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Rccentl;. Todorov and Wilf independently realized that dr Brangea' oi-igirral p r d o f  :he Eirbcrbach and Milin 
conjec!vrec and iile p~uui  iliai n.as ! a w  pivcn by \Vei:!.kir: deal ~ i r h  the .;:imr :.pec:z! fmc!ion system [hut dr 
Branges had rntroduced in his work. 

i n  rhix arilcli. ac presenz zn c!emmkq p:mf of thk .r.rc-cnt hnsed on the detining differenrial equation.; 
sysieiii rather than the ciozed rcp~iitnta;ion of 3~ &anger.' !zzc::c~ hYr!em. Clur nri141i r - - - ~  tine\ n e i d ~ c ~  uar  apociai 
functions (like Wilf's) nor the residue theorcm (like Todorov's) nor the closed representation ( l i k  both). but is 
norely algebraic. 

0 2  !hz other hand. hy a similar algebraic treatment, the ciosed representa~iol~ of de Brarges' functlon systcm 
i s  derived. 

Our whole contrihution can be looked ar as the study of properties of the Koebe function. Therefore, in a very 
elementary manner it is shown that the known proofs of the Bieberbach and Milin conjectures can he understood 
as a consequence of the Lijwner differential equation, plus properties of the Koebe function. 

Keywords: de Branges theorem; Bieberbach conjecture; Milin conjecture; Chehyshev polynomials; Jacobi 
polynomials; Gegenbauer polynomials: de Branges functions; Weinstein functions; Lowner theory; 
Lowncr differential equation; hypergeometric representations; grnetaiiiig hiictions; computer 
algebra. 

1 INTRODUCTION 

Let S denote the family of analytic and univalent functions f (2 )  = z + azz2 + . . . of the 
unit disk D. S is compact with respect to the topology of locally uniform convergence so 
that k, := maxf ,~  la,( f ) J  exists. In 1916 Bieberbach [3] proved that k2 = 2, with equality 
if and only if f is a rotation of the Koebe function 

and in a footnote he mentioned "Vielleicht ist iiberhaupt k, = n". This statement is known 
as the Bieberbach conjecture. 

AMS No: 30C50,33C25. 
Communicated: R.P. Gilbert. 
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214 W. KOEPF AND D. SCHMERSAU 

In 1923 Lowner [I41 proved the Bieberbach conjecture for n = 3. His method was to 
embed a univalent function f (z) into a Liiwner chain, i.e., a family (f ( z ,  t ) l t  2 0) of 
univalent functions of the form 

which start with f 

and for which the relation 

." --+:-c,.,I u-..,. ' i3 aau3uLu. IILIC aiid ' denote the partial derivatives with respeci io z a d  i, i.e~peciiiiely. 
Efluarion (2) is refened to as rhe Liiwner &ferentia? equation, and genmetricdly it states 
that the image domains of J; expand as 1 increases. 

The history of the Bieberbach conjecture showed that it was easier to obtain results 
about the logarithmic coeficients of a univalent function f ,  i.e., the coefflcients dn of the 
expansion 

rather than for the coefficients u, of f itself. So Lebedev and Milin [I31 in the mid sixties 
developed methods to exponentiate such information. They proved that if for f E S the 
Milin conjecture 

on its logarithmic coefficients is satisfied for some n E N, then the Bieberbach conjecture 
for the index n + 1 foilows. 

In 1984 de Branges [4] verified the Milin, and therefore the Bieberbach conjecture, and 
in 1990, Weinstein [IS] gave a different proof. A reference concerning de Branges' proof 
is [5], and a German language summary of the history of the Bieberbach conjecture and its 
proofs was given in [a]. 

Both proofs use special function systems. and independently. Todorov 11 71 and Wilf [I91 
. .  . 

,f!,%,,,,:%;~ !b,:! :h::..e ...:. m , * x  $ . . .  !#!.. . .,,.: 
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ON THE DE BRANGES THEOREM 215 

In this article, we present an elementary proof of this statement. Our considerations are 
based on the defining differential equations system rather than the closed representation 
of de Bratigcs' funaior, system. Our proof neither Qses special functions (like Wilf's) nor 
the residue theorem (like Todorov's) nor the closed representation (like both), but is purely 
algebric. Or, the &er h a d ,  ?q a cimilar algebraic treatment. the closed representation of 
de Branges' function system is derived. 

C&jr w:lo:c 2on:ribu:i~n ca:: be !coked 2: 2s the study v[ r--r n ~ t j ~ x + i i ~  of the Koehe function. 
Thereforc, in a very elementary manner it is shown that the known proofs of the Bieberhach 
and Milin conjectures can be understood as a consequence of the Lowner differential 
equation, plus properties of the Koebe function. 

2 THE LOWNER CHAIN OF THE KOEBE FUNCTION 

1" this section, we consider the Lijwner chain 

of bounded univalent functions in the unit disk 3 which is defined in t e r m  of the Koebe 
function (I ) .  Since K maps the unit disk onto the entire plane slit along the negative x-axis 
in the interval (-00, 1/41, w(D, t )  is the unit disk with a radial slit increasing with t. The 
function w(z, t)  is implicitly given by the equation 

and saiisiies the Liiwner type differential equation (we omit the arguments) 

(compare e.g. [15], Chapter 6) which is obtained differentiating (4) with respect to t 

hence 

In this section, we deduce a closed representation of the Taylor coefficients A, (r) of 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
o
e
p
f
,
 
W
o
l
f
r
a
m
]
 
A
t
:
 
1
0
:
0
0
 
1
5
 
M
a
r
c
h
 
2
0
0
9



216 W. KOEPF AND D. SCHMERSAU 

In particular, by the normalization of the Koebe function, we have 

(4) 

and letting z + 0 therefore gives A I ( t )  = e-'. To deduce the general result in an elementary 
way (for a shorter deduction using Gegenbauer polynomials, see Section 3), we begin with 
some lemmas. The first lemma states a linear partial differential equation (different from 
the nonlinear Lowne: differential equation ( 5 ) )  for w (z, t ) :  

LEMMA 1 (Partial differential equation). The function w(z, t )  satisfies the linear partial 
Jrfferrrntinl eyuntion 

Proof Differentiating (4)  with respect io both z and t yields the equations 

and (6). from which we deduce 

where we used (4) once again, and (1). The initial function is determined trivially. . 
As a consequence we have for the coefficients A, (t) of w(z, t ) :  

LEMMA 2 (Differential equations system for coefficient functions). The coeficients A, (t) 
satis& the system of linear difSerentia1 equations 

and 
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ON THE DE BRANGES THEOREM 217 

Proof This follows directly by surnning (8) for n = 0, . . . ,oo, and equating coefficients. w 

so that in terms of Bn ( y ) ,  Lemma 2 reads as follows: 

LEMMA 3 (Difkrential equations system for coefficient functions). The fLlnctions B,, ( y )  
virris,fi rile system of linear Jifl~rential equaiioiis 

For the numbers a:'. we deduce 

LEMMA 4 (Rccurrence equationsj. For the numbers ujnl dejned by ill), the siinple 
recurrence equation 

(n-1) (n  - j)ay'  = (n  - 1 + j)aj (15 j 5 n - l 3 n ~ 2 )  (13) 

is valid. Therefore. we have 

and the initial value 

Proof For j = n,  Equation (14) is trivial. Therefore assume 1 5 j 5 n - 1, n 2 2. 
Substituting (1  1 )  into (12), and equating coefficients of yj(1 5 j 5 n - 1 )  results in (13). 
From (13), we get the telescoping product 

n - 1 + j 
a ! j > ,  =(  n - j  ) 1 
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218 W. KOEPF AND D. SCHMERSAU 

Using A ,  ( t )  = e-', we get al l )  = 1, so that by (14), we finally have 

Our newr srep is 10 derive an nrdinily differentia! equ~tinn vdid for &, ( y ) :  

LEMMA 5 (Ordinay differential equation for coefficient functions). i7zefunction B,, ( y ) (n  3 
1 )  satisfies the ordinary differential equation 

(In other words, we show that A, ( y )  satisfies the same system of differential equations (12) 
as Bn ( j i ) . )  

To prove (17), we first solve ( 1  2) for BA-, ( y ) :  

We take this equation and the first two derivatives thereof as replacement d e s  fcr any 
occurrence of BAPl (p), Bi-l  ( y ) ,  and B;:, ( y )  in the left hand side of (17). The resulting 
term reduces to zero. This procedure can be easily done with the aid of a computer algebra 
system, and we leave these elementary algebraic transformations to the reader. 

Therefore, by (15)-(16) we have A l  ( y )  = 0 and further A,(1) = 0 for all n E N. From 
the induction hypothesis A,- ( y )  = 0, we get the initial value problem 

YAA(Y)  - nA, , ( y )  = 0,  and A,(1) = 0. 

and by integration the unique solution A, ( y )  = 0 is deduced. W 

Obviously there is a corresponding ordinary differential equation for A, (1). namely 

(1 - e t ) ~ , ( t )  + (e' - n 2 ) ~ , ( t )  = 0, 

which is simpler than ( 1  5) in the sense that it does not contain the first derivative explicitly, 
but which does not have polynomial coefficients since e'-terms occur. 

As a consequence of the preceding lemmas. we find the followinp closed form 
:i'pr<. ; ~ i ~ i ~ ; ; ~  .;.! i,, , 
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ON THE DE BRANGES THEOREM 219 

THEOREM I (Coefficient representation of Lowner chain of Koebe function). For the 
numbers a:) &fined by ( I  I ) ,  we have the closed form representation 

Therefore. by f I 1  ), we hnve>uther 

Prouf By (14), it remains Lo prove that 

Substituting (1  1) into the ordinary differential equation (15 j, and equating coefficients gives 

so that in particular for n = j 

by an application of (13), and therefore (21) follows from ai2) = -2. I t  is easily checked 
that (18) remains true for n = 1. 

3 CONNECTION WITH THE GEGENBAUER POLYNOMIALS 

In this section, we again deduce the closed form representation for A, ( t ) ,  this time utilizing 
an explicit representation of wiz, t )  in terms of Gegenbauer polynomials. Observe that this 
section is not necessary for our development, but it shows some interesting connections for 
the reader who is familiar with orthogonal polynomials and generating functions. Solving 
w = K (z) = for z leads to the representation rn 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
o
e
p
f
,
 
W
o
l
f
r
a
m
]
 
A
t
:
 
1
0
:
0
0
 
1
5
 
M
a
r
c
h
 
2
0
0
9



220 W. KOEPF AND D. SCHMERSAU 

for the inverse of the Koebe function. Therefore, substituting eCtK(z ) ,  we obtain the 
representation 

where .,.,re ?he result ~ h z q g i ~ g  .;&+&le acc~rdifig ?Q e ' = 2 '  

Since JI + ,$ - 2nz is the generating function of the Gegenbauer polynonlials 
c;-''~'(x) (see e.g. [I], (22.9.3)), (22) implies for n 1: 2 

when expanded at x = 1, which can be obtained from il j, (22.5.46), as limiting case. Here, 
(a), := a(a + 1) . . . (a + j - I) as usual denotes the Pochhammer symbol (or shifted 
factorial). Therefore, we obtain for the difference (23) 

I - x - 1 - 1 + n), =n-C 
2 i=O j!Wj 
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ON THE DE BRANGES THEOREM 22 1 

We note in passing that the method presented in [9]-[l l] finds the ordinary differential 
equation for B, (y)  of Lemma 5, and furthermore a pure recurrence equation with respect 
to n.  automatically. Actually. this differential equation generated by our MATHEMATICA 
[10] implementation [I01 was an essential tool to discover the short proof of Thcorcm I 

Moreover; the same implementation discovera the power series representation (24) 
automatically. 

4 THE DE BRANGES AND WEINSTEIN FUNCTIONS 

In [4] de Branges showed that the Milin conjecture is valid if for ail n 3 2 the dc Brange~ 
funrtrnnr t n  : Rt + R ( k  = 1. . . . n + 1) defined hy the wqtem of differential equations 

and 

The relation (28) is easily checked using standard methods for ordinary differential 
equations, whereas (29) is a deep result. 

L. de Branges gave an explicit representation of the function system tkn(t) ([4, 7, 161) 
(that we don't use, though, see Section 5, however), with which the proof of tht: de Braiges 
theorem was completed as soon as de Branges realized that (29) was a theorem previously 
proved by Askey and Gasper [2] 

Note that the derivatives -t{(t)  are characterized by the same system of differential 
equations (25) ,  the equation 
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222 W. KOEPF AND D. SCHMERSAU 

and the initial values 

if n - k even 
;n 1 - j -k 
ck (0, - 1 0  if n - k odd 

as repiacements for i26j and i27j (see e.g. [5j, p. 6853. 
On the other hand, Weinstein [IS] uses the Lowner chain (3), and shows the validity of 

Milin's conjecture if tor all n 2 2 the Weinslein junctions A; : Ri -+ E (k = I ,  . . . , n+ 1) 

defined by 

satisfy the relations 

.- 7 . n,., * weinstein did not identify the functions L Y ~ \ T ) ,  ~ u i  was able io grove (33) wiihoui an 
fxp!i& rq-p.entation. 

Independently, both Todorov [17] and Wilf [19] proved - using the explicit representa- 
tion of the de Branges functions - the following 

THEOREM 2 (Connection between de Branges and Weinstein functions) For all n E N ,  k = 
1 ,  . . . , n, one has the identity 

i.e., the de Branges and the Weinstein functions essentially are the same, and the main 
inequalities (29) and (33) are identical. 

In this section, we give a very elementary proof of this result, which in view of (32) can 
be looked at as a property of the Koebe function. 

Firstly, we realize that (again, we omit the arguments of w ( z ,  t ) )  

and that further 

so that with (5) in particular 
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ON THE DE BRANGES THEOREM 

Moreover, we get the relation 

where agairi, wc ittllized h e  Liiwner differeniiai equation ( 5 )  fsr v:(~.  r). 
Equating coefficients it follows ihat the same system of difkieiiiiid eqiiations is valid for 

A7 (i!: and therefore for $ ( t )  :-- k A! ( t )  we get t e  differential equations system 
- K ,  

Wn ( z ,  t )  et ( w ( z .  t ) ) n + l  
A:(t) = Jim - - - lim 

Z-o zn - w ( z t j  z 1 

which follows from (32), we realize that 

SO that (30) is satisfied. 
To show (34), it therefore remains to prove (3 1)  which can be read off from 
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224 W. KOEPF AND D. SCHMERSAU 

5 CLOSED FORM REPRESENTATION OF WEINSTEIN FUNCTIONS 

. . 
In this secticn, v x  shew hcv! - in a sm:lx  111anner as we derived the C!OSP(! f e ~ .  
representation of the coefficients of Koebe's Lowner chain w(z. t j  in Section 2 - the 
closed form representatinn nf iL( t !  = - k A X ( t )  that was given hy d e  Rranges, ran h~ 

deduced in an elementary way, only utilizing the properties of w(z ,  t )  that we developed 
jn Section 2 .  in nanirjliar i h ~  Lnnxxm nrnnfr nf T ~ P  R i ~ h ~ r h a r l l  2nd h~lilin rnni~rri~rec m o w  "' yU.*b...UL. ... " *,..V,.*. y I Y V I - .  V *  ..LC Y I I V C I V U - I I  L U A U  *.*A1111 CV*.J"CLYIbU lllU. 

be regarded as a consequence of the Lowner differential equation, plus properties of the 
Koebe function. 

Since Wl (z, t) is given by (36) in terms of w (z, t ) ,  and Wk(z, t )  satisfies the recurrence 
(35), from the representation (20) of w(z, t) we deduce by induction that the coefficients 
hi ( t )  of WL (z, t )  have a representation 

Substituting A z ( t )  according to ( 3 2 )  in (37), and equating coefficients, we obtain for 
n 2 k ~ ?  - 9  

3 * L i  

If we substitute now (38) in'(39), and equate coefficients, again, then we get the simple 
recurrence equation (n 2 j > k 3 2) 

for the coefficients a)13') which (by telescoping) generates 

Therefore, to get a closed form representation of a?"), we need only one for a?"), and 
we are done. To obtain this result, we observe that 

following from (7) and (36). Using the definition := 0 for j < k, and the 
representation (19) of .41(tj that we gave in Theorem 1 .  we deduce in a straightforward 
iiidiiilci 
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ON THE DE BRANGES THEOREM 

n 

= C 2 j ( - 1 1 j "  ( 2 ~  - I ) !  
( j  - l ) ! ( j  4- I ) !  ('2.. - + ~ - ~ ) ) ~ - i ~  j=1 [=I  1 - j  

where we changed the order of summation. Equating coefficients, we therefore see that 

(i.e., sl is an antidifference of br which is found by Gosper's algorithm, see [6] ,  [ I  21) which 
can easily be checked, and since sj-1 -- 0 it turns out that 

Therefore, using (40), we finally have 

k - ,  ( j  - U ! ( J  + I ) !  2 j l j +  i 2 j  - I ) !  
= ( - 1 )  X 

( j  - k ) ! ( j  + k)!  ( j  - l ) ! ( j  + I)! 
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226 W. KOEPF 4 N D  D. SCHMERSAU 

and hence 

, 9 ,:","',-it = V , - d + j  2~ \ ( n  + .l + 1 \ 
- - K  , - ,  -, A )  ( j - k , \  (42) 

;=k J = K  n - j  l r  ' 

and to the initial value 

-kt  ( n  k )  ,-kt / n  + k f 1 ) 
E a, '  = 

\ i f - k  / 

so that (42) reads 

I / ~ l + k + ! \  / 1 . + ! / 2 , . z + . ~ + 2 , - 3 + . ~ 1  \ -4'. f t )  a-hi 
K \ ( n - k  ) \  k + 3 / 2 , 2 k + 1  

Note, that similarly from (19) one gets the hypergeometric representations 

1-1/21 and for the Gegenbauer polynomials C, (x j by i24j  
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ON THE DE BRANGES THEOREM 227 

6 GENERATING FUNCTION OF THE de BRANGES FUNCTIONS 

Jn this final section. we give a very simple representation of the generating function Bk(z .  t )  
of the de Branges functions 

from which one can directly deduce de Branges main inequality t t ( t )  1 0 (see [4], [ 5 ] )  
without utilizing the inequality for the derivatives f{ ( t  j 5 0. 

Whereas de Branges considered the Milin conjecture for jked n E IN, and therefore 
introduced t : ( t )  (k = 1 .  . . . . n + I ) ,  we take a fixed k E IN and the generating function 
of r: ( t )  wit!! respect to n, hence all n 3 k are considered at the same timr 

(x  = 1 - 2e-'). Moreover one has the hypergeometric representation 

00 
2k (2 - 1) K ( z l , + l  e-,t = C(-l)'+' - 

j=k  j + k  j - k  

being a Taylor series representation with respect to y = e-I = 2 '  

Proof Define B k  (z. t )  by 

k B ~ ( z ,  t )  := K ( z )  w ( z ,  t )  : 

then 
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228 W. KOEPF AND D. SCHMERSAU 

Using (3, we therefore get 

- - - K i z j  w i z ,  r j L i i  - w i z ,  r j j  

By the definition (45)  of Bk (z, t )  its Taylor series for z = 0 starts with a zk+' tern, hence 
we may write 

and we can assume T:+~ ( t )  E 0, hence (26). Substituting (47) in (46) yie!ds furthermore 
(25)  by equating coefficients of zn ''. The (iz + 1 lS' Taylor cmfficlent of 

equals n + 1 - k, hence the initial values (27) are satisfied, and therefore t; ( t )  form the de 
n c.---: -..- 
DliIllgCS 1 UII~LIU1IY. 

Starting with (22). a calculation shows that w ( z ,  t )  has the explicit representation 

hence the right hand representation of (43) follows. 
In a similar manner as we derived the closed form representation of the coefficients of 

Koebe's Lowner chain w ( z ,  t )  in Section 2 (or by the method presented in [9-1 I]), one 
deduces (44). 

To deduce the inequalities t: (t) 2 0 as announced, we remark that the Jacobi polynomials 

P,("'~)(x) have the generating function 
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ON THE DE BRANGES THEOREM 

(see e.g. [I], (22.9. I)), hence 

(see [2], Theorem 3) and the positivity of the Taylor coefficients (with re 
function 

(48) 

:spect to z) of the 

(see [2], Theorem D). Hence, @xi, as 1:; & Ermges' original proof, the Askey-Gasper 
result (48) does the main job. 
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