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In his 1984 proof of the Bieberbach and Milin conjectures de Branges used a positivity result
of special functions which follows from an identity about Jacobi polynomial sums that was
published by Askey and Gasper in 1976 (Askey, R. and Gasper, G., 1976, Positive Jacobi
polynomial sums I1. American Journal of Mathematics, 98, 709-737.).

The de Branges functions 7}/(¢) are defined as the solutions of a system of differential recur-
rence equations with suitably given initial values. The essential fact used in the proof of the
Bieberbach and Milin conjectures is the statement /(1) < 0.

In 1991 Weinstein presented another proof of the Bieberbach and Milin conjectures, also
using a special function system Aj/(f) which (by Todorov and Wilf)) was realized to be directly
connected with de Branges’, /() = —kAJ(7), and the positivity results in both proofs #}/(1) <0
are essentially the same.

In this article we study differential recurrence equations equivalent to de Branges’ original
ones and show that many solutions of these differential recurrence equations don’t change
sign so that the above inequality is not as surprising as expected.

Furthermore, we present a multiparameterized hypergeometric family of solutions of the de
Branges differential recurrence equations showing that solutions are not rare at all.

Keywords: Bieberbach conjecture; de Branges functions; Weinstein functions; Hypergeometric
functions

Mathematics Subject Classifications 2000: 30 C 50; 33 C20

1. Introduction

Let S denote the family of analytic and univalent functions f (z) = z + a»z> + - - - of the
unit disk D. S is compact with respect to the topology of locally uniform convergence so
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that k, := maxses |a,(f )| exists. In 1916 Bieberbach [1] proved that k=2, with
equality if and only if f'is a rotation of the Koebe function

. z {142\ N,

and in a footnote he mentioned ‘“Vielleicht ist tiberhaupt k, = n.” This statement is
known as the Bieberbach conjecture.

In 1923 Lowner [2] proved the Bieberbach conjecture for »=3. His method was
to embed a univalent function f(z) into a Léwner chain, i.e., a family {f (z,1) | =0}
of univalent functions of the form

f ) =ez+ i a (D)2, (zeD, 120, a)(1) € C(n=2))
n=2

which start with f
f(z,0)=/(2),

and for which the relation

Sz
zf'(z.0)

Re p(z, 1) = Re< ) >0 (zeD) ©)

is satisfied. Here ' and " denote the partial derivatives with respect to z and ¢, respec-
tively. Equation (2) is referred to as the Lowner differential equation, and geometrically
it states that the image domains of f; expand as ¢ increases.

The history of the Bieberbach conjecture showed that it was easier to obtain results
about the logarithmic coefficients of a univalent function £, i.e., the coefficients d, of the
expansion

o(z) = ln@ =: io: d,z"

n=1

rather than for the coefficients a, of fitself. So Lebedev and Milin [3] in the mid-1960s
developed methods to exponentiate such information. They proved that if for f € S
the Milin conjecture

> 1= (K~ ) 0

k=1

on its logarithmic coefficients is satisfied for some n € N, then the Bieberbach
conjecture for the index n+ 1 follows.
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In 1984 de Branges [4] verified the Milin conjecture, and therefore the Bieberbach
conjecture and in 1991, Weinstein [5] gave a different proof. Both proofs use the
positivity of special function systems, and independently Todorov [6] and Wilf [7]
showed that (the z-derivatives of the) de Branges functions and Weinstein’s functions
essentially are the same (see also [8]),

Te(1) = —kAR(0),
7/(¢) denoting the de Branges functions and Aj(f) denoting the Weinstein functions,
respectively. Whereas de Branges applied an identity of Askey and Gasper [9] to his

function system, Weinstein applied an addition theorem for Legendre polynomials
[10] to his function system to deduce the positivity result needed.

2. The de Branges and Weinstein functions

In [4] de Branges showed that the Milin conjecture is valid if for all n> 1 the de Branges

Sfunctions 1} R>g — R (k=1,...,n) defined by the system of differential recurrence
equations
TZH(I)_TZ(I):@‘F% (k=1,....n) 3)
T, =0 )
with the initial values
7(0)=n+1—-k (5)
have the properties
lim 7(1) =0, ©)
and
#(H <0 (€ Rsp). %)

The relation (6) is easily checked using standard methods for ordinary differential
equations, whereas (7) is a deep result.
L. de Branges gave the explicit representation
e") (8)
([4,11,12]), with which the proof of the de Branges theorem was completed as soon as de
Branges realized that (7) was a theorem previously proved by Askey and Gasper [9].

; iy n+k+1 k+1/2,n+k+2,k,k—n
T(t)=e 413

2k+1 k+1,2k+1,k+3/2
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Note that the function

F ay, ..
bl,...,

where (a), =a(a+1)---(a+k—1) denotes the Pochhammer symbol, is called the
generalized hypergeometric series. Its coefficient term ratio

(al)k"'(aﬁ)kx_k
k) ZA"X - Z(bnk--«bq)k K

A X (k4 a)-(k+a) x
Arxk (k4 by) - (k+by)(k+1)

is a general rational function, in factorized form. More information about generalized
hypergeometric functions can be found in [13] or [14].
In [5] Weinstein used the Lowner chain

Wz, 1) = K~ (e_’K(z)) (zeD, 1> 0)

of bounded univalent functions in the unit disk [ which is defined in terms of the
Koebe function (1), and showed the validity of Milin’s conjecture if for all n>1 the
Weinstein functions All: R>g — R (k =1, ...,n) defined by

e'w(z, l)kJrl |
An n-+
Tz Z W0z ©)
satisfy the relations
A =0 (teRx, k,neN). (10)

Weinstein did not identify the functions AJ(¢), but by applying the addition theorem for
Legendre polynomials [10] to his function system he deduced (10) without an
explicit representation.

Independently, both Todorov [6] and Wilf [7] proved — using the explicit representa-
tion (8) of the de Branges functions — that

#(1) = —kAJ (D). (11)

i.e., the (z-derivatives of the) de Branges functions and the Weinstein functions
essentially are the same, and the main inequalities (7) and (10) are identical. In [8]
another proof of (11) was given that does not use the explicit representation of the
de Branges functions. Note furthermore that in [15] we deduced the result (10) using
a version of the addition theorem for the Gegenbauer polynomials whose simple
proof is contained in the same article.

In this article we study differential recurrence equations equivalent to de Branges’
original ones and show that many solutions of these differential recurrence
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equations don’t change sign so that the inequalities (7) and (10), as well as 7}l 20 are
not as surprising as expected.

Furthermore, we present a multiparameterized hypergeometric family of solutions
of the de Branges differential recurrence equations showing that solutions are not
rare at all.

3. Nonnegative solutions of the de Branges differential recurrence equation

In this section, we will deal with the following functions

Sia0) = Bale™) = 1 ) (12
and
Sn(y) = Skale™) = & AL(D) (13)

instead of 7j(f) and AJ(7), where we use the variable y = e~ € [0, 1] instead of #=0.
Note that our interest to consider 8;,(y) comes from the fact that this function is
decreasing in [0, 1] (figures 1 and 2) (see [16], Theorem 7(a)).

As boundary values we have

n+k+1

1
S0 = ( 2% +1

> and  §,(1) = %(n —k+1)

and

- n+k+1 ~ 1 ifn—kiseven
8in(0) = ( e+ 1 ) and - §(1) = {0 otherwise ’

respectively. Of course the relation () 2 0 (¢ 2 0) is equivalent to &x,(») =0 (y € [0, 1])
and the relation A}() 20 (¢ 20) is equivalent to 8,(») 20 (¥ € [0, 1]).

05§
06/
04
0.2

0.2 0.4 0.6 0.8 1

Figure 1. The decreasing functions 6y, (y)/6,(0) for k=3 and n=4,..., 15.
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Figure 2. The decreasing functions &;,(y) near y=1 for k=3 and n=4,...,15.

0.8
0.6
0.4
0.2

0.2 0.4 0.6 0.8 1

Figure 3. The functions Skn(y)/gkn(o) fork=3andn=4,...,15.

Note that although at first sight (figure 3) it seems that gk,,(y) are also decreasing
functions, this is not the case in a left neighbourhood of y=1 (figure 4). Using
mathematical induction and (14) one can show that

82y n()=2qn—q+1)>0 and &, (1)
=-29n—q+1)<0 for ¢=0,1,....

The de Branges differential recurrence equation (3) can now be restated in terms of
the new functions and give the differential recurrence equations

81y (1) = 2k 8 (») + ¥ 81, () (14)

and

~8 1 a) = 2k 8 (v) + ¥ 8, (1)
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0.9 092 094 096 098

Figure 4. The functions gkn () near y=1fork=3 and n=4,...,15.

for 8;,(y) and g;m(y), respectively, hence we see that both d;,(y) as well as SN;m(y) are
solutions of (14). _
Rewriting the Todorov—Wilf identity (11) in terms of the functions 8, and §y,, we get

8n(y) = k 81n(y) + 8, (9. (15)

Combining (14) and (15), we get

_8,/’(71,)1()/) = gkn()}) + k 8k11(y)~ (16)

Since both gk,,(y) and &,(y) are nonnegative in [0, 1] and for every k = 1,...,n, this
immediately yields that &, decreases in [0,1] for k=1,...,n — 1. This statement
was first given in [16].

We would like to show that the solutions of recurrence equation (14) must be
polynomials of degree <n—k as soon as we start with constant initial values
8m(¥) = 8,,(0). This is easily seen by induction. We will now show that the degree
of these polynomials is exactly n — k. By the above observation, we can set

n—k
Skn() =Y iy’ (@ = 8a(0)).
Jj=0

Substituting this into (14), one gets

n—k n—k
=G+ DAl g ¥ =2k ay + Y 2k +j)dyy . (17)
j=0 Jj=1

Comparing the coefficients, we therefore get
—(+ Dajyy oy =Ck+pay (j=0,1,....n—k), (18)
and in particular for j =n—k

—(n—k+ l)aZ—k+l,k—l =(k+n) aZ—/c,k # 0.

Note that this finishes our proof that the degree of these polynomials is exactly n — k.
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From the above recurrence we can furthermore deduce that, given the initial value
ag,, the highest coefficient of &,(») is given by the hypergeometric term

. 2n
asz,k = (_1) , (l’[ + k) agn'

Since both solution families of (14) that we know are nonnegative in [0, 1], the
question arises to study the sign of a general solution of (14).
For this purpose, we integrate (14) from 0 to y and get

81.0(0) — 81 () = 2k fo (o) + /O L8, (.
Partial integration gives
St1.0) = 1)+ 30,0 + 2k = ) [ 8121 (19)
From (19), we immediately see that 8;_; ,(yo) = 0 is equivalent to
Yo
8k—1,2(0) = yo 8ku(o) + (2k — 1) ; Sin(2)dz.

With the notation

Rm=h%@+%FUAM@&

0§y§1}

we therefore learn that if 8;_; ,(0) € Ry, then the function §;_; ,(y) does not have a
zero in the interval [0, 1] and vice versa.

If we set My, : = max Ry,, then obviously My, =0 since 0 € Ry, (set y=0). Now if
one chooses 8;_1,,(0) > My,, then the function §;_; ,(y) must be positive throughout
the interval [0, 1]. Hence if we initialize the recurrence equation (14) with a positive
continuously differentiable function §,,(y), and choose &8;_1 ,(0) > My, for every
k=1,...,n—1, then the resulting function system &,(y) is positive for all y € [0, 1]
and allk=1,...,n.

Hence, as a consequence, positive solution families of the de Branges differential
recurrence equation are not rare at all. ~

Since both 8;,(y) and 38;,(y) are solutions of (14) and since 8;,(y) is rather oscillating,
see figure 4, it is clear that the positivity of 8,(y) cannot imply the positivity of &, (»).
It is interesting that nevertheless a similar statement is true, where an integration
is involved, however.

Multiplying (14) by »*~! and replacing y by z yields

_Z2k—1 8;{71”1(2) _ (Z2k Skn(z))

Integration from 0 to y gives

,
—/fH%ﬂ@wzﬁmw.
0
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Hence, if 8,(y) is positive on [0,1], then [Jz*7'8;_, (2)dz is negative on (0,1],
independent of the choice of the value of 8x_; ,(0).

4. Hypergeometric solution families of the de Branges differential recurrence equation

The hypergeometric representation (8) leads to the explicit repesentations

)
)

of gkn(y). In this section we will show that many more structurally similar hypergeo-
metric functions are solutions of the recurrence equation (14).

The above two representations suggest to consider the general hypergeometric
functions

1 (n+k+1 k—nk+1/2,n+k+2,k
5kn()/)=k( >4 3(

2k+1 2k + 1,k+1,k+3/2

of 8xx(y) and

~ n+k+1 k—nk+1/2,n+k+2
akn(y)=( >% 2<

2k+1 2k +1,k+3/2

k—n,aé‘,...,aﬁ
Skn(y) = akn(o)qu k © VI
2k+1,ﬂ2,...,,3{}

By the hypergeometric derivative rule (see e.g. [14], p. 27, Exercise 2.4), we get

k—n,o/z‘,...,a’p‘ k—n,(x’z‘,...,a’p‘
2k ,F, v +y——pF, y
2+ 1B Bl DTN kBB

k—n,ds, ...«
=2k ,F, ) / y
2k5:323-~-5ﬂ(;

and differentiating term-wise one has

d k—l—n,a’f‘,...,o/;*l
d_prq k—1 c—1
2k— 19,32 ,...,ﬂq
(k_l—n)a§_1~-ozk‘1 k—n,a§—1+1,”.,a§—l+1

)4
. F,
k=D B I kg A
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Substituting the above equations in (14) and dividing by 8x—1,,(0), we arrive at

k—1 k—1
(n+l—k)a’2("---a;‘;‘1 k—no;™ +1,...,0,7 +1

- 1 rly
k-1 5" B! 2k, B+ 1L B

k_n’c(é‘,...,olk
— 2k 8""—(0) oF, g y
8-1.1(0) 2%k, ... B
For y =0 this yields
(n+l-Bas o™ 80) (20)
(2k _ l)ﬁé_l o ﬁg_] 5]\'71,}1(0) '

and therefore

k—n,a’zc_l +1,...,o/1‘;_1 + 1
P\ 2k BT LB

k—n,a’z‘,...,allj
v =k e ﬂk ,Bk
b 2 q

This equation is an identity if we set

)
k—1

ot y1=ak for m=2,...,p and ' +1=p for r=2,...,q

y)

Solving these simple recurrences for af; and ¥, we therefore get

k—nk+cy,....k+¢c,

81n(3) = 81n(0) , F,
) = 8©), q<2k+l,k+d2,...,k+dq

with constants ¢,, im=2,...,p)and d, (r =2,...,¢q).
With the aid of (20), we finally compute the initial values

Cm! Tk +d)s

6](,1(0) = 6nn(O) (2/()' (l’l _ k)' Z:Z(k + Cm)nfk

by induction. Therefore we have computed the following solution &,(y) (k =1,...,n)

of (14)
)

showing that hypergeometric solutions of the de Branges differential recurrence
equation are not rare at all.

Skn(y) = 8n;1(0)

(27’1)' ;{:2(]( + d")n—k F k — n, k + Caynnesy k + Cp
QI =0 T ok + eoie " I\ 2k + Lk + da, ...k +d,
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