,
but which does not have polynomial coefficients since e’ -terms occur.
As a consequence of the preceding lemmas. we find the following closed form

representation of g
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THEOREM 1 (Coefﬁcient representation of Lowner chain of Koebe function). For the
numbers a deﬁned bv (11), we have the closed form representation

) _ Ay i fn+j—1 (2 — ) o )
a" =2(-1y ( . )u_—m (=j<nnzl. (I8

Therefore, by (11), we have further
n JA [ i I

An(f) - ZQ(—I)’H (u +j -

7J'[ ]’ 9
j=1 n—J )(1-1)'(1+1)| (nzD ()

and finally by (7)

~ P N g 2 Y

oty = 3 ST Al A S L 2()
wiz. b = ZZ 2(—13 ( n I Nt o 20

’!71>/=! N s LA/ 1.

Proof By (14), it remains Lo prove that
i PO (27— 11 .
=iy e L
! (- DG+ D!

Substituting (11) into the ordinary ditferential equation (15), and equating coefficients gives
(41— =1+ pal? + G — DG+ Da™ =0,

so that in particular forn = j

—
Z
|

(i 2j—1 o _5H T

a. =

= 2 o 1
T VRS VAR R T

2 _

by an application of (13), and therefore (21) follows from a;, —2. Tt is easily checked

that (18) remains true forn = 1. [ |

3 CONNECTION WITH THE GEGENBAUER POLYNOMIALS

In this section, we again deduce the closed form representation for A, (¢), this time utilizing

an explicit representation of w(z, t) in terms of Gegenbauer polynomials. Observe that this

section is not necessary for our development, but it shows some interesting connections for

the reader who is familiar with orthogonal polynomials and generating functions. Solving
=Kz} = (T:;T for 7 leads to the representation

P20 -
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for the inverse of the Koebe function. Therefore, substituting e~/ K (z), we obtain the
representation

—1+(l z—2+ (1 —vV1+z2—2xz
wie. 1) = + (1+x)z +(1=)V1I+22—2x )
7x = 1)

\lI}IDTP we s1m

1 14 tchan 1abl ng
/1 Ao e the oenerating Gimetion f f
Olll\—C v 1 T I~ — 4LXQ lb uic gcuclauug 1uncuon o1

CVP (x) (see e.g. [1], (22.9.3)), (22) implies for n > 2

|
Ay = — (1P 0 - w). 23)

. . (=12
On the other hand, 1t 1s well-known that €, ~'(x) has the ( hypergeometric) represen-

tation

(=12, > n( 1 (l - "l)j(n)_j /l 7'X\j+l (AN
WXy =2 ) ! J 2%)
— ju2Z); A\ J

i—0
J

[E9]

when expanded at x = I, which can be obtained from [1], (22.5.46), as limiting case. Here,
(@)j :==a(a+1)---(a + j — 1) as usual denotes the Pochhammer symbol (or shifted
factorial). Therefore, we obtain for the difference (23)

1 1 12
An) = — (617w = ¢ 1P )

& (=) + D, /1—x\f'+"':i(1—n)j(n)j /1—x\’
T4 e, (2) &g, (72

Z (I —n)j_1(n+1);- 1(1—x)]
2(j — D(2); 2

1—x A =—n);d+n); (1—x)’
=n—=2 13, ( 2 )

=0

n-1
et S L=+ n);
ne j;o 0, e

S“ N (" +Jj- 1\ QJ:,QL, i
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We note in passing that the method presented in [9]-[11] finds the ordinary differential
equation for B,(y) of Lemma 5, and furthermore a pure recurrence equation with respect
to n, automatically. Actually. this differential equation generated by our MATHEMATICA
[20] implementation {10] was an essential tool to discover the short proof of Theorem I.
Moreover, the same implementation discovers the power series representation (24)

automatically.

4 THE DE BRANGES AND WEINSTEIN FUNCTIONS

In [4] de Branges showed that the Milin conjecture is valid if for all » > 2 the de Branges
functions t]' : RT — R (k = 1.... . n+ 1) defined by the system of differential equations

i]i?+]{i}‘ry;(f) = (k=1,..., 1 (25)
Ty =0 (26)
with the initiai values
70 =n+1-k 27
have the properiies
Jim 7(1) =0, (28)
and
() <0 (eRY 29)

The relation (28) is easily checked using standard methods for ordinary differential
equations, whereas (29) is a deep result.

L. de Branges gave an explicit representation of the function system ;' () ([4, 7, 16])
(that we don’t use, though, see Section 5, however), with which the proof of the de Branges
theorem was completed as soon as de Branges realized that (29) was a theorem previously
proved by Askey and Gasper [2].

Note that the derivatives 7' (z) are characterized by the same system of differential

equations (25), the equation

() = —ne ™ (30)
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and the initial values

) | —k if n—k even
7 (0) = [

~
[O8]
—
~—

0 if n—k odd

as replacements for (26) and (27) (see e.g. [5], p. 685).
On the other hand, Weinstein [18] uses the Lowner chain (3), and shows the validity of

Milin’s conjecture if foralln > 2 the Weinstein functions A} Rt > Rik=1,...,n+1)
defined by
E’LU(Z I)k+] oo
— = AN = Wiz, 32
T X:; L) k(@ 1) (32)

satisfy the relations

Ay >0 (1R L oneN). (22)

EAYA Y : * A, o IN)

m

Weinstein did not identify the functions A7 (¢), but was able to prove (33) without an
explicit representation.

Independently, both Todorov [17] and Wilf [19] proved — using the explicit representa-
tion of the de Branges functions — the following

THeOREM 2 (Connection between de Branges and Weinstein functions) Foralln € N, k =
1, ..., n, one has the identity

T (1) = —kAR (1), (34)

i.e., the de Branges and the Weinstein functions essentially are the same, and the main
inequalities (29) and (33) are identical. u
In this section, we give a very elementary proof of this result, which in view of (32) can
be looked at as a property of the Koebe function.
Firstly, we realize that (again, we omit the arguments of w(z, ¢))

efwkt?
Wit1(z, 1) = 5 = wWi(z, 1), (35)
1—w
and that further
e’ whtl fw l—-w , L—w
Wi(z,t) = = w® = K(z2) w”,
l—w? (d—-wll4w 1+w
so that with (5) in particular
, 1 -w L
Wi~ =K n =K 2
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Moreover, we get the relation

s

Wilz. 1) + Wiz, 1) = (I + Wiz, 1) — Kzt —w)

- K(nuw* — K(uw* !

Wiz, 1)+ Wipi(z, ) = K(2) -kw* "l — K(z) - (k+ Dwkw

1)- K()

—k- K(L

=ik + LW (2.0 —kWilz. 6

where again, we uiilized the Low
s B4 .L'

Equating coefficients it follows that the same sysiem of diffe xenth} equa

223

k+l

(37)

tions is valid for

efore for v} :— kAT{r) we get the differential equations system

ANy aad the
JAVALS R and therefo ¥ )

" o VRO Ve )
1) — )= — _
Ve @) =y (8) A + 1

W,, z, - ! ot n+l
AT = lim 280 i ¢ (w(z ))

" =0 " =01 — w(z, 1)

—_ er (e—\n +'1)[) — e—nl

which follows from (32), we realize that

Z

—nt

yp () = —ne

so that (30) is satisfied,

To show (34), it therefore remains to prove (31) which can be read off from

s“i z* X 5
Wz 0 =S AN = —— =
U TET et

¢ the pro ot of Theorem 2.
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5 CLOSED FORM REPRESENTATION OF WEINSTEIN FUNCTIONS

d form

In this section, we show how — in a similar manner as we derived the closed form
representation of the coefficients of Koebe’s Lowner chain w(z. () in Section 2 — the
closed form representation of 1"”(r\ = —1(/\”(!) that was given by de Rranges, can he

deduced in an elementary way, only utilizing the properties of w(z, ¢) that we developed

in Neciton 7 1In Nne< Y'Yll IIIA" lnP l(n(\‘lln nrn(\rg {\T I’\ K pr}\anh ann ‘I\/illln ["I'\ I CTIITAC ™M Ay
in Seciion 2. In particui pr of the Bieberbach iilin conjectures may
be regarded as a consequence of the Lowner differential equation, plus properties of the

Koebe function.

Since W(z, t) is given by (36) in terms of w(z, t), and W (z, t) satisfies the recurrence
(35), from the representation (20) of w(z, ) we deduce by induction that the coefficients
A7 (t) of Wi(z, t) have a representation

~
-
~
-~
-~
~-
]
i)
o
o~
~
b
[V
-
N
-~
o}
Co
=

Substituting A} (z) according to (32) in (37), and equating coefficients, we obtain for

L 11~ N
K+ 1-42

Iy

AR + A7 @) = (k+ DAL (1) — kAL(). (39)

If we substitute now (38) in'(39), and equate coefficients, again, then we get the simple
recurrence equation (n > j > k > 2)

(r,k) j -k + I (n,k—1)
a = ——a
J J +k J

(n,k)

for the coefficients a : which (by telescoping) generates

20 _ -1 U= DG+ DY

¢ ) n>j>k>2). 40
J GG rs  zizkz2) “0)
Therefore, to get a closed form representation of af"‘k) , we need only one for a}"‘ D and
we are done. To obtain this result, we observe that
AT ==Y (n+1-DA)
I=1
following from (7) and (36). Using the definition aj‘"'” := 0 for j < k, and the

representation (19) of A;(#) that we gave in Theorem 1. we deduce in a straightforward

Paiiiici
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n i
S a Ve = A0 = =) (L= DAY
11

j=1
n n i
f\_\!an!f!)T ]\J“H(/_"/il\__(%l__ﬂ!_e‘;if
= e VAP EVES VYRR V)

=1 i=1

n . " n 2 3
— v—\f\!/__I\j“’l (2']_1)' /‘_\fnLl_l\{l*»j_l\\P_‘”
LA GGy on\&g T TN =i )

where we changed the order of summation. Equating coetficients, we therefore see that

2ji-h (& (1471
':l u:qj( ”/H,’." ';,,'__,_._.__! N (n '7”' T/ \i\
G- b+ D& \ = )
. S A A
Sincc foi Oy c— G 40D .. 1, one has
i i /
(i Dn 4+ j+2jn =25 f1+i—=1
h, =y — =  with o= ] ) - / (_"I JKI/[ c \l
2jj+ 0 A A

(i.e., § is an antidifference of b, which is found by Gosper’s algorithm, see {6, {12} which
can easily be checked, and since s; | = 0 it turns out that

T])r* Y‘(n+1-~ l)(l+j 1)

[:_] -
) z_(j-§fn')(n+]+j) 'n+j~—1‘\
o 2i(2i+ 1) \ n—Jj ]

Therefore, using (40), we finally have
k— 1(] DI+ 1)! a™ 1)

(nk) _
A TR TR T
LU =DIG+ D! (2j — DI
— _l k lw o j+]_____-
=D G =0+ ! 2j (-1 — DI+ D!
(Z(n+1—1)(’+1 ))
\i=j J s
— (=) 2j — D! itn)(n—l—lﬂ-j) (n+j—l)
B G-RBIG+R  Qj+D nej

_{_NM( 2j.\;(nfj+l\; (4n
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and hence

Aty = Yoo v_,>k+]< 2 \(n+i+1\ -

= j=k VAN

4y GGG —n)
a™ T GHIDGHEFDG -k + D]

and since & is an integer, we may substitute j +> ; + k (i.e., shift the summatio

wuu,u xuauo io

and to the initial value

ke g1k _ (rt+k+1

e ,
\ n—k J
so that (42) reads
ey ke (R k12 k2 k|
At} =¢ \ —k }3r2\ k+3/2,2k+ 1

Note, that similarly from (19) one gets the hypergeometric representations

A, (1) =ne HF /1 nqn+1'e_,\,’
\ i b/
and for the Gegenbauer polynomials C -2 (x) by (24)
A1/ N 1 N l—n.n“—x\
n X)) =L —x)ar ) i 2

e") .
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6 GENERATING FUNCTION OF THE de BRANGES FUNCTIONS

In this final section. we give a very simple representation of the generating function B (z. 1)
of the de Branges functions

o0
Bi(z.) =) ("

from which one can directly deduce de Branges main inequality (1) = 0 (see [4], [5D
without utilizing the inequality for the derivatives " (z) < 0.

Whereas de Branges considered the Milin conjecture for fixed n € IN, and therefore
introduced 7/ (1) (k = 1.... .n+ 1), we take a fixed k¥ € IN and the generating function
of 1] (1) with respect to n, hence all n = k are considered at the same time

wEorEM 3 The generating function of the de Branges functiony hus the representation

Bz = 3 g = K@ wE

n=k

4e~ 'z
= K(2) ‘ , (43)

(1_z+¢1—_2m)2

(x = 1 — 2¢ ). Moreover one has the hypergeometric representation

kok+1/2 ' B )
_ k+t ,—kr _ t
Bi(z,t) = K@) e 2F1( dhrt | 4K (z)e /
_ 1 J4k =t ( .l ) K jt 1 44
§ o (D) K@ (44)
R . . . — l—x
being a Taylor series representation with respectto 'y = e =5
Proof Define Bi(z.t)} by
Bi(z,1) = K(D)w(z. )" : (45)

then

Bi(z.1) = K(z) kwiz. N wiz .



10: 00 15 March 2009

[ Koepf, Wolfran] At:

Downl oaded By:

228 W. KOEPF AND D. SCHMERSAU

Using (5), we therefore get

Bii1(z.t)  Bi(z, 1)
4+

K1 P K@y wz, ) iz, 1) (1 4 wiz, 1)

Y A L
“RA(Z) WL, ) (L —wlz, 1))

H
x(

= Bit1(z,t) — Bi(z, t) . (46)

By the definition (45) of By (z, t) its Taylor series for z = O starts with a ZK*! term, hence
we may write

oc
- 7} — - _nid .
Bi(z.ry = ) 10z (47)
;'Z::I(
and we can assume 7.’ , (1) = 0, hence (26). Substituting (47) in (46) yields furthermore
(25) by equating coefficients of 2", The (n + 1)*' Taylor coefficient of

k41
’ 0) = ) k =3
Bz 0) = K@ w(z 0" = 77—

equals n + 1 — k, hence the initial values (27) are satisfied, and therefore r,:’ (t) form the de
Branges functions.
Starting with (22), a calculation shows that w(z. ¢) has the explicit representation
4e 'z

(1 JI=2 7
| —z+ 1 - xz+z/

w(z, t) =

hence the right hand representation of (43) follows.

In a similar manner as we derived the closed form representation of the coefficients of
Koebe’s Lowner chain w(z, ¢) in Section 2 (or by the method presented in [9-11]), one
deduces (44). |

To deduce the inequalities 7 (¢) > 0asannounced, we remark that the Jacobi polynomials
P,,(a’ﬁ ) (x) have the generating function

e 20+h 1

PP (x) 7" = z
,; " VI-2xz+2? (1 -z+ x/l—2xz+zz)

1
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(see e.g. [1], (22.9.1)), hence

k
o Ae7 'z
Bi(z,t) = K(2) 5
(1241 —2xz+zz)
1 22k 1
:[’K'Y" e"l\l

=2 VIt (1= o g VT e

1-z2

(a8} n

oC n
it it (2k.M 1 (—1/2
e A E N P T 2D I "W,
Lo N et e N

n={0 j=U a=t ;=0

he result follows from the positivity of the Jacobs polynomial sums

n
v _{2h 05, . P
Yy P Tx) 20
L 1 -
j=0

o~
B
0
~—r

(see [2], Theorem 3) and the positivity of the Taylor coefficients (with respect to z) of the

function

(see [2], Theorem D). Hence, again, as in de Branges’ original proof, the Askey-Gasper

result (48) does the main job.
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