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1. Introduction 

1.1 Univalent functions 

We consider functions that are analytic in the unit disk 

ID := {t E Cl It1 < 1). 

A function is called univalent (or schlicht) if it is one-to-one. The Riemann 
mapping theorem guarantees the existence of a univalent map f : ID + G for 
each simply connected domain G 5 (E. Moreover f is uniquely determined 
except of the composition with rotations t H eZaz of ID. 

If (G,) is a sequence of simply connected domains with a E G„n E IN, 
then the largest domain G containing a and having the property that each 
compact subset of G lies in all but a finite number of the domains G, is 
called the kernel of (G,). If no such domain exists then the kernel is { a } .  A 
sequence (G,) is said to  converge to  G, if each subsequence has the kernel G. 
We write G, -+ G. The Carathkodory kernel theorem states that a sequence 
(f,) of univalent functions with f n ( 0 )  = a and fA(0) > 0 converges locally 
uniformly to  f, if and only if f,(ID) converges to f(lD). 

If we speak about convergence of a sequence (f,) of analytic functions, 
we mean locally uniform convergence and write fn -+ f .  The family A of 
analytic functions of ID together with this topology is a Frbchet space, i.e. 
a locally convex complete metrizable linear space. 

A sequence of univalent functions not converging locally uniformly to 
00 is normal, and there is a convergent subsequence. The limit function is 
univalent or constant. When considering sequences of univalent functions, 
we often assume without loss of generality that they converge instead of 
choosing a subsequence. 

The family S of univalent functions that are normalized by f(0) = 0, 
f’(0) = 1, i.e. 

f(t) = t + U 2 2  + a3t3 + * * * , (1.1) 
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is a compact subset of A.  
A function f E A is called m-fold symmetric if it has the special form 

+ a2m+i , p n + l +  ... , (1 .2 )  p + l  
( m  E w 

f(z) = + am+i 

which is equivalent to the fact that the Riemann image surface F is m-fold 
symmetric with respect to the origin, i.e. for, all w E F, k = 1 , .  . . , m also 
the points e2niklmw E F .  
(References: [13 ] ,  [ 1 7 ] ,  [49].) 

1.2 Functions with positive real part 

Let P denote the subset of A of functions p with positive real part that are 
normalized by p ( 0 )  = 1.  

A function of the form 

where p denotes a Bore1 probability measure on dID, clearly has positive 
real part, because the kernel functions have this property. The famous Her- 
glotz representation theorem states that the converse is also true. This is 
equivalent to the fact that the extreme points of P (i.e. the points which 
have no proper convex representation within the convex set P) are the ker- 
nel functions of representation (1.3), which map ID univalently onto the 
right halfplane {w E I Re w > 0)  (see e.g. [53], [20]); we write E (P) = 
{El z E aD}. By the Krein-Milman theorem their closed convez huZZ 
Co ( E  P )  is all of P and so their convex hull CO ( E  P )  lies dense in P with 
respect to the topology of locally uniform convergence (which makes P com- 
pact), so that each function p E P can be locally uniformly approximated 
by functions pn of the form 

The functions of the forin (1.4) give the so-called Curuthkodory boundary of 
P .  
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A function f is called subordinate to  g ,  if f = g o w for some function 
w E A with w(0)  = 0 and w(ID) c ID; we write f i g.  The subordination 
principle states that if g is univalent then f -i g if and only if f(0) = g ( 0 )  
and f(D) c g(ID), and so p E P iff p -i E. If f -i g then by Schwarz’s 
Lemma f(D,) c g(lD,) for all T E ] O , l [  where ID, := { z  E (E I IzI < T } .  

By B we denote the family of functions w E A with w(0)  = 0 and 
w(ID) c ID, and by Sub F the family of functions which are subordinate to 
some f E F .  

of functions p 
normalized by p(0 )  = 1 for which there is some a E R such that the real 
part of eiap is positive. One sees that p E P iff p 4 E, where y = e-2ia.  
A slight modification of Herglotz’s theorem gives that each function p E P 
can be approximated by functions of the form 

A compact family which is similar to P is the class 

n 

k = l  

in other words 

Lemma 1.1 The functions of the form (1.5) form a dense subset of P .  
(For details see e.g. [20], chapter 3, and [24].) 

Lemma 1.2 Each function of the form (1.5) has a representation 

arg21 <arg yi <arg 2 2  < argy2 <- - -<  arg zn <arg yn <arg XI +2x. (1.8) 

Proofi The function p ,  given by (1.5) is rational in 2 of degree n with 
exactly n poles at the points E, and p,(O) = 1, so that (1.6) holds. As a 
convex combination of functions subordinate to  E also pn -i E, and 
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so pn(lD) lies in some halfplane H whose boundary contains the origin, and 
in particular pn is nonvanishing in ID. From this it follows that lykl 1 
(k = 1,. . .,n). On the other hand 

n 

k=l 
so that n lYkl = 1, which leads to (1.7). From (1.6) it follows with the aid 

of the identity 

1 
2 arg(i + z) = -argz,  IzI = 1, z # -1, (1.9) 

that for eie # (k = 1,. . .,n) 

(1.10) 

so that the curve {pn(eie)} lies on a line L through the origin, and p n ( D )  c H 
then implies that pn(ID) = H where H denotes the halfplane with L = OH 
and 1 E H .  In particular, pn(eis) does not contain a turning point 80 where 
pL(eieO) = 0. Then there exist 
two zeros of pn(eie), Oi and 02, say, without pole between them (on OID), 
so that pn(eie) must change its direction on L for some 80 E ]Ol,02[. Here 

U 

On the other hand, functions of the form (1.6) - (1.8) are elements of as 
the following lemma shows. 

Suppose now that (1.8) does not hold. 

pk(eieo) = 0 ,  and we have a contradiction. 

Lemma 1.3 The functions of the form (1.6) - (1.8) form a dense subset of 
P .  
ProoE By Lemma 1.1 the functions of form (1.5) are dense in P ,  and by 
Lemma 1.2 they have a representation of the form (1.6) - (1.8). Now we 
show that functions of the form (1.6) - (1.8) lie in P ,  which gives the result. 

As above we get (l.lO), and the curve {pn(e")} lies on a line l through 
the origin. Next we shall show that pk( z )  # 0 for t E BID, and from this i t  
follows that pn(ID) must lie on one side of L ,  because p,(eie) does not change 
its direction by moving on 1 while 8 varies from 0 to  27r. Hence p E P .  
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The zeros yk and the poles of pn are pairwise different by (1.8), so 
that they have order one and pL(G),pL(yk) # 0 (12 = 1 , .  . . , n). It remains 
to  show that 

From representation (1.6) it follows for z E dlD that 

The real part of this sum equals zero because the same is true for each 
summand. On the other hand we get for z = eie 

if we write 
$Ok := arg?cl, ; $k := argjjk. 

Now let 8 E [0,2a] be given. Then rearrange the values of Cpk and $k modulo 
2a, such that 

Suppose now, (1.11) holds, then b k  - U k  > 0 ( k  = 1,. . . , n), because the 
function cot is strictly decreasing in ]O,a[. Thus Im (zpL/pn(z)) > 0. If 
(1.12) holds, Im (zpn/pn) < 0 follows similarly. This finishes the proof that 

U zp;/p, has no zero on dlD. 
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1.3 Polygons and Schwarz-Christoffel mappings 

Let f E A be continuous in and have a Riemann surface F as image 
domain whose boundary consists of a finite number of linear arcs, such that 
the boundary correspondence dlD -+ aF is one-to-one. Then F is called 
a polygon. Let F have n vertices of inner angles (k = 1 , .  . . , n). We 
do not suppose f to  be univalent, so that a k  > 2 is possible, whereas for 
univalent polygons 

(IIk 5 2 (k = 1, .  . . , n ) .  (1.13) 

If we have a bounded vertex then 

a k > O .  (1.14) 

If a vertex lies at infinity we measure the angle on the Riemann sphere and 
have 

a k z 0 ,  (1.15) 

where Crk = 0 is a zero angle which corresponds to  two parallel rays of dF.  
Let now Z k  be the prevertices, i.e. the preimages under f of the vertices 

f ( X k ) .  Then the Schwarz-Christoffel formula is the representation 

(1.16) 

where 

(1.17) (1 - (Yk)?F 
(1 + a k ) T  

if f ( Z k )  is bounded 
if f ( Z k )  is unbounded 2Pk" := 

denote the outer angles. The formula 
n 

(1.18) 
k=l  

corresponds in the bounded (univalent) case both to the rule for the sum 
of angles in an n-gon and to  the fact that the increment of the tangent 
direction is exactly 2a when surrounding the polygon on aF one time. 

On the other hand, if f fulfills (1.16) and (1.18) with Zk E dlD for 
k = 1 , .  . . , n, then the Riemann image surface f(lD) is a polygon. 

If f ( Z k )  is bounded then relation (1.14) yields 

(1.19) 
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whereas for unbounded f ( Z k )  relations (1.15) and (1.17) give 

(1.20) 

If f is univalent, then (1.13) leads to 

( k =  1, ..., It). (1.21) 1 
2 Pk 2 -- 

(References: [31], [55] . )  

1.4 Convex and starlike functions 

A function f E A is called convex if it maps ID univalently onto a convex 
domain, and it is called starlike if it maps ID univalently onto a domain 
which is starlike with respect to  f (0) = 0. 

Clearly a polygon is convex if CYk < 1 (k = 1 , .  . . , n) or equivalently if 
Pk > 0 (k = 1 , .  . ., n). So by (1.16) it follows that 

if one uses (1.18). Thus 
f " l + z - E P .  
f' 

(1.22) 

(1.23) 

On the other hand, if (1.23) holds, then by (1.4) f can be approximated by 
convex Schwarz-Christoffel mappings, and the Caratheodory kernel theorem 
shows that f(lD) is convex. So (1.23) is a necessary and sufficient condition 
for f to be convex. 

Let K denote the family of convex functions that are normalized by 

It is well-known that a function f is starlike if and only if 
(1.1). 

(1.24) 

(see e.g. [49]). 

mated by functions of the form 
By (1.4) and Lemmas 1.1 and 1.2 the function zf'/f can be approxi- 

9 



from which we can see that fn is a Schwarz-Christoffel mapping with n finite 
vertices of inner angle 2n, and alternating n vertices at 00. This is a special 
case of linearly accessibility which will be considered later. 

Let St denote the family of starlike functions that are normalized by 
(1.1). 

1.5 Functions of bounded boundary rotation 

The boundary rotation of a polygon F is the total change of the tangent 
direction when surrounding the boundary of the polygon one time and can 
be calculated as the sum of the absolute value of the outer angles 

n 

(1.25) 

The boundary rotation of the corresponding Schwarz-Christoffel mapping 
is defined to be the boundary rotation of its image polygon. A function f 
has boundary rotation Kn, if it can be approximated by Schwarz-Christoffel 
mappings with respect to locally uniform convergence, i.e. if 

(1.26) 

where p is a signed measure on alü with the properties 

J ~ A Z )  = 1 (1.27) 
alD 

and 
br ( f )  = 2n J Idp(z)l= KT . (1.28) 

Representation (1.26) is called the Paatero representation of f .  By the 
Herglotz formula (1.3) and the representation of p as the difference of two 

an, 
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positive measures the Paatero representation (1.26) is equivalent to  the ex- 
istence of two functions pl ,p;!  E P such that 

K 1  K 1  
(q + 5) . Pl - (q - 5) . p 2 .  

(1.29) f 1 + z+) = 
f 

Let V(K) denote the family of functions of bounded boundary rotation at 
most Kn that are normalized by (1.1). So V(K) is the locally uniform clo- 
sure of the corresponding family of normalized Schwarz-Christoffel mappings 
of bounded boundary rotation at most Kn. 

Generalized polygons with an infinite number of vertices W k  (k E IN) of 
outer angle 2/&n with lpkl < 00 are examples of functions of bounded 

boundary rotation. 
(References: [43], [55], [21], see also chapter 2.) 

03 

k=l  

1.6 Linearly accessible domains and close-to-convex func- 
tions 

A domain F is called (angularly) accessible of order ß (ß E [0, l]), if i t  is the 
complement of the union of rays that are pairwise disjoint except that the 
origin of one ray may lie on another one of the rays, such that every ray is 
the bisector of a sector of angle (1 -ß)n which wholly lies in the complement 
of F. If ß = 1 then F is called (strictly) liiaearly accessible (see [5], [54], 
[48]). A function f is called close-to-convex of order ß (ß E [0,1]), (for 
reasons which shall be seen later) if f(D) is accessible of order ß. We shall 
give an analytical characterization for f to be close-to-convex of order ß, 
which is for ß = 1 originally due to Lewandowski [37] - [38] and for ß < 1 to 
Pommerenke [48] (who did not give a proof for his statement) and has been 
the original definition of close-to-convexity given by Kaplan [22]. Therefore 
we use Lemma 1.3. 

Theorem 1.1 Let f be univalent and f(D) accessible of order ß. Then 
there exist a convex function g and a function p E P such that the represen- 
tation 

f' = 91. pß 

holds. 

(1.30) 

ProoE Suppose firstly, ß = 1. Then by the geometrical definition we have 
f(D) = Q: \ U 7 t ,  where 7 t  are rays that are pairwise disjoint except that 

t€T 
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the origin of one ray may lie on another one of the rays, and T is a suitably 
chosen parameter set, which is separable (e.g. T C IR3). Choose a dense 
subset { t ,  E T I n E IN} of T and define fn by 

n 

fn(lD) := a \ U 7 t k 9  (1.31) 

There is no loss of generality to assume that (yt,) (k: E IN) are pairwise 
disjoint, because if some of the chosen rays has its origin lying on another 
ray, we shorten it by l /n  and get the same conclusion. Obviously fn t f, 
because fn(lD) t f(lD) in the sense of Carathkodory kernel convergence. 
This shows that it suffices to show the conclusion for functions fn satisfying 
(1.31), because {fn} is a normal family and the functions f with represen- 
tation (1.30) form a closed subset of A.  

Observe that fn is a certain Schwarz-Christoffel mapping with n finite 
vertices at the points W k  =: fn(yk), say. The inner angle at each of those 
hairpin vertices is 2n. The other n vertices alternate with W k  and lie at 
00 =: fn(G), say. The inner angles a k ? r  at those vertices satisfy a k  2 0, 

and their sum fulfills ( Y k T  = 27r, because fn is univalent (in other words: 

argfn(0) := argf(O) - 
k = l  

n 

k = l  
the rays are traversed at 00 systematically with increasing argument when 
surrounding the polygon), so that by (1.16) and (1.17) 

(1.32) 

The choice (1.6) gives a function pn E P as Lemma 1.3 shows because (1.7) 
and (1.8) are fulfilled, and 

II gA(0) := fA(0) 

Z - z k  k = l  

gives a convex polygon. Then from (1.32) it follows that 

which is equivalent to f; = g; - pn . 
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Now suppose 0 < ß < 1. Then for each yt, ( t  E T), the sector St of 
angle (1 - ß)n which is symmetric with respect to yt lies in (I! \ f(lD). Define 
here 

f n ( ~ )  := \ U s t k ,  arg fn(0) := arg f(0) * (1.33) 

for a certain dense subset { t ,  E T I n E IN} of T. Then fn -+ f, and it 
suffices to  show the conclusion for functions fn satisfying (1.33). 

Observe that fn(lD) is a polygon with 2n vertices, n of them of inner 
angle (1  + p)?r at the origins of St, (k = 1,. . . ,n) .  Let the sectors St, be 
ordered in the same way as their origins - which are vertices of fn(lD) - when 
traversing alD in positive sense. Now the polygon fn(lD) has a finite vertex 
between the origins Stk and when surrounding fn(lD) if they intersect, 
and has a vertex at 00 if they do not. Let ak?F be the angle between the 
directions of ytk and ytk+l. Then in either case the outer angle is seen to  be 
2pkT = (CYk + ß ) T ,  SO that 

n 

k=l  

n 

k= l  
Because ak?T = 2n, this gives the result as above. 0 

It is decisive that the converse is also true. For this reason the functions are 
called close-to-convex. 

Theorem 1.2 Let ß E ]0,1] and let f have a representation of the form 
(1.30) for some convex function g und some p E P .  Then f is univalent and 
f(D) is accessible of order ß. 

Proofi 
fulfills for q,  .zz E g( lD)  

The function h = f o g - l  is defined in the convex domain g ( l D )  and 

22 

h(.zz) - h(Z1) = Jh’ (Z )d% = ( t z  - 4 j h ’ ( t i 2  + (1  - t)%i)dt # 0 ,  
21 0 

since Re (e iah’)  = Re ( e i a f ’ / g ’ )  > 0 for some a E IR, so that h and therefore 
f is univalent. 

We prove the rest of the result also by an approximation argument. 
Therefore we need to know that the family of domains that are accessible 
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of order ß is closed with respect to Caratheodory kernel convergence, i.e. a 
convergent sequence of domains which are accessible of order ß that does 
not converge to a singleton converges to  a domain accessible of order ß. 

Suppose G,  are accessible of order ß and G, t G. Each boundary point 
w E dG is the limit point of a sequence w, of boundary points of G,. Each 
w, is the vertex of a sector S, which lies in C\G,. Let rn denote the bisector 
of S,. Then one chooses a subsequence such that there is a limit direction 
of the directions of 7, and thus a limit ray y. Let S be the corresponding 
symmetric sector of angle (1 - P).. Caratheodory kernel convergence shows 
that S C C \ G .  Furthermore a simple argument also shows that the rays 
which correspond to different boundary points of G are pairwise disjoint. 
For the details see [5], Lemma 3. 

Suppose now, f has a representation (1.30). Then 

-=ß-+- .  f" P' g" 
f' P 9' 

(1.34) 

Each function of this form can be approximated by functions fn of the same 
form where g is a convex Schwarz-Christoffel mapping and p has a repre- 
sentation (1.6) - (1.8) as Lemma 1.3 shows. So we get for the approximants 

m 

(1.35) 
k = l  k = l  

where the numbers X k ,  Y k  alternate with each other on dD,  p k  > 0, lWkl  = i 

(k = 1 , .  . . ,m), p k  = 1, and n,m E N. Without loss of generality we 

can assume that g is bounded (i.e. p k  < 112 (k = 1, .  . . , m)) because oth- 
erwise we approximate g by bounded convex polygons. On similar reasons 
we suppose that the numbers W k  are pairwise different from 

From (1.35) one sees that fn(D) is a polygon, and because it has the 
form (1.34) it is a priori close-to-convex and hence univalent. 

Now suppose first, ß = 1. Then there are n vertices at 00 of angle zero, 
and alternately n finite hairpin vertices of angle 27r. Furthermore there are 
m finite convex vertices. 

At first we prove that the complement E of F := f,(ID) contains the n 
rays y k  (k = 1 , .  . . , n), which come from the hairpin vertices o k .  Clearly a 
segment U of 7 k  containing o k  lies in E .  Suppose now that there is a point 
Q E yk which lies in F .  Then there is a curve I' which connects o k  with 
Q within F because o k  is an accessible boundary point. The segment of 7 k  

n 

k = l  

and yk. 
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from o k  to  Q and r encloses a bounded region. It contains in its interior 
some point P of aF as from Q E F it follows that there is a convex vertex 
before and after o k .  That part of aF from o k  to the next or last vertex at 
infinity which contains P is called 6. Now because 6 is unbounded it must 
cross 7 k  between U and Q. But this contradicts the fact that all vertices of 
6 are convex. Thus 7 k  C E .  

The rays 7 k  (k = 1 , .  . . , n)  are pairwise disjoint because of the univalence. 
Let them be ordered in the same way as their origins o k  when traversing 
aID in positive sense. 

When traversing from o k  to  O k + l  along aF there is exactly one vertex 
at w (of angle zero) between o k  and O k + l ,  because the numbers Z k ,  Y k  are 
alternating on 8ID. So the rays 7 k  are separated by half parallel strips and 
lie in components G k  of E which are pairwise disjoint. 

Furthermore E = U G k ,  because in a neighborhood of infinity E has 

exactly n components (f has exactly n poles on an), so that an additional 
component would be bounded contradicting the simply connectivity of F. 

So, for to  fill E with rays that are pairwise disjoint, i t  is enough to  do 
this for the components G k .  But this is easily done. 

Take the parallels of 7 k  from o k  to  the next vertex with origins on 
aF. Because all vertices before the next vertex at 00 are convex, we may 
choose from Pi on as direction of a new family of parallel rays the boundary 
direction of F before Pi,  and fill the remaining sector arbitrarily. Note that 
in this case the origin of some ray lies on another one of the rays. Continue 
the procedure from Pi to  the next vertex Pz and so on until Pj = 00. Finally 
apply the same process from o k  to  the last vertex at 00 before o k .  This gives 
a suitable representation of G k  as union of rays that are pairwise disjoint 
and finishes the proof for ß = 1. 

Now suppose, 0 < ß < 1. Because p k  < 1/2 (k = 1 ,..., rn), f is 
bounded, i.e. all vertices are finite. There are exactly n vertices of angle 
(1 - ß)r, alternately n vertices of angle (1 -t ß)n, and finally rn convex 
vertices. The vertices o k  (k = 1,. . . , n),  of inner angle (1 + ß)n define 
sectors SI, (k = 1,. . . , n) ,  of angle (1 - ß)r which lie in E := C \ f(ID). 
Let 7 k  denote the bisector of SI, (k = 1,. . . ,n). Because all other n + rn 
vertices are bounded and convex, E can be filled with rays rt ( t  E 2') that 
are pairwise disjoint such that for each 7t the symmetric sector St of angle 
(1 - ß)n lies in E ,  if we choose 7 t  to be parallel to  7 k  in a neighborhood of 

0 

n 

k= l  

o k  (k = 1,. . . , n )  and proceed as above. 
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As usual, we call a function close-to-convex of order ß if it has a rep- 
resentation (1.30) also if ß > 1. Of course those functions must not be 
univalent. For ß 2 0 let C ( ß )  denote the family of close-to-convex functions 
of order ß that are normalized by (1.1). 

By the analytic definitions of convex and starlike functions (1.23) and 
(1.24), the convex auxiliary function g can be replaced by some starlike 
auxiliary function h such that there is a representation 

(1.36) 

for f E C(ß). 
(Reference: [30] .) 

1.7 Invariants under similarities and the Nehari criterion 

If f E S, i.e. f is a univalent function that is normalized by (l.l), then the 
renormalized composition g of f  with a univalent automorphism w : ID -+ ID 
of the unit disk 

given by 

(1.37) 

(1.38) 

lies in S. Pommerenke [46] - [47] called families with this property linearly 
invariant, and showed that many results about univalent functions are ef- 
fected by this property. The function g is called Koebe transform o f f ,  it has 
(in the univalent case) a range G which is similar to  the range F of f ,  i.e. 
G = uF + b ( U ,  b E C), and all normalized functions with a similar domain 
have this form. The second coefficient of g has for z = 1 absolute value 

We call x the Koebe expression of f. 
For a locally univalent function f we define the order of f by 

(1.39) 

ord (f) := sup x ( f ;  U )  . 
a E D  
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It represents the order of the linearly invariant family Lin( f) generated by 
f, and it is bounded if and only if Lin( f) is normal (see [46], Folgerung 1.1). 

For an analytical expression to  have a geometrical meaning the expres- 
sion must have a certain invariance property with respect to  the composition 
with automorphisms of ID, because the range is invariant under this compo- 
Si tion. 

We have for the Koebe expression 

Lemma 1.4 If f E A is locally univalent and w is defined by (1.37), then 
for g = f o w holds 

Proofi The relations 
- -  9'' Y U'' - w'- + - 
9' f' w' 

and 
z + U 5 + a  
1 + üz  1 + U 5  

(1 - IzI"(1 - lul2) 1 - 1w(z)12 = 1 - -- - - 
(1 + ü z ) ( l +  ur)  

imply 

l ( 1  - 1"12)2(1- 2 

4 (1 + üz)2( 1 + uz)2 + -  l a l  l$(u)l = .(f;u(.))2 . 
0 

Moreover, x as a function of f does only depend on f"/f', so that it is 
also invariant under similarities of the range. From this i t  follows that (for 
univalent f) the expressions 

and inf x( f; U )  
a E D  
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as well as 
lim sup x( f; U) and lim inf x( f; U) 
a+aD a+aD 

represent geometric properties which are invariant under similarities. 

the Schwarzian derivative Sj of f ,  i.e. 
The same is true for the expression a,  which is defined with the aid of 

Sf := (5)'- - 1 (-) f'l 

2 f' ' 
namely ( a  E ID) 

a ( f ; u )  := (1 - lu12)2pf(u)l . 

(1.41) 

(1.42) 

Lemma 1.5 If f E A is locally univalent and w is defined by (1.37), then 
for g = f o w holds 

= a ( f ; w ( z ) >  ( z  E ID) .  (1.43) 

Proof The well-known invariance property of the Schwarzian derivative 

s, = Sf(W) * (w')2 

implies the result similarly as in the above case. 0 

We call a the Nehari expression of f ,  because Nehari has shown that 
a( f ;  z )  5 2 implies univalence, and on the other hand univalent functions 
satisfy a( f ;  z )  5 6. Moreover, convex functions fulfil1 a( f ;  z )  5 2 (see [41], 
[42] and [32]). 

1.8 Logarithmic derivative and the Becker criterion 

Another important univalence criterion involves the logarithmic derivative 
and is due to Becker. We call (U E ID) 

(1.44) 

the Becker expression of f .  Beckers criterion states that A( f; z )  I 1 implies 
the univalence off.  On the other hand univalent functions satisfyX( f ;  z )  5 6 

Let us note the following correspondence between the Nehari and Becker 
(see [31). 

conditions. 
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Lemma 1.6 Let f E A be locally univalent. Then 

(a): sup A( f ;  z )  2 x e sup U( f; %) 5 4x  + 4x2 , 
ZED Z E D  

(b): sup a( f ;  z )  U ==+ sup X(f ;  z )  5 2 (1 + f ) ' / 2  + 2 , 
Z E D  Z E D  

Proofi Statement (a) is proved in [14]. (A sharper version of it is given in 
[57]). For to  prove (b) observe that the functions f satisfying ~ ( f ;  z )  5 U 

( z  E ID) form a linearly invariant family of order (1 + ~ / 2 ) l / ~  (see [46], 
Folgerung 2.3). Therefore x(f;z) 5 (1 -I- ~ / 2 ) l / ~  (see [46], Lemma 1.2) 
which implies the result. 0 

19 



2. Geometrical interpretation of the Koebe, 
Nehari and Becker expressions 

2.1 Polygons 

Let F = f (ID) be a polygon with inner angles a k ? r  (k = 1 , .  . . , n), so that 
f has a Schwarz-Christoffel representation 

where 2pkT (k = 1 , .  . . , n) are the outer angles (1.17) and X k  (k = 1 , .  . . , n) 
are the prevertices. 

We write I = reie and define 

Obviously lbkl = 1 (k = 1 , .  . . , n) for all I E ID. We get then for the Koebe, 
Becker and Nehari expressions 

and, since for the Schwarzian derivative one has 
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The following lemma will be used to examine the boundary behaviour of 
these expressions. 

Lemma 2.1 Let 1zk( = 1, then 

ProoE We have 

If now eis # Z k ,  then the last fraction is bounded, so that the right hand 
side tends to zero, while for eis = Zk we have (1 - r ) / ( l  - reis-) E 1. U 

Therefore we get from (2.3) - (2.6): 

Lemma 2.2 If f is a Schwarz-Christoffel mapping (2.1), then 

Now it follows 
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Theorem 2.1 If f is a Schwarz-Christoffel mapping (2.1), then 

(a i )  limsupx(f;z) = max 11 - 2 p k (  = max a k ,  
z+alD O'ksn O s k s n  

(a2) liminfx(f;z) = min )i - 2 p k l  = min a k ,  
Z+dlD O s k s n  O s k j n  

(b) lim sup x(f; z )  = 4 max I p k (  , 
Z - d l D  i s k j n  

where p~ := 0 and CZQ := 1. 

We remark that (a) can be interpreted in the following way: the limsup of 
the Koebe expression measures the largest inner angle divided by i, where 
we have to  take into consideration the angle i of each smooth boundary 
point, whereas the liminf of the Koebe expression measures the smallest 
inner angle divided by i. It is a special property of polygons that every 
boundary point is either smooth or a vertex. We shall see later that these 
considerations can be generalized to  a larger class of functions whose images 
have this property, namely to functions with bounded boundary rotation. 

On the other hand, by reason of (1.19) - (1.20) the limsup of the Becker 
expression measures whether the polygon is bounded: 

Corollary 2.1 If f is a Schwarz-Christoffel mapping (2.l), and if CYk 5 2 
( k  = 1, . . . , n) (in particular, if f is univalent), then 

lim sup A( f ;  z )  2 2 +=+ f is unbounded . 
Z - d D  

2.2 Domains with the angle property 

Let F be a simply connected plain domain or Riemann surface. Then we 
say that F has the angle property, if each boundary point is either smooth, 
i.e. there is a tangent there, or it is a vertex, i.e. there exist two halftangents 
corresponding to  the left and right derivatives of some parametric repre- 
sentation of the boundary curve. An analytic function f : ID -, F which 
extends continuously to the boundary of ID has the angle property if its 
Bemann image surface F has it. 

If F has the angle property, then at each boundary point we define the 
inner angle to be the angle between the halftangents measured from the 
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interior of F .  The inner angle always exists and equals a at each smooth 
boundary point. With amaxr and a~;,a we denote the supremum and the 
infimum of the inner angles of F and we speak about the largest and the 
smallest inner angle of F .  

The definitions also apply if F is unbounded considering tangents and 
halftangents on the Riemann sphere. An unbounded F with the angle prop- 
erty must have an inner angle also at each point on BF which is unbounded. 

The outer angle at some vertex is defined as in the case of polygons by 
(1.17), and its absolute value measures the change of the tangent direction 
at the vertex discarding the direction of the change. The outer angle at some 
smooth boundary point equals zero. By 2p-,a and 2 k n a  we denote the 
supremum and the infimum of the absolute value of the outer angles of 
F .  Remark that in the unbounded case the outer angle has not the same 
geometrical meaning as in the bounded case, in particular if 00 is a smooth 
boundary point, then the corresponding outer angle 2/.ik?r does not equal 
zero but equals 2a. 

2.3 Functions of bounded boundary rotation 

In this section we generalize some of the results for Schwarz-Christoffel map- 
pings to  functions of bounded boundary rotation. It is a result essentially 
due to Paatero that functions of bounded boundary rotation have the angle 
property (see [43]), so that there exist the largest and the smallest inner and 
outer angles a„a, cyfi;,r, 2 b a x a  and 2 ~ l m ; ~ a .  This result is contained in 
the following 

Theorem 2.2 Let f E V ( K )  have boundary rotation Ka. Then f has the 
Paatero representation 

J Z - x ' J  ' am alD f" ' 

for some signed measure p on alD, and it has a spherically continuous ex- 
tension f : 

(a) 

+ 8.  Each boundary point f (x)  ( x  = eie) has either 

a local tangent of direction 

which corresponds to the fact that ~({x}) = 0 ,  
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or 

(b) two local halftangents, so that f(z) is a vertex ofaf(lD) of an outer 
angle 2 4  { z } ) T ,  which corresponds to the fact that p( (2)) # 0. 

In particular: f has the angle property. 
Moreover the images of the radial rays fe(r)  := f(re") ( r  E [0, 11) divide 
the inner angle of a f (ID) at f (2) in two equal parts. 

Proof Let f have boundary rotation KT. Then there is a Paatero repre- 
sentation (2.7). In this context it is more convenient to write (2.7) as a Stielt- 
jes integral representation with the distribution function rn : [ O , ~ T ]  -+ R of 
p defined by 

(2.9) 
1 

m(t> := 5 (p([o,  e i t [ )  + p([o, + c , 
where C E lit is such that 

T ( r n ( t )  - &) dt = 0 .  
0 

(2.10) 

The Paatero representation (2.7) then reads 

27r 2a 27r 

(2.11) 
f " d m ( t )  K 

z - ,it ' 2 f' 
- ( z )  = -2 J - J drn(t) = 1, J Idrn(t)I = - . 

0 0 0 

Therefore it follows by integration (using the.normalization f'(0) = 1 )  that 

as 
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Observe that m(t) - t/(2?r) is periodic with period 2?r by (2.11)’ so that an 
integration by parts gives with the aid of (2.10) that 

27r 
a 

0 

- iJ i  + e-ita 
- (2.13) 1 - e-itz  

0 

from which it follows that 

0 

1-r2 
1 - - 2 ~ ~ 0 s ( t  - 0)++ 

0 

By the definition (2.9) of m it follows (see e.g. [17], p. 336) that ( z  = T e i e )  

lim arg f’(z) = 2?r 
T - t l  

so that 
lim arg af’( a )  = 2m( e)?r . (2.15) 
5-41 

This implies that 
N ( e )  := lim arg af ’ (a )  

9-+1 

exists for each 0 E [0,2?r] and is a function of bounded variation with 

(2.16) 

N ( 0 )  = 2 m ( 0 ) ~ ,  IdN(0)l = br (f) = KT . (2.17) J 0 

To get (a) and (b) we now use Paatero’s result that f has a continuous 
extension to  and that at each finite boundary point f ( e i e )  there is either 
a tangent to af(lü) of direction T(0)  if m is continuous at 0, or two half- 
tangents of direction T(O - 0) and T(O + 0) such that af(lD) has a vertex 
at f ( e i e )  whose outer angle equals the total jump of m at 0 (see [43], $7). 
An inspection of Paatero’s proof shows that the same conclusion follows if 
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f(z) = 00, replacing the euclidean by the spherical distance and measuring 
angles and directions spherically. 

Finally observe that argtf’(t)  gives the normal direction of the level 
curve f T ( 6 )  := f ( re ie )  (6 E [0,2a]) at the point z = reie, so that arg z f ’ ( t ) +  
~ / 2  is the direction of the tangent. On the other hand the image of the radial 
ray fe cuts f r  perpendicularly for all T E 10, l[ as f is locally conformal. By 
(a) this remains true for r = 1, if at f(z) there exists a tangent, implying 
that fe divides the inner angle (namely T) in two equal parts. If f(z) is a 

0 

Each signed measure p on alD has a Lebesgue decomposition as the sum of 
some discrete, some continuously singular and some absolutely continuous 
part with respect to Lebesgue measure XI, i.e. 

vertex of af(lD), then by (2.9) the same conclusion follows. 

(see e.g. [52], p. 240) where 

(2.18) 
k=1 

(6, is the Dirac measure at x). 
continuous part of p. 

We write pcont := psing + /labs for the 

The theorem has the consequence that 

Corollary 2.2 Let f E V ( K )  such that the corresponding signed measure 
p has a decomposition p = pdisc + Clcont. Then af(lD) is smooth up to a 
countable number of vertices f ( Z k )  (k: E m) of outer angles 2pkT, say, and 
there is a one-to-one correspondence between those boundary points and past 

such that (2.18) holds. 
For the largest and the smallest inner and outer angles a„n, a „ ~ ,  2p-.,?r 
and 2 h n r  it follows 

(b2) 2 w n  = 0 , 
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where a0 := 1. 

ProoE We have only to prove that the desired maxima and minima exist. 
But this follows easily as (a): pk + 0 for k + 00, and so 0 is the only cluster 

cl 
Part (b2) of the corollary is obviously equivalent to the existence of some 
smooth boundary point. The existence of the maxima and minima con- 
sidered shows that a„r, afina, 2 h r  and 2 f i n r  in fact represent the 
maximum and minimum of the inner and outer angles. 

Now we are ready to  generalize Theorem 2.1 to  functions of bounded 
boundary rotation. Therefore we deduce the following formulas for the 
Koebe, Becker and Nehari expressions for functions of bounded boundary 
rotation with a representation (2.7) similar to (2.3) - (2.6): let 

point of {pk I k E IN}, and (b): {pk I k E IN} is bounded. 

1 - Fx 
b ( z ; x )  := - , 

z-x 
then 

-dp(x) = 
z - 2  
l - r  I I aiD 

.(f;z)= T + ( l + r ) J  

and, since 

we get 

a ( f ; z )  = 2(1+  7y \ 2  

(2.19) 

(2.20) 

(2.21) 

(2.22) 



Theorem 2.3 Let f E V ( K )  such that the corresponding signed measure p 
has discrete part pdisc of form (2.18). Then 

(a i )  lim sup x( f; z )  = amax , z-tan, 

(a2) lim inf x( f ;  z )  = a d n  , 2-+an, 

(b) lim sup X(f; z )  = 4 h x  , 
z-tan, 

Proof: 
write p = pdisc + pcont such that (2.18) holds. Then 

E > 0 be given. Now choose n E N large enough that 

Let f E V ( K )  with corresponding signed measure p. As usual we 

lpkl 5 K/2.  Let 
03 

k= 1 

(2.24) 
k=n+l 

and that the maximal value rnaxlpkl = lpk,l is attained for ko 5 n. 

can be decomposed in three terms ( z  = re ie )  

&IN 
Let us first consider (b). The integral on the right hand side of (2.21) 

For I1 we get by Lemma 2.1 

- p k S  if 6 = argzk (k = 1 , .  . .,n) 
otherwise lim I I ( T ~ " )  = 

r - t l  7 

so that 
limsup IIl(z)l = max Ipk( = maxIpk( = hax 

by the choice of n and by Corollary 2.2. Thus it remains to show that 1 2  

and 13 tend to zero as T tends to 1. This follows for 12 from (2.24) and for 

z-tan, 1 6 k S n  
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I3 from the continuity of pcont (see e.g. [is]), which finishes the proof for 

(a): As above we have a decomposition (see ( 2 . 2 0 ) )  
(b). 

1 2  (4  + 
for which we conclude 

Zk(1- 2pk)  if 8 = argzk (k = 1,. . . ,n )  { -  otherwise 
lim 11 ( T e i e )  = 
T + 1  

, 

and lim Iz?(teiß) = lim &(reie)  = 0, as Ib ( t ;  Z k ) l  is bounded by 1 for z E ID 
and 21, E dID. 
(c): The same procedure shows that for lim c( f ;  T e i s )  also the discrete part 
of p is decisive. 0 

T + 1  T + l  

T + l  

As consequence we have 

Corollary 2.3 Let f E V ( K ) .  Then 

lim sup A( f ;  z )  = 0 f is bounded and af(ID) is smooth . 
2+8D 

Proof: By Theorem 2.3 the left hand side is equivalent to  bX = 0, and 
this obviously is equivalent to the fact that past = 0, which by Corollary 

0 

Moreover 

2.2 is equivalent to the smoothness and boundedness of af(ID). 

Corollary 2.4 Let f E V ( K )  such that the corresponding signed measure 
p has discrete part past of form (2 .18 ) .  If further p k  2 -112 ( k  E IN) (in 
particular, if f is univalent), then 

f is bounded 
f is unbounded 

f (ID) has a vertex of inner angle zero 
l imsupX(f;t)  > 2 

= 2  Z+dlD 
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ProoE By Theorem 2.3 the expression lim sup A( f ;  z )  equals 4 h a x .  Let 
2-4ID 

now first this term be less or greater than 2. Then by Theorem 2.2 f (ID) has 
vertices of outer angles 2pkT (k E IN), and so is bounded and unbounded 
respectively by the definition of a vertex at 00. On the other hand, if it 
equals 2, then necessarily there is a vertex which corresponds to hax = 1/2 

0 

Becker ([4], p. 414) conjectured that for f E S with Jordan domain f(ID) 
the condition 

of outer angle ?r, which gives the result. 

lim sup A( f ;  z )  < 2 
Z - d D  

(2.26) 

implies that f has a quasiconformal extension to  C. This conjecture is true 
for functions of bounded boundary rotation. 

Corollary 2.5 Let f E S have bounded boundary rotation. 
implies that f has a quasiconformal extension to C. 

Proof Suppose f E V ( K ) .  As f is univalent, by Corollary 2.4 condition 
(2.26) implies that f is bounded. By Theorem 2.3 it follows moreover that 
hx =: i ( 1  - E )  for some E > 0. So for all vertices the relation 11 - a k l  5 
2 h a x  = 1 - E holds, and therefore E 5 ak 5 2 - E (k E IN), so that 
there is a vertex of smallest angle afin?r 2 mr and a vertex of largest angle 
amxa 5 (2 - E ) T .  Because pk .-f 0 as k -f 00 there are only a finite number 
of vertices with an outer angle near f ? r  (i.e. an inner angle ak?r M 0 or 
ak?r  N 2?r), so that the local characterization of quasicircles due to  Ahlfors 

0 

Corollary 2.2 gives a one-to-one correspondence between the discrete part of 
the signed measure p associated with f and the vertices of d f (ID). Therefore 
it is of some interest to decide what kinds of boundary smoothness are 
typical for the parts of p absolutely continuous and continuously singular 
with respect to Lebesgue measure. Here we get a partial result. 

Lemma 2.3 Let f E V ( K )  with f(ID) = F and zo = eieo such that f(z0) 
is a point where the boundary curve f(eie) is analytic. Then the function m 
associated with f by (2.11) is a Cw-function in a neighborhood of do. 

ProoE As dF is analytic at f(zg) the Schwarz reflection principle shows 
that f has an analytic extension at ZC,. So in particular f is analytic in a 
certain neighborhood U of zo on the boundary of ID, and so is f'. We deduce 

Then (2.26) 

([2], see [34], chapter 11, 38) shows that df(lD) is a quasicircle. 
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that moreover f’(z1) # 0 for z1 = eiel E U. Suppose the contrary, then f’ 
has an expansion (a1 # 0) 

f’(z) = a1(z - z1)k + a2(z - Zl)k+1 + . . . 
for some k E N, which leads to  

+ H ( 4  
f ‘ I  k 
- ( z )  = - f’ z - z1 

(2.27) 

with H analytic in U. By the identity theorem for analytic functions (2.27) 
holds also in ID so that by Theorem 2.2 df(ID) has a vertex at f(z1) (of 
outer angle -kn), in contrast to the analycity. Therefore f’(z1) # 0, and so 
k = 0 in (2.27), i.e. f”/f’ is analytic at z1, and so is ln(f’). In particular 
argf‘(eis) is in C” at 01 and so in U. By (2.15) the conclusion follows. 0 

From this we get 

Theorem 2.4 Let f E V ( K )  with f(ID) = F such that dF is analytic except 
at a countable number of points where dF has a tangent. Then the signed 
measure p associated with f by  (2.7) is absolutely continuous with respect to 
A l .  

Proof- If 8F is analytic everywhere, then by the Lemma m is in C”([O, 27rl) 
and d m  = m’(O)dO, where m’ in particular is integrable and its integral gives 
m, so m and thus p is absolutely continuous. If there is at most a countable 
number of points of nonanalycity on df(ID), then - as there is no vertex 
- m is the sum of the above constructed absolutely continuous part and 
some continuously singular part msing with m& = 0 a.e.. Moreover mLing 
is continuous in [0,27r] except of some countable set Q by the Lemma. So it 
has a unique continuous extension to [0,27r]\Q which vanishes. Finally psing 
must vanish as it is continuous in [0,27r] and its support 0 is countable. 0 

Similarly one gets if there are vertices 

Theorem 2.5 Let f E V ( K )  with f(ID) = F such that d F  is analytic 
except of at most a countable number ofpoints where 8F has a tangent and 
a countable number of vertices wk = f(2k) of outer angle 2pkT (k E IN). 
Then the signed measure p associated with f fulfills p = pa;sc + pabs such 
that (2.18) holds. 
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2.4 Convex functions 

The results of the last section apply to convex functions. In this section we 
shall show that in the special case of convex functions also corresponding 
results for the terms sup ~ ( z ) ,  inf n(z) and supa(z)  are available. On 

Z E D  ZED ZED 
the other hand our results give analytic representations for amax, amin and 
2 h x .  We remark that Pommerenke gave the following representation for 
the maximal outer angle 

In f maxIf'( 

(see [44], Theorem 1). 

Theorem 2.6 Let f E K ,  then 

(a i )  

in fact, (a l )  is equivalent to the convexity o f f ,  

sup n(f; z )  = amx = 1 , 
Z E D  

2( 1 - amin) 
2( 1 + amin) if f is unbounded ' 

if f is bounded 
(b) lim sup A( f ;  z )  = 4 h x  = 

Z - d D  

(cl)  lim sup U( f ;  z )  = 8 h x (  1 - kx) = 2( 1 - am;,) . 
Z - d D  

If furthermore f is unbounded, then 

inf n(f; z )  = amin , 
(a2) ZED 

(c2) sup a(f; z )  = 2(1 - am;,) , 
Z E D  

and anii,?~ is the angle ofdf(lD) at 00. 

Proof (al): That this is equivalent to the convexity of f follows from 
the fact that the universal linearly invariant family of order 1 is the family 
of convex functions (see [46], Folgerung 1.1 and Folgerung 2.4). On the 
other hand by Theorem 2.3 this is equivalent to  the geometrical fact that all 
nonsmooth boundary points of df(lD) have interior angles less than ?r and 
the existence of some smooth boundary point. 
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(b): For convex functions and all k E N we have pk E 10, 11, so that because 
of the relation ak = (1 - 2/41 the value ak,, = akn  is attained if the distance 
of ph,, and 1/2 is minimal. If f is unbounded, then > 1/2, and this 
value is easily seen to  minimize the distance to 1/2. Otherwise also the 
largest value kx < 1/2 minimizes this distance, so that finally 

which leads to  the result by Theorem 2.3. 
(cl): By Theorem 2.3 it follows that 

As pk > 0 (k E lN) and because that value of {pk} nearest 1/2 is hX 
we see that this value maximizes the right hand side of (2.29) implying the 
result. 
(a2): If f is unbounded, then af(lD) has a vertex at 00 of angle alr = <Ydnr 

with corresponding outer angle 2p17r = 2kax7r. 
Because f(lD) can be approximated by unbounded convex polygonal 

domains with fixed angle air at 00, it is sufficient to consider those Schwarz- 
n 

k=2 
Christoffel mappings with = 9 and pk = k f L .  Therefore we get 

with (2.3) as lbkl = 1 (k = 1, .  . . , n)  

Theorem 2.3 shows that liminf x ( f ;  z )  = al, which gives the result. 

(c2): Without loss of generality consider the same unbounded convex poly- 
gons with fixed angle C Y ~ R  at 00. Then by (2.6) and (2.3) we get 

2+aID 

2 
PjPk(b&)-bk(z)) PjPklb,(.)-bk(z)( 

=2(1-x(f;z)2) 52(l-a&).  (2.30) 
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On the other hand by (cl)  lim sup a( f; z )  = 2(1 - akn), which finishes the 
Z+aiD 

proof. U 

We remark that (c2) for unbounded convex functions is much stronger than 
the result given in [27], Theorem 3, where the question was solved, which 
convex functions attain the maximal value 2 for the supremum of the Nehari 
expression. 

We conjecture that the statement (c2) remains true if f is bounded, 
because it seems to be true numerically. Moreover we conjecture that for 
bounded convex functions inf x( f; z )  = 0. 

The statement (al) shows in particular that for the Koebe expression 
the sup and the limsup coincide. We shall show in the sequel that for 
convex functions the Koebe expression satisfies moreover a certain maximum 
principle. Therefore we need the 

Lemma 2.4 Let f ( z )  = z + a2z2 + U3Z3 + - - be locally univalent. If the 
Koebe expression x( f; z )  has a local maximum at zo = 0 ,  then 

ZEH) 

a3 = -- a$ (1 +2Ia2l2) 7 3 la2l 2 

in particular 
( 3 ~ 3  - 2~21 = 1.  

ProoE Let 
1 2 fll - -(I - T )-(Teie) 
2 f' 

F(T,  e) := 

and 
G(T, 0) := F(T,  0) - F(T,  0) = x( f; reie)2 , 

then for a local maximum of x( f ;  z )  at the origin obviously 

holds for all 6 E IR.. F'rom 

and 

(2.31) 

(2.32) 
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we get therefore for all 8 E IR the relation 

(2.33) 

This implies either a2 = 0 - which leads to a local minimum of x ( f ;  z )  at 
the origin - or, using the notations ( p  > 0) 

2 z  = ( - ( o ) )  f" =: peiv f' 
and 

1 f" ' 
3a3 - 2 4  = - (-) (0) =: 2 + iy = b , 

2 f' 
we get for all 8 E R 

Re { ( c o s 8  - isin8 - (cos8 + isin8)(z + iy))p(coscp + isincp)} = 

p . Re { (( 1 - z )  cos 8 + y sin 8 - i (( 1 + z )  sin 8 + y cos 8 ) )  (cos cp + i sin Y)} = 

p (cos e [(i - z) cos cp + y sin cp + sine y cos cp + (i + z )  sincp]) = o , 
so that the coefficients of the terms cos 8 and sin 8 must vanish. This implies 
the relations 

(1 - z)coscp = -ysincp, (2.34) 

(1  + z)sincp = -ycoscp, (2.35) 

I [  

from which we deduce by multiplication that 

Ibl 2 = z 2 + y 2 = 1 ,  

and so (2.31). Now we substitute b = z + iy =: e iß  into (2.34) and (2.35) 
and a short calculation gives the two equations 

sin(cp+P)= -sincp, (2.37) 

which finally lead to  the unique solution ß = -250 implying the result. ii 

The next lemma shows that only very special convex functions satisfy (2.31). 
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Lemma 2.5 Let f E K .  Then relation (2.31) implies that 

(2.38) f t 1 - t  
-(t) 1 

-2- - 2- 
f’ a - x  t + x  

for some t E [O,l] and some x E OD, in particular: f(D) is either a half- 
plane, a sector or a parallel strip. 

Proof: If f(t) = z + u2z2 -+ u3z3 + ..- E K ,  then p ( z )  = 1 t z f ( z )  = 
1 + p i %  + p2z2 + * - E P. so 

lp2l = 16~3 - 4U2 5 2 2 1  
with equality if and only if 

for some t E [0, 11 and some x E OD (see e.g. [49], Corollary 2.3). This gives 
the result. 0 

Now we have 

Theorem 2.7 Let f E K .  Then the Koebe expression x ( f ; z )  satisfies a 
maximum principle, i.e. it takes its maximum over each domain D which is 
properly contained in ID (such that its closure lies in I D ,  too) at the boundary 
of D .  I n  particular: the function 

is monotonically increasing for T E [0, i[. 

Proof We shall prove that for f E K a local maximum of the expression 
x( f ;  z )  can only occur at a point to E ID if f(ID) is either a halfplane or a 
sector, and in those cases the extremal value is attained at a curve joining zo 
with the boundary, namely at a Steiner circle, i.e. the image of the segment 
] - 1, l[ under an automorphism of ID, which gives the result. 

Suppose first that x( f;  z )  has a local maximum at 0. Then by Lemma 2.4 
(2.31) holds and by Lemma 2.5 f is of form (2.38). From this representation 
one deduces that 

- T2 (t(% + x) + (1 - t)(z - z)) , - 1 f z - -(1 - T”- (Z )  = F +  - 
2 f‘ 1 2  - 22 
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and especially for z := T Z  (T E 3 - 1, 1[) it follows that 

- 1  f t t  
t - -(l- T”-(%) = (1 - 2 t ) Z .  

2 f’ 
So x( f; z )  is constant on some diameter of ID, which was to  prove. In the 
case of a parallel strip ( t  = 1/2) the extremd value of x( f; z )  obviously is a 
minimum, so that this case must not be considered. 

On the other hand, if x( f ;  z )  has a local maximum at a point to # 0, 
then by Lemma 1.4 the information which we deduced at the origin can 
be transformed by an automorphism w of ID, as the family K of convex 
functions is linearly invariant. This gives the result. U 

2.5 Convex functions with vanishing second coefficient 

Suppose, f, has the special form (m E IN) 

fm(t) = t + U m + ~ P + l  + um+2zm+2 + * - , (2.39) 

then f, + z as m + 00. Hence f m ( l D )  tends to  a disk in the sense of 
Caratheodory kernel convergence (if fm are univalent). So it seems to be 
plausible that the geometry of fm(ID) will be restricted in some sense in 
connection with the restriction of some analytic properties. 

The next theorem gives a sharp version of these considerations in the 
case of convex functions. Therefore we need the 

Lemma 2.6 Let f 4 g and T E 30,1]. Then 

(see e.g. [49], p. 35, formula (4)). 

Theorem 2.8 (see [23]) Let m E IN and fm E K of form (2.39). Then 
A( f,; z )  2 $, and this result is sharp for the function G, with 

1 
GL(z) = G(0) = 0 .  (1 - q / m  ’ (2.40) 

By Theorem 2.6 this has the geometric consequence that for f m ( l ü )  hold 

1 (a) 2clmax‘lr 5 G2‘lr 7 
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for m 2 2 moreover 

(b) 

and for m 2 3 

(c) fm is bounded. 

Proof: 

a„n 2 (1 - k )  n ,  

For a convex function of the given form it is well-known that 

(seee.g. [16]). This statement is equivalent t o l n f h 4  lnh’:= -$ln(l-z),  
so that by the lemma we only have to observe that 

For the function Gm, defined by (2.40), one gets, choosing z = T > 0, that 

which establishes the statement about equality. U 

We remark that the statements (b) and (c) are obvious geometrical facts for 
m-fold symmetric convex functions, and the theorem generalizes these facts. 

For convex functions with vanishing second coefficient we have as a 

Corollary 2.6 Let f E K with aZ(f) = 0. Then either f is bounded or f 
is unbounded and has a zero angle at 00. 

Proof: Applying the theorem for m = 2 we get pmx 5 1/2. By the 
geometrical interpretation as outer angle the result follows. 0 

Finally we have the 

Corollary 2.7 (see [as]) Let f(z) = I + u2z2 + u3z3 + - .  . E K with a2 = 
a3 = a4 = 0.  Then f fulfills the Becker univalence criterion. 
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2.6 Convex functions with angle mr at 00 

In Corollary 2.6 geometrical conditions had been given for f E K with 
a z ( f )  = 0: either f is bounded or f is unbounded and f(lD) has a zero 
angle at 00. 

In this section we consider unbounded convex functions with given angle 
at 00 and get results in the opposite direction. 

For a E [0, 13 let K ( a )  c K denote the family of unbounded convex func- 
tions with inner angle a ? ~  at 00. Obviously K(1) consists only of halfplane 
mappings, so 

K ( l ) =  f E K f(2) = - 2 , + E m }  . { I 1 - 2 2  

The family K ( a )  is a linearly invariant family of order 1. 
The compactness of K shows that if a + 1 then fa E K ( a )  implies that 

fa + f E K(l) ,  and so lan(fa)l -+ 1 for all n E IN. The following theorem 
gives more detailed information for the second and third coefficients. 

Theorem 2.9 Let a E [ O , l ]  and f E K(ai). Then 

( 4  I.z(f>I 2 jg) a; 2) = a , 

(b) lim sup A( f ;  z )  = 2( 1 + a) , 
Z + 3 D  

( 4  

If ~ ( f ;  a )  := la3 (-1) I, w(z> = 
a > $(a - 3) = 0.3027 ... furthermore 

(d) 

For all f E K holds 

(e) 

(df) - .$ ( f ) I  2 sup a ( f ;  2) = 2(1 - a2) . 
Z E D  

and p = Y, then for 

I % ( f ) \  2 j:AT(f; 2) >= i ( 4p2  -f 2p - 3) = i(aZ + 3a - 1). 

lim inf ~ ( f ;  z )  = 5(3 - 8 h X  + 8pkax) , Z - r d l D  

in particular for f E K ( a )  

(f) liminf ~ ( f ;  z )  = 5(3 - 8p + 8p2) = $(l  + 2a2) . 
Z - d D  
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Proof The statements (a), (b) and (c) are obvious consequences of Theo- 
rem 2.6. Let us now consider the absolute value T(  f ;  a) of the third coefficient 
of the Koebe transform h := -1 . If f is a polygonal function with an 

angle a ? ~  at 00 then without loss of generality p1 = p and so pk = 1 - p. 

By (2.2) - (2.6), and as lbk(u)I 5 1 (k = 1,. . . ,n),  we have 

ow- f ow 0 

( fowl ( 0 )  
n 

k=2 

(l-lal 2 ) 3 f 111 (U) - 6 Z ( i - l ~ l ~ ) > " f " ( ~ )  + 6E2(l-1~12)f1(~) 

(1 - 14"fW 

2 
- 3  (p  + 2p2 - (1 - p)  - 4/1( 1 - P )  - 2 ( l -  2 ) 

which gives the result by approximation. 

We remark that the right hand side of inequality (d) tends to  1 as a + 1, 
and so gives a rather sharp estimate for values of a near 1. The statement 
(a) shows that K ( a )  is an example of a linearly invariant family for which 

(e),(f): This is proved in a way similar to the proof of Theorem 2.3. 0 

inf 
f EK(Q) 

l a2 (  f ) l  is bounded from below. 

2.7 Close-to-convex functions 

By Km, St„ C,(P) and Vm(K)  we denote the families of rn-fold symmet- 
ric convex, starlike, close-to-convex functions of order ß and functions of 
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bounded boundary rotation at most Ka, respectively. It is easy to  see - 
either geometrically with the aid of the content of the introduction or ana- 
lytically using the original developments (see [43] and [22]) - that in all cases 
the corresponding functions from P and are of the special form 

p ( z )  = 1 + c,am + qmz2m + * - * . (2.42) 

Now we consider m-fold symmetric close-to-convex functions of order ß. 
Therefore we need the following 

Lemma 2.7 Let z E dlD, X E R+ and h' 4 (e) 
ProoE 

XI2 . Then X(h; z )  2 A. 

As we have In h' 4 $In E, Lemma 2.6 implies that 

and so the result follows. 0 

Now we have 

Theorem 2.10 (see [23]) Let m E IN, ß > 0 and f(z) = t + U , + ~ Z ~ + ~  + 
%rn+i. 2m+1 + . . . an m-fold symmetric close-to-convex function of order ß. 
Then A( f; z )  I 2 + 2ß, and this is sharp for the function F, given by  

(2.43) 

Proof Let f have the properties considered. Then there is an m-fold 
symmetric convex function g, a complex number 2: E 8ID and a function 
p +  1-2 such that f' = g' - pß. Thus we have by Theorem 2.8 and Lemma 
2.7 with p := h' 

For the function Fm, defined by (2.43), one gets, choosing z = T > 0,  that 
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which establishes the statement about equality. 0 

We remark that for m = 1 the statement is an immediate consequence of 
the linearly invariance of C(ß) because for f E C(ß) one has x( f ;  z )  2 1 +ß 
(see e.g. [46], Lemma 1.2), implying that 

The theorem gives 

Corollary 2.8 (see [23]) Let ß < 1/2, rn 2 4/(1 - 2ß) and f E C m ( ß ) .  
Then f fulfills the Becker univalence criterion. 

For each close-to-convex function f we define the order of close-to-convezity 
ctc ( f )  to be the smallest number ß such that f is close-to-convex of order 
ß, i.e. 

ctc (f) := inf {ß E R+ 1 f E C(ß)} 

(see e.g. [48]). If the order of close-to-convexity is not greater than 1, then 
it has the geometrical meaning that the image domain is the complement 
E of rays that are pairwise disjoint and whose symmetric sectors of angle 
(1 - ctc (f))r lie in E ,  and that such a representation does not exist for any 
smaller number ß. 

The next theorem gives a result on the Nehari expression depending on 
the order of close-to-convexity. 

Theorem 2.11 (see [26]) L e t ß E [ O , l ]  und f €C(ß). Then a( f ;z )$2+4ß 
with equality if f has the form 

Proof: 
3): for ß 5 1 and f E C(ß) one has 

We apply our result about the functional [u3-a;1 (see [26], Theorem 

61a3 - a;J = a( f ;  0) =< 2 + 4ß . 
As C(ß) is linearly invariant this gives the result. 0 

The same procedure gives 
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Theorem 2.12 (see [26]) L e t ß  2 1 and f E C(ß). T h e n a ( f ; z )  5 2ß2+4ß 
with equality i f  f has the form 

((k)ß+l- . 
f ( z z )  = 2(ß + 1) 1 - z 

Proof: Here we apply our result about the functional lu3 - (see [26], 
0 Theorem 3) for ß 2 1. 

As here the sharp functions are of bounded boundary rotation (6 - 1)a 
we get furthermore by (3.28) 

Corollary 2.9 Let K 2 4 and f E V ( K ) .  Then a( f ;  z )  5 i ( K 2  - 4) with 
equality i f  f has the form 

Remark that this corollary had been proved by Lehto and Tammi [33], The- 
orem 2, where also a corresponding result for K E [2,4] is given. 
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3. Coefficient results and extreme points 

3.1 Successive coefficients of close-to-convex functions 

Robertson conjectured in [51], that for f E C(1) with a representation (1.1) 
and for all n,j E No 

In I u , ~  - j J ~ j l  I 2 In2 - j21 = InA, - jAjl , 

where A,  are the coefficients of the Koebe function z / ( l  - z ) ~ ,  which would 
make the result sharp. Leung [36] verified this conjecture. 

In another paper [35], Leung proved that 

I lunl - 1%-11 1s 1 

112 lunl - ( n  - 1) IUn-lI I 5 1 

(12 lanl - j 14 1 s In - j (  = InAn - jAjl 

holds for normalized starlike functions f E St. 
convex, if and only if zf’ is starlike (see (1.23) and (1.24)), this implies 

Because a function f is 

for normalized convex functions f E K = C(O), and it follows by induction 
that 

for n,j E No, where here A, denote the coefficients of the convex function 
z / (  1 - z). Now we consider a similar problem for close-to-convex functions 
of order ß. 

Therefore we use the following lemma which is an essential result of 
Brannan, Clunie and Kirwan [8], Aharonov and Friedland [l] and Brannan 
[7] (see e.g. [53], Theorem 2.21). Furthermore we add the answer to  the 
question when equality occurs in their equations. This will be of some 
interest in our further considerations. 

If f,g E A, then by f << g we denote coefficient domination, i.e. 
lan(f>l 5 lan(s)l (n E No). 
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Lemma 3.1 Let p E P ,  a 2 1 und p" ( z )  = 1 + p1z + pzz2 + - .  .. Then 
pa << (E)". Equality holds for given n E IN, i.e. lpnl = an ((E)", i f  
und only if 

(4: P(4 = (Y E aD> 

for (Y > 1 und 

( 3 4  
Z k = Y . e  2rikln y E a l D ,  p k z o  (k=l,...,n). 

for a = 1. 

ProoE for some z E 8D and by 
Brannan, Clunie and Kirwan's modification of Herglotz's theorem ([8], see 
e.g. [53], Theorem 2.20) p" has a representation 

Let p E P and a 2 1. Then p 4 

with some Bore1 probability measure p on 8lD. Using the notation 

we get 

and so 

Here the second inequality was proven by Aharonov and Friedland [l] who 
showed furthermore that equality occurs for some n E IN only if x = 1. On 
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the other hand in the first inequality we have equality only if p is such that 
the integrand has constant argument on the support of p. This implies that 

n n 

p k J z k ,  2 k  E dD,  p k  2 0, 
k=l  k = i  

/.L = p k  = 1, and SO (3.1) follows. 

For a = 1 it is easily seen that all those functions in fact give equality 
implying (b). Let now a > 1. Then by a result of Hallenbeck and MacGregor 
[19], Theorem 8, it follows that nontrivial finite convex combinations of the 

0 

The next lemma is the main tool to solve the case of equality in the following 
theorem. 

type (3.1) do not lie in pff which gives (a). 

Lemma 3.2 Let n E IN, ß k  > 0, p k  E P 
p := fi @ and a := 

(k = 1,. . . , n), let further 
n 

ß k  > 1. Then p E Pa, 
k = l  k = l  

and equality holds for  some m E IN, i.e. Iam(p)l = am ((E) f f ) ,  i f  and only 
i f  for all k = 1 , .  . .,n 

1 + x z  
P d z >  = for s o m e  f i x e d  x E dlD . 

Proof Consider N := {f E A I f(0) = 1 and 0 $! f(lD)} as a real linear 
space with the nonstandard addition and scalar multiplication (f ,g E N ,  

f $ g : = f . g  and A @ f : = f X .  

The functional L with L(f) = a i ( f )  is linear with respect to  this linear 
structure, and continuous with respect to  locally uniform convergence. The 
function po = is the only solution of the extremal problem Re L(p0) = 

x E IR) 

m G R e  L(f) so that po is an extreme point of P with respect to  this non- 
fEP 
standard structure. 

n 

k = l  
Suppose now n E IN, ß k  > 0, p k  E P ( k  = 1 , .  ..,TI), p = n @ and 

a = ß k  > 1. Clearly p l / a  E P ,  and by Lemma 3.1 we get (3.2). Let 

now la,(p)l = a, ((E) O) hold for some m E IN. Then again by Lemma 

n 

k = l  
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3.1 we get that p ( z )  = p ~ ( z z ) ,  z: E alD as a > 1. On the other hand the 
definition of p 

PO(%) = ~ ( z z )  = ß 1  o p i ( Z z )  @ * * * @ ß n  o pn(5.z) 9 

gives a convex representation of the extreme point po of P .  So this convex 
0 representation must be trivial giving the conclusion. 

Theorem 3.1 Let ß > 0, f ( t )  = t + u p 2  + a3t3 + . E C(ß) und 

03 

F ( t )  = 
n=l 

(3.3) 

Then for all n, j E No for which n - j is even holds 

112 lanl - i lajl I 5 InAn - jAjl . 
Equality holds for given n, j E No if and only i f  f ( t )  = F ( z t )  for some 
z: E alD. 

Proofi First observe that the result is sharp, because F E C(ß). The proof 
is on the lines of Robertson [51], Theorem 3. Let f be close-to-convex of 
order ß. By (1.36) there are h E St and p E P such that 

Because of an easy compactness argument we may assume that both f and 
h are analytic in the closed disk. The function h is starlike, so that it is in 
particular starlike in the direction of its diametral line (see [51]). Thus it 
has a representation of the form 

for some 6 E alD and some q E P. From this we get 

(1 - 6t2)f’(4 = q ( 4  .PßC.) - 
Observe that ( q  - f )h E P .  By Lemma 3.1 we get 

= (1 - t 2 ) F ’ ( t ) ,  
1 - Z  

(3.4) 

(3.5) 

47 



and therefore 
(1 - (%2)f1(%) << (1 - %2)F'( %) , 

which is equivalent to  the statement 

l(n + l)a,+i - ((n - 1)a,-11 5 (n + 1)A,+1 - (n - 1)An-l (n E IN) - 
Finally we have 

( (n+l)  lan+ll -(n- 1) /an-11 I 5 I(n+l)an+1 --<(n- qan-11 
5 (n+ l)An+l - (n- 1)An-l (nE IN) . 

The general case follows from this by induction. 
Now suppose that for given n, j E IN0 equality holds. Observe that the 

family of functions f for which there is a representation (3.4) with some 
( E alD, p E P and q E P is compact. So such a representation holds 
for all f E C(ß), and not only if h and p are analytic in the closed disk. 
Therefore equality in (3.5) implies that the functions p and q corresponding 
to f coincide and are a certain rotation of 1"- by Lemma 3.2. This gives 
the conclusion. 0 

We want to  remark that by induction this gives also a new proof for the 
coefficient result (3.23) in C(ß). 

Whereas for ß = 1 the fact that n - j is even is not essential as Leung's 
result shows, for small ß it is. To prove this, suppose f is normalized by 
(l.l),  t E [O,l] and 

Then obviously f E C(ß) and 

3a3 - 2az = 1 + 2ß + 2ßt + 2ß(ß - l)t2 =: H ( t )  . 
A simple calculation shows, that H takes its maximum value at an interior 
point t E 30, l[ if ß E ]0,1/2[. For those values of ß the theorem cannot be 
generalized to odd differences n - j .  On the other hand, we get for ß 2 1/2: 

Theorem 3.2 Let ß 2 1/2, f(z) = z + a2z2 + a3z3 + - E C(ß) and A, be 
defined by (3.3). Then 

1314 - 21a2ll < 3 A 3 - 2 A 2 = 1 + 2 ß + 2 ß 2 .  = 

48 



ProoE Let fEC(ß), then there are functions h(t.)=t.+~2t.~+c3t.~+. ..ES?, 
p ( z )  = 1 + pit. + p2z2 + - E P, and a real number a such that 

Since h is starlike zh ' lh  E P,  and the second coefficient of zh ' lh  is bounded 
in modulus by 2 (see e.g. [49]) implying 

Comparing coefficients in (3.6) gives 

2a2 = c2 + eWza cos a(ßp1) , 

so that 

With the aid of (3.7) and lcgl 5 2 we get 

where we used Lemma 5.1 from Chapter 5; It is easily verified, that if 
ß 2 112 then the right hand term has no maximum for ( p i (  E 30,2[ so that 
the maximal value is attained at lp1l = 2, and it follows again using lc2l 5 2 
that 

c2 

On the other hand, if ß > 1 then, using la21 5 1 + ß (see (3.23)), we have 

3la31 - 21a2l 5 3a3 - - . 2021 5 1 + 2ß + 2ß2 . 
1 2  

2la21 - 3 1 4  5 2la21 5 2(1 + ß) < 1 + 2 ß  + a ß 2  , 
and if ß E [$, 11, then the functions are univalent so that 

1 ~ 2 1  - la31 5 1 
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(see e.g. [13], Theorem 3.11), implying 

2la21 - 3la31 5 2(la21 - 1.31) 5 2'< 1 + 2ß + 2ß2 , 
which finishes the proof. 0 

Whereas by the above result the functional 131a31-21a2l I is maximized by the 
function F defined by (3.3) for all ß 2 1/2, the same fails for the successive 
coefficient functional (1~31 - lu2I1. Here the odd function G defined by 

gives the functional a larger value if ß E 10, l[. For ß 2 1 we show now that 
the successive coefficient functional is maximized by F which is stronger 
than Theorem 3.2. For ß = 1 this result contrasts that one in S: 

max ((ag( - ia2ll = 1.029.. . . 
f ES 

G is shown to give the maximum for la31 - la2( if ß 5 8/9. 

Theorem 3.3 (see [as]) Let f(z) = , Z + C Z ~ Z ~ + U ~ Z ~ + . . .  E C(ß) und An,& 
defined by (3.3) und (3.9). Then 

( 4  f0.ß 2 1 

(3.10) 

(b) und for ß E [0,8/9] 

1 
las1 - la2l 5 B3 - B - - ( l +  2ß) - (3.11) 

2 - 3  
Proot (a): At first we show 

< +2ß2 + ß) . ja31 - [a21 = (3.12) 

We use our results about the Fekete-Szegö functional la3 - Au$[ (A E C) 
(see [26], Corollary 1, Theorem 1 and Theorem 3): for ß 2 1 and f E C(ß) 
hold 

(3.13) 

3 
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(3.14) 

and 
la3 - ail 5 i(ß2 + 2P). 

Equation (3.13) yields 

(3.15) 

1 2  
1.31 - 1.21 5 a3 - -a2 + -1.21 - 1.21 

1 .  
1 i21 3 
1 
3 

5 -(P2 + 2ß + 2) + 3I.2l2 - 1.21 =: U(l.21) - 
Because U defines a convex parabola, it takes its maximum value at the 
boundary of its interval of definition. Furthermore the relation 

1 
U(l.21) = 3(2P2 + P )  

implies that lu21 = 2 - ß or ja21 = 1 + ß, so that 

< +P2 +ß) for la21 E [2 - ß, 1 + PI - (3.16) 

From this equation (3.12) follows if ß 2 2, because 1.21 5 1 +ß in C(ß). Let 
now ß E [1,2[. Then with the aid of (3.14) we have furthermore that 

3 U(la2l) = 

The same procedure as above shows that 

V(lQ2l) = +2ß2 3 + ß) for I 4  E [I- ß, 1/2 + PI 9 

which, together with (3.16), gives (3.12). 
Now we shall show that 

1 
1.21 - las1 5 $2ß2 + ß) 3 

which is trivially true if la21 E [0, (2ß2 + ß)/3]. This gives the result for 
ß 2 (f i+ 1)/2. For ß < (f i+ 1)/2 let now lie in the remaining 
interval [(2ß2 + ß)/3,1+ ß]. Then (3.15) gives 

2 
1 ~ 2 1  - 1.31 = - 1.31 - [a21 + 1.21 I 1.; - a31 - 1 ~ 2 1 ~  + 1 ~ 2 1  

1 5 $ß2 + 2P) - b 2 I 2  + 1.21 =: W(l.21) * 
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W takes its global maximum at 1.21 = 1/2 which does not lie in the interval 
considered. Thus, for 1.21 E [(2ß2 + ß)/3,1 + ß], W is decreasing, and it 
remains to  show that 

W((2ß2 + ßY3) .c = +2ß2 + ß) 9 

i.e. 3ß2 + 6ß 5 (2ß2 + ß)2, which obviously holds for ß 2 1. 
(b): We shall use the relations p := Ipil 5 2,c := lc2l 5 2, Lemma 5.1 and 
the relation 

(3.18) (c3 - 2c:I i - - 1 ~ 2 1 ~  4 , 
which holds for starlike functions (see e.g. [25], Lemma). With notation 
(3.6) and (3.8) we get 

1 3 

ß2 2)1 = /(c3--$) + e-ia cos-( qßP1C2 + ß ( P 2 - p : )  + 2 p ,  

I s, lß22 </ c 3 - - 4  4 1 4  +-ßpc+ßP2--p ,  + z p  

( ; 2) T P 2  

3 1 1 

3 1 

c2 1 
4 4  

_I 1 - - + - ß p c + ß  2 - 7  + 
= l + 2 ß - - + q ß p c - - ( 1 - ß ) p 2 = : H ( p , c ) .  c2 1 ß 

4 2 

We shall show that H takes its maximum value for ( p ,  c) E [0, 212 =: Q at 
the point (0,O) if ß E [0,8/9] which gives the. result. 

Suppose there is a local maximum of H at (po ,  CO) E 10, 2[2. Then 

(3.19) 
d H  
a C  

4-(po,co) = -2co + ß p o  = 0 

and 
(3.20) 

These both equations lead to 

4 8 
9 9 and c0=-PO,  ß = -  

52 



so that H(p0,co) 1 + 2ß = H(0 ,O) .  For this number ß = 8/9 the line 
c = $p in [0,2l2 is a saddle line of H ,  and for other values of ß a local 
maximum of H does not exist. 

Now we explore H on the sides of Q. It is easily seen that on { p  = 0} 
and {c = 0} the value H(p,c) is not greater that H(0,O) .  Let now c = 2. 
Here 

ß ß  
H(P, 2) = 2ß + TP - y ( 1 -  PIP2 9 

and for a local maximum po E ]0,2[ it follows that po = &, and so 

where the last inequality follows because ß 5 8/9. On the other hand, 

c2 1 
4 2  

H(2,c) = 1 + 2ß2 - - + -ßc. 

H(2,co) = 1 + -ß2 5 1 + 2ß 

For a local maximum CO it follows that CO = ß, and so 

9 
4 

for ß $ 819 which finishes the proof. U 

We are not able to  show that la41 - /a31 5 A4 - A3 for ß 2 1, but give a 
weaker result in this direction. 

Theorem 3.4 (see [25]) Let ß 2 1, f(z) = z + a2z2 + a3z3 + - - -  E C(ß). 
Then 

Proof First we use Lemma 3.3 implying that with f(z) = z + a2z2 + 
u3z3 + . . . E C(ß) the function h(z )  = z + b3z3 + b5z5 + . . a ,  defined by 
h’(z) = (f’(z2))lI2, h(0) = 0, is an odd close-to-convex function of order 
ßl2 .  Now, because ß 2 1, we can use the coefficient domination theorem 
for such functions (Theorem 3.5) and get 

For b5 we have 
3 1 ß2 + 2ß + 2 lb51 = - a3 - -a2 < 
10 I PI= 10 

(3.22) 
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Now we get with the aid of (3.21) and (3.22) that 

U; 3 
1.41 - 1.21 5 + - 4 1  + -1.21 4 1 a3 - -a2 Y 2 1 - l u 2 1  

3 ( ß 2 + 2 ß + 2 )  

1.21 2 

- 1.21 < -  (' +ß)(ß2 + 2ß + 6) + 41.21 
I -  (' + ')(ß2 + 2ß + 6) + q(ß + 2ß - 2) . 
= 12 

- 12 

Because (ß2 + 2ß - 2) 2 0 it follows now from 1.21 5 1 + ß that 

1.41 - la21 5 - ( l+ ß)(ß2 + aß) . 
3 

On the other hand, for ß 2 1 

(1 + PI  35- ( l+ ß) (ß2 + 2ß) 
3 1.21 - 1.41 5 1.21 2 - * 3 

is trivially true. 0 

3.2 Coefficients of symmetric close-to-convex functions 

Brannan, Clunie and Kirwan had used their crucial result (3.1) on functions 
in P to solve the coefficient problem for functions f E G ( ß ) ,  namely 

(3.23) 

(see [8], [7], [l] and [53], Theorem 2.29). 
Here we generalize this result to rn-fold symmetric functions. A first step 

in this direction was done by Pommerenke [45] whose asymptotic results 
give support to the conjecture that if ß > 1 - 2/m7 then the coefficients 
of a function f E Cm(ß) given by (1.2) are dominated in modulus by the 
corresponding coefficients of the function F, for which 

00 

F&(z) = (' + zm)p  F,(z) = An? . (3.24) (1 - p)ß+2/m ' 
n=l 

For rn = 1 this is Brannan, Clunie and Kirwan's result and for ß = 1 it 
had been proved by Pommerenke ([45], Theorem 3). The latter statement 
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includes the truth of the Littlewood-Paley conjecture (see e.g. [13], section 
3.8) for odd close-to-convex functions (of order one). 

We shall now prove the above statement for ß 2 1 - l/m, whereas for 
0 < ß < 1 - l /m the statement is false as examples show, so that the 
number 1 - l /m is sharp. However, for p = 0, i.e. for convex functions, the 
statement is again true, as was shown by Robertson ([50], p. 380). 

Theorem 3.5 (see [29]) Let m E IN, p 2 1 - l /m und f E Cm(ß). Then 

Proofi 
Then there exist h E St, and p E P such that 

Let f be an m-fold symmetric close-to-convex function of order ß. 

(see (1.36)). For h there is a representation of the form 

(3.25) 

(see [9], Theorem 3), where p is a Bore1 probability measure on the unit 
circle. Thus we have 

For fixed 2: E dlD the function 

d7x (( 1 + =m) i j rn .  pß(P)) -. -. qx(z”) 
1 - xzm 

is of the form (2.42) and lies in P. Therefore by the Brannan-Clunie-Kirwan 
lemma (3.1) it follows that 

(3.26) 
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because ß + l /m  2 1. Thus we get 

(3.27) 

) are nonneg- because p has total mass one and all numbers ( 
ative. 0 

As the method used to prove Theorem 3.4 shows, this result is somewhat 
stronger than the original domination theorem (3.23), especially the state- 
ment that 

j - i + i / m  
j 

if n is even 

if n is odd 

n/2 + 1/2 

&( n/2 4 2  - 112 ) 
holds for f E C2(1/2) and improves [an/ 5 n (n E IN) for f E C. 

Because for all k E WO the numbers Al, are nonnegative, it follows from 
Theorem 3.5 that the functional If(n)(z)l is maximized over Cm(ß) by F, 
for all n E No and x E ID i f ß i  1 - l/m. 

Now we show that the result cannot be generalized to the case when 
0 < ß < 1 - l /m, not even for the third nonvanishing coefficient. Therefore, 
suppose f is normalized by (2.42), t E [ O ,  11 and 

then f E Cm(ß) and 

It is easily seen that H has a local maximum at the point to  = &, 
which lies in the interval ]0,1[ if 0 < ß < l /m and is greater than the 
corresponding coefficient of Fm . 
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On the other hand we shall show now that for m = 2 a certain linear 
combination of the coefficients is dominated by F, for all ß 2 0. 

Theorem 3.6 Let ß 2 0, f(z) = z + a3z3 + u5z5 + 
given by (3.24) with m = 2. Then for all n E IN 

- E C2(ß) and F, be 

Pro02 
starlike function h and p E P with 

Because f is odd and close-to-convex of order ß, there is an odd 

Because h is odd - and so h(lD) is symmetric with respect to  the origin - 
and starlike, it  follows that for every ( E dlD there is a function qc E such 
that 

(1 - Cz)(l+ C 4 y  = qc(z2) 

(see e.g. [13], p. 248, Lemma 1 ,  and its proof). Thus we get 

1 +ß 

(1 - C"2)fyz) = q[ (%2)  .# (z2)  << (-) = (1 + z2 )FA(z ) ,  

where the assertion about domination follows in the usual way with the 
Brannan-Clunie-Kirwan lemma. This leads to 

l (2n + l ) a 2 , + 1 -  c2(2n  - 1)azn-1l 2 ( 2 n  + 1 ) ~ 2 , + 1 +  ( 2 n  - 1 ) ~ 2 ~ - 1  

which holds for all C E dD and n E N implying the conclusion. 0 

Also for all ß 2 0 a distortion theorem holds: 

Theorem 3.7 (see [28]) Let ß 2 0, m E IN und f E C,(ß). Then 

and 
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ProoE 
is close-to-convex of order mß (Lemma 3.3 (b)). Therefore 

Let f E Cm(ß). Then the function g defined by f'(z) = (g'(zm))l/m 

where we used the domination theorem for close-to-convex functions (3.23). 
An integration gives moreover 

3.3 Coefficients of symmetric functions of bounded bound- 
ary rotation 

Here we extend the inclusion relation between functions of bounded bound- 
ary rotation and close-to-convex functions 

V(K) C C(K/2 - l ) ,  K 2 2 .  (3.28) 

(see [53], Theorem 2.26) to m-fold symmetric functions. Using the corre- 
sponding result for close-to-convex functions of the last section this leads to 
sharp coefficient bounds for m-fold symmetric functions of bounded bound- 
ary rotation at most Ka when K 2 2m. Moreover it shows that an m-fold 
symmetric function of bounded boundary rotation at most (2m + 2)" is 
close-to-convex and thus univalent. 

Lemma 3.3 (see [as] )  Let m E IN, f(z) = z + u2z2 + a3z3 + . . -  und 
h ( z )  = z + bm+lzm+l + b2m+lz2m+1 + . . . have the property 

h'(z)  = (f'(z"))l'". 

Then 
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Proofi (a): Let f E Vl(K). As 

f''(zrn) h"( I) 
1 + 2"- = 1 + I- fY.") h'(z)  ' 

we get h E Vm(K).  The converse follows in the same way because for an 
m-fold symmetric function of bounded boundary rotation the corresponding 
functions with positive real part can be chosen to be of form (2.42). 
(b): If f E Cl(ß), then there are g E K and p E P such that 

f'(4 = g'(4 *$(.) 

Now 

The function gm represents an rn-fold symmetric convex function, because 
of (a) - remember that K = V(2) - so that h E Cm(/3/rn). Here also the 
converse follows from the fact that for an m-fold close-to-convex function 

U the corresponding function in F can be chosen to  be of form (2.42). 

An application of the lemma together with (3.28) gives 

Theorem 3.8 (see [29]) Let m E N and K 2 2. Then 

V"(K) c c m  ( ( W 2  - w) * 

Now the result of the last section can be applied and leads to 

Theorem 3.9 (see [29]) Let m E N, K 2 2m and f E V,(K). Then 

(1 + p ) m c f - 1 )  
(1 - .")rn(T+l) 1 K ' f' << 

This follows from Theorem 3.5. Observe that the result is sharp, because 
the function F, defined by (3.24) with ß = (K/2 - l) /m is in V,(K) as 

F; 
1 + .--(I) = 

FA% 
For m = 2 and K = 6 we have the statement of the 
conjecture. 

A further consequence of Theorem 3.8 is 

1 - I" 
1 + P  - 
Lit tlewood- Paley 

Theorem 3.10 (see [29]) Let m E IN. Then Vm(2m + 2) consists of close- 
to-convex and thus univalent functions. 
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3.4 Extreme points of symmetric close-to-convex functions 
and symmetric functions of bounded boundary rotation 

As in Section 3.2 was shown, the function F, dominates the coefficients 
over Cm(ß) for ß 2 1 - l /m.  F, has a sector of angle (1 + ß ) ~  as Bemann 
image surface. Now we show that for ß 2 1 the extreme points of the closed 
convex hull of Cm(ß) are exactly the functions with this geometric property. 

Theorem 3.11 (see [28]) Let ß 2 1 and m E IN. Then an extreme point f 
of TÖ Cm(ß) has the form 

Proof 
h E St, and p E P .  Then h has a representation (3.25) 

Let f E Cm(ß) be represented by f ’ ( t )  = - Pß(z”), where 

- = I  h ( 4  d P ( W )  

I (1 - W I m ) 2 / m  
aD 

with a Borel probability measure p on alD. Since ß 2 1 by Brannan, Clunie 
and Kirwan’s modification of Herglotz’s theorem ([8], see e.g. [53], Theorem 
2.20) p has a representation 

where v is a Borel probability measure on ( t l lD)2 .  Now by the argument 
given in [8] (see [20], Theorem 5.11), we deduce that there is a Borel prob- 
ability measure X such that 

So an extreme point is a kernel function. For 2 = -Y the kernel functions 
are convex, in particular starlike, but they are not extreme in the family of 
m-fold symmetric starlike functions (see [9], Theorem 3), which is a subset 

0 

We remark that the method also applies to  the family V,(K)  for K 2 2m+2 
using Theorem 3.8, i.e. the inclusion relation VK C C((K/2 - l ) /m) and 
the fact that the functions (3.29) lie in Vm(K) ,  so that we have 

of Cm(ß) for ß 2 1, so that they are not extreme in TÖCm(ß). 
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Corollary 3.1 Let m E N und K 2 2 m  + 2. Then 

CoVm(K) = C o C m ( ( K / 2 -  l ) /m)  

3.5 Coefficients of functions subordinate to close-to-convex 
functions 

Brannan, Clunie and Kirwan proved the coefficient result for close-to-convex 
functions of order ß. For ß = 1 this is the result of the Bieberbach conjecture 
which finally had been proven by de Branges [GI and holds for all univalent 
functions f E S. De Branges' theorem includes moreover the truth of the 
Rogosinski conjecture which states that the same coefficient result holds for 
all functions subordinate to  some function f E S. 

Now we consider the similar problem for close-to-convex functions of 
order ß. 

Theorem 3.12 (see [as]) L e t ß  2 0 ,  g 4 f und f E C(@. Then 

(1 + z)ß 
(1 - %)ß+2 * 

9' << F' := (3.30) 

Proofi 
g = f o w and f '  = cp' .pß. This gives 

By hypotheses there are w E B ,  cp E K and p E P such that 

g'(z) = f'(W(.)) . W'(.) = p ' (w(z ) )  . w'(z) . p ( w ( z ) )  ß . 

Now cp'(w(z))-w'(z) is the derivative of some function subordinate to  cp E K ,  

thus having a representation of the form for some Bore1 prob- 

ability measure p (see [9], Theorem 5.21). Further q ( z )  := p ( w ( z ) )  lies in 

J 
(W2 

Now the same proof as in Theorem 3.5 (for m = 1 )  leads to  the result since 
1x1 = 1. 0 

We remark that this is the adequate form of a Rogosinski type conjecture 
for close-to-convex functions of order ß. Furthermore the theorem shows 



that the functionals I f(n)(z)l, (n E IN, J E ID) are maximized in Sub C(p) 
by the function F given by (3.30). 

Also there is a corresponding result for functions of bounded boundary 
rotation by (3.28). 

Corollary 3.2 Let K 2 2, g i f and f E V ( K ) .  Then 

(1 + z ) P  
(1 - - g’ << 

The following is a distortion theorem for functions subordinate to odd close- 
to-convex functions. 

Theorem 3.13 (see [28]) Let p 2 0 und g i f E Cz(p). Then 

and 
Is(4l s FZ(lJI> * 

Proofi Let g = f o w, w E B.  Then g’(z) = f ’ ( w ( z ) )  - w’(z), and the 
elementary inequality (1 - 1 . ~ 1 ~ )  Iw’(z)l 2 1 - l ~ ( z ) 1 ~  (see e.g. [13], p. 918) 
together with Theorem 3.7 implies that 

Now it follows from Schwarz’s Lemma that 

because H increases as 1.~1 increases, so that finally 

The second statement follows as in the proof of Theorem 3.7. 0 
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3.6 Extreme points of functions subordinate to close-to-con- 
vex functions 

The following lemma is the essential tool to get the extreme points of 
CO Sub C(ß) from the extreme points of Co C(ß). 

An analytic function f E A is called a BCK-function if each function 
g 4 f has a representation of the form J f(zz)dp(z) for some probability 

measure p on dD. 
The well-known examples of BCK-functions (e)" for 121 5 1 and 

a 2 1 are due to Brannan, Clunie and Kirwan (see [SI). 

Lemma 3.4 (see [28]) Let F c A be a compact family of analytic functions 
f with f(0) = 0.  If ECO F consists of BCK-functions, then the extreme 
points of CO Sub F have the form g(wz) for some g E E Co F and w E dD. 
Proofi First we show that in the given situation an extreme point f of 
=Sub F must be subordinate to some g E ECoF (see [LO]). 

Let f E ECOSub F .  Then by a general result of Milman (see e.g. [53], 
Appendix A) f E Sub F ,  because with F automatically Sub F and =Sub F 
are compact (see e.g. [40], p. 365 - 366). So f = g o w for some g E F and 
w E B .  

alD 

Suppose now g 4 E Co F ,  then there is a representation 

9 = tgi + (1  - qg2, t E 30, I[, g1,2 E E F ,  91 # 92 * 

By the Krein-Milman theorem g1,2 E Co(ECoF), so that 

f1,2 := g1,z o w E Co ( ( E  Co F )  o w )  c Co ( F  o w )  C Co (Sub F )  . 
So f = tf1 +(l-t) f2 is a proper convex representation off  within W(Sub F )  
which contradicts the assumption. 

So we have f = g o w with w E B, and g E E COF. Suppose now there is 
no w E aD such that w ( z )  = wz, then, because by hypothesis g is a BCK- 
function, it follows that f has a proper convex representation in Sub {g} 

As a consequence we have 

Theorem 3.14 (see [as]) Let ß 2 1, then an extreme point f of CoSubC(ß) 

and so in Sub F ,  which gives the result. 0 

~~ 

has the form 

W (( 5) ß+l- 
f (=)  = (ß+1)(Z+Y> 

, z,y,w E dlD, 2 # -Y. (3.3 1 
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Proof: 

point of 
BCK-fun 

For ß 1 it is known (see [20], Theorem 2.22) that an extreme 
cOC(ß) has the form (3.31) with w = 1. Because (E)"" are 

.ctions, so is f, and an application of Lemma 3.4 gives the result by 
0 an easy change of variables. 

We remark that the given argument implies the result also for ß < 1 if the 
corresponding extreme point result for C(p) is true. 
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4. Results about integral means 

4.1 Integral means 

For f E A and T E [ O , l [  let 

2a 

M p ( T , f )  := 

M , ( r , f )  := max I f (Te'6)I  
B E I O , ~ ~ ]  

denote the p t h  integral means. For p E ]O,w] let HP denote the family of 
functions f for which 

MP(v, f )  turns out to  be a nondecreasing function of T and also nonde- 
creasing as function of p .  For f E HP the radial limit 

f) remains bounded as T -+ 1. 

turns out to exist for almost all 8 E [ 0 ,2~ ]  and is in LP([O,2?r]), and 

The Littlewood subordination theorem states that f < F implies that 
MP(r,  f )  5 M p ( r , F )  for all p E 30, CO] and all T E [0, 11. 

If the derivative f' of some function f E A is in HP for some p E 10,001, 
then so is f, i.e. 

f E H m  i f p z l  
f E H e  otherwise . f ' E H P  ==+ 

Moreover if f E S maps ID onto some bounded Jordan domain, then 

f' E H1 af(D) is rectifiable. 

(4.3) 
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For functions f which are in H P  for some p .E 10, CO] we define the Hardy- 
dimension off by 

(References: [39], [12].) 

4.2 Polygons 

If f is a polygonal mapping normalized by (l.l), then by the Schwarz- 
Christoffel formula (1.16) one has 

n n 

From this representation one can see at once that f’ E H P  for some p > 0 
(namely for all p < 1/2, see e.g. [20], p. SO), so that f‘(eie) exists for almost 
all 0 E [ 0 , 2 ~ ]  and 

27r 2n 

For to  get a sharp HP-result for a polygonal mapping f depending only on 
the parameters of the Schwarz-Christoffel formula, hence on the geometry 
of the image surface of f, we assume without loss of generality that p k  > 0 
(k = 1,. . .,m) and v k  := - p k + m  > O (k = 1,. . .,n - m) and write Y k  := 
Z k + m  (k: = 1 , .  . .,n - m). Then 

and so 
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n-m n 

k=l k=l 
As ~k < IpkJ =: 4j we get 

By (4.5) we have to check the finiteness of 

2n r dß 
(4.7) 

Therefore suppose without loss of generality that zk (k = 1, ..., m) are 
ordered successively on dlD and define (z,+1 := 21) 

d := min{dist(zk,zk+l) I k = 1 , .  . . ,m}  . (4.8) 

Clearly d > 0 as the points zk (k = 1 , .  . . , m) are isolated. (On the other 
hand the value of d depends heavily on n and for all sequences ( z k ) k E ~  of 
unimodular numbers d --f 0 as n -+ CO.) Now we decompose the integral 
(4.7) in m components. Choose t k  := (arg(zk) + arg(zk-I)) (k = 1 , .  . . , m) 
and observe that 

for ß $ [ t k - l , t k ] ,  (tm+l := t i ) .  Now it follows for j = 1 , .  . . , m  that 

which is finite if and only if p < &. So (4.7) is finite iff p < +, where 
pLax = max {pk I k = 1,. . . , n } .  This gives 

2 h a x  

L e m m a  4.1 Let f be a Schwarz-Christoffel mapping. Then f' E HP for all 
and this bound is sharp, i.e. p <  G, 

1 
+ -  dimHP(f') = - 

2pIna* 
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Analogously one gets for l/ f' 

Lemma 4.2 Let f be a Schwarz-Christoffel mapping. Then l/f' E HP for 
all P s, and this bound is sharp, i.e. 

1 
a m a x  - 1 

dim„(l/f') = 

ProoE The same procedure as above shows that l/f' E HP for all p < 
1 where vmax := max{vk I k = 1,. . . , n - m } .  By (1.17) it follows that 
2vmax 

0 2vmX = - (1 - amax). 

4.3 Functions of bounded boundary rotation 

For functions of bounded boundary rotation Kn we have the usual repre- 
sentation (2.7) 

-(.) f" 
= -2 J !g 

alD 
f' 

for some signed measure p with Lebesgue decomposition p = pdisc + pcont- 
03 00 

Then pdisc = 

E > 0 be given and choose m E IN large enough that 
p d Z k  for 2 k  E alD (k E W) and C lpkl 5 2. Let now 

k = l  k=l  

(4.10) 
k=m+l 

and that the maximal value hax = Ipkol is attained for ko 6 m. We write 
yk := zk, (k > m) and get 

For the last expression we write 

(4.11) 

so that an integration gives (without loss of generality f is always assumed 
to  be normalized by (l.l)), 

m 1 03 1 
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Now we go on as in the case of polygonal functions. Suppose without loss of 
generality that Z k  (k = 1, .  . . , m) are ordered successively on BlD and define 
(now set zm+l := z1) d > 0 by (4.8). Choose t k  := f (arg(zk) + arg(zk-1)) 
(k = 1, .  . . ,m) so that (4.9) holds for 8 $! [ t k - l , t k ] ,  (t,+l := t 1 ) .  

Suppose now that k’ = 1. Then it follows for j = 1, .  . . ,m that 

by (4.10) (for the last step see also [20], p. SO) which is finite if and only if 
p < .*. As E was arbitrary we see that f’ E HP for all p < where 
pZax := maxpk as in the polygonal case. This gives 

Theorem 4.1 Let f E V ( K )  with f(lD) = F such that BF is linear except 
of a countable number of vertices W k  = f ( z k )  of outer angle 2pkT (k E W). 
Then 1 

2Prnax 

&IN 

dim„( f’) = 
2p-x 

und 
1 

dim„ (l/f’) = 
amax - 1 * 

(4.12) 

(4.13) 

The result given here holds also if the function k’ defined by (4.11) is 
bounded in ID. We conjecture that (4.12) - (4.13) hold for all functions of 
bounded boundary rotation. Theorem 4.1 should be compared with results 
of Warschawski and Schober who showed the validity of (4.12) and (4.13) 
firstly for bounded univalent functions of bounded boundary rotation whose 
boundary curves Bf(D) are furthermore of bounded arc length-chord length 
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ratio and secondly for bounded univalent functions whose ranges have only 
a finite number of vertices and for which some further technical conditions 
hold ( [56] ,  Theorems 2 and 3). We remark that our result does not at all 
depend on boundedness or univalence. 

4.4 Convex functions with vanishing second coefficient 

For convex functions the results of the last section apply. Moreover we get 
for functions with vanishing second coefficient 

Theorem 4.2 Let m E IN and fm E K of form (2.39). Then fA E HP 
for all p < 7 .  This result is sharp for the convex function f with f'(z) = 

( l - P ) +  * 

Proofi 

1 

- *  F'(z) ,  so that By (2.41) in the given situation fA(z) 4 (1-z)2,m -. 1 

the result follows by the Littlewood subordination theorem as - E H P  
for all p < $. 

= F'(zm) we have 1 For f W  = (1-Zm)2/m 

where the last equation follows by the substitution 0 + me and from the 
0 

As a corollary we have a generalization of Theorem 2.8 (c). 

Corollary 4.1 Let f(z) = z + ~ 2 . 2 ~  + U 3 Z 3  + ... E K with a 2  = a3 = 0. 
Then f' E H1 and f(D) has U rectifiuble boundary. 

Proofi The theorem shows that f' E H1. As f is bounded by Theorem 
2.8 (c) (or by (4.3)) and f(D) therefore is a Jordan domain, we get the 
conclusion. 0 

We remark that the theorem is a special case of our conjecture as functions 
of the given form satisfy 2pAaz 5 5 (see Theorem 2.8 (a)). 

periodicity of the exponential function, so that the result is sharp. 
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4.5 Close-to-convex functions 

Brown [ l O ]  showed that for f E C(ß) one has M p ( ~ ,  f') 5 M p ( ~ , F ' )  and 
MP(r,  l/f') 5 Mp(r,  l/F') for all p E 10, CO] where F is the generalized 
Koebe function (3.3). We modify this to  m-fold symmetric functions. 

Theorem 4.3 (see [28]) Let ß 2 0, m E IN and f E Cm(ß). Then 

(4.14) 

(4.15) 

(4.16) 

I n  particular: f' E HP for all p < &, i.e. 

Proof Let f E Cm(ß). Then the function g defined by f'(z) = (g ' ( zm) )  v m  

is close-to-convex of order mß by Lemma 3.3 (b). Therefore the result of 
Brown implies that ( z  = T e i e )  

m 
0 

where F is defined by (4.16), which shows (4.14). 
0 

We remark that the result for ß = 1 seems to be new even for starlike 
functions. The Hardy-dimension for l/ f' which follows from (4.15) does not 
depend on m and is so the same as for m = 1. 

The same procedure gives (4.15). 

From Theorem 4.3 it follows 

Corollary 4.2 (see [as]) Let ß < 1, m > & and f E Cm(ß). 
f' E H 1  and f(ID) has a rectifiable boundary. 

Then 
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Proof: By the theorem in the given situation f' E H1 and in particular 
f E H", so f is bounded. (This can be proved also purely geometrically: 
with a boundary point the function omits a sector of angle at least (1 - ß)n, 
and because of the symmetry there are at least m symmetric sectors of the 
same angle omitted. If the total angles exceed 2n, then obviously f(D) is 
bounded.) By a result of Pommerenke ([48], Theorem 2(a)) close-to-convex 
functions of order ß with ß < 1 have a continuous extension to  E, so that 
f(D) is a bounded Jordan domain. From f' E H1 it follows then that af(lD) 
is rectifiable. 0 

On the other hand the theorem implies 

Corollary 4.3 Let ß 2 0, m E IN and if ß < 1 then m 5 &. Then for 
f E C,(ß) we have 

1 

At the end of this section we give a sufficient condition for quasiconformal 
extension. 

Theorem 4.4 (see [28]) Let ß < 1, rn > & and f E C,(ß). Then f has 
a quasiconformal extension to C. 

Proof - p ß ( t )  with 
an rn-fold symmetric function h E St,. From representation (3.25) one gets 

As f E C,(ß), there is a representation f ' ( t )  = 

that 

so that 

I-<- 
2 - m lim sup 1 

T - + l  In 5 

whenever m > &, and the result follows from a general condition on 
0 quasiconformal extensibility for BazileviC functions due to  Gall [15]. 

4.6 Weakly linearly accessible domains 

A domain F is called weakly (angularly) accessible of order ß (ß E [0, 11) if 
it is the complement of the union of rays, such that every ray is the bisector 
of a sector of angle (1 - ß)n which wholly lies in the complement of F .  
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Clearly this is weaker than the (strong) accessibility of order ß as we do not 
suppose that the rays are pairwise disjoint. 

It turns out that a Hp result for f (rather that for f') is available from 
this geometrical description, which depends on the following lemma. 

Lemma 4.3 (see [24]) Let ß E [0,1] and F be weakly accessible of order 
ß. Then for each WO E dF there is some sector Swo of angle (1 + ß)a with 
vertex in WO such that F c Swo. 

Proof Let WO be an arbitrary boundary point of F .  By hypothesis (E \ F 
is the union of sectors of angle (1 - ß)a, and so WO lies in one of them. 
By a parallel motion we find a sector lying in (E \ F with vertex wo whose 

0 

From this it follows 

complement Swo is the sector searched for. 

Theorem 4.5 Let ß E [O, l ] ,  m E IN and i f  ß < 1 then m 5 &. Then for 
an m-fold symmetric weakly accessible function f of order ß we have 

ProoE From the lemma it follows that f(D) lies in some sector of angle 
(1 + ß)a with vertex at some boundary point WO E df(D). From the m- 
fold symmetry it follows that the same holds m-fold symmetrically, so that 

so f < a. F by the subordination principle. The Littlewood subordination 
0 

The proof shows that the result is implied by the geometry of f(D). For 
close-to-convex functions the statement was deduced from the corresponding 
result for the derivative in Corollary 4.3. 

f(D) c a .  F ( D )  for some a E (E where F'(z)  = +, l + P  ß F(0)  = 0, and 

theorem then implies the result. 
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5.  Functions with positive real part 

5.1 Uniqueness statements 

It is an easy consequence of Schwarz’ Lemma that p E P implies 
with equality iff p(z) = 
statement that 

2 2 
(2 E aD). This includes the uniqueness 

1 + 21 
1 - 21 P E P ,  pi = 22 (2 E alD) - p(1) = -. 

We shall now give a generalization of this statement. 

Theorem 5.1 Let p(z) = 1 + p1z + p2z2 + ... E P and n E IN. Suppose 
that for all j = 1, . . . , n holds 

n n 

pj = 2 x t k 2 j k ,  x t k  = 1, t k  > 0, zk E dlD (k = 1 ,..., n), (5.1) 
k=l k=l 

then (5.1) holds for all j E IN, i.e. 

Proof 
Fejer theory on positive harmonic functions. Observe that 

The proof is an easy consequence of the Caratheodory-Toeplitz- 

Dn := P-a 2 ... P Z E  

- .  . .  

- - -  
P, P-I P-a . 
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2 t k  
k=l 

2 5 t , q  2 5 t ,  
k=l k=l 

= 25t,q 
k=l 

I 

2 5 t , q  
k=i 

2 5 t , q  
k=l 

2 t , z k  
k=l 

k=l k=i 

n 

k=l k=l 

n-1 
Z k  2,  

n-2 1 * * a  2, 

. .  

5 t k  
k=l 

= 0 ,  

as the last determinant vanishes for all k = 1,. . . , n which is easily seen by 
induction. So by [ll], Theorem VI, it follows that Dj = 0 for j > n, which 
establishes the result. 0 

In particular we have 

Corollary 5.1 L e t p ( z )  = l + p l z + p z z 2 + . . .  E P withp1/2 E ID arbitrarily. 
Let furthermore t E [0, 11 and 2, y E dD such that pi  = 2 6 2  + (1 - t ) y )  (in 
fact for each t E 30, l[ such a representation exists). 
If now p2 has a representation p;! = 2( tz2  + (1 - t ) y 2 ) ,  then p is uniquely 
determined and 

The functions of form (5.2) are the extremals also for the next problem. 
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Lemma 5.1 Let p ( z )  = 1 + p1z + p2z2 + - - - E P .  Then 

(5.3) 

with equality if and only if p is of form (5.2) for some 2,  y E aID and 
t E [0,1]. 

Proof - # T i  -' = 

WO + W I Z  + w2z2 + - - - E B, and it follows that Iw1 I 5 1 - lw0l2 with equality 
if and only if ~ ( z )  = ~'1% for some w E alü and a E ID (see e.g. [17], 

For p ( z )  = 1 + p i a  + p2z2 + . . - E P we have ~ ( z )  := 

Kapitel VIII, Satz 2). This inequality is 
occurs in (5.3), then 

equivalent to  (5.3). If equality 

- 1 + z(a+w2a) + w2z2 
1 + z(a- w2a) - w2z2 

- 

- 1 + wz(2 Re aw) + w2z2 
i - wz(2i Im aw) - w2z2 ' - 

and so by writing b := aw it follows 

1 + z (b  + 6) + z2 
1 - z (b  - 5) - z2 * 

p ( m )  = (5.4) 

Obviously there is no loss of generality to  show the result for the rotated 
function p(Wz). 

Observe that the zeros of the denominator of the right hand fraction in 
(5.4) (as well as the zeros of its numerator) have unit modulus. So we have 
the partial fraction decomposition 

A B 
= - 1 +  - +- - 1 + z(b + b) + z2 

p(Ez )  - 1 - z (b-b)  - 9 1 - 2 z  1 - y z  
-1 + z(b - b) + z2 + A ( l  - yz) + B(l - z z )  

(5.5) - - 
1 - z(b - b) - 2 2  

for some 2,  y E aID with (1 - z (b  - b) - z 2 )  = (1 - 2 4 ( 1  - yz). Equating 
the coefficients of denominators and numerators leeds to  the equations 

2 y = - 1 ,  (5.6) 
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- 
z + y = b - b ,  

A + B = 2 ,  

y A + z B = - 2 b .  

From these equations we conclude (using that y E 8lD) that 

- yA = (5'9) -2b - 2B (5'6),(5'8) -25+ y(2 - A)  , 
and so 

2(Y - 5) 
A =  

Y + Y  ' 
and by (5.8) it follows further that 

2(K+ Y) B =  
Y + Y  

As Imy  = Im b by (5.6) and (5.7), and as Reb < Rey = d m  we 
get finally that 

and 
Re b B = l + -  
Re Y 

are nonnegative real numbers whose sum is 2. Setting now t := 9 E [0, 11, 
we get from (5.5) 

as desired. On the other hand a calculation shows that the functions of form 
0 (5.2) with 2, y E 8D and t E [ O , l ]  give actually equality in (5.3). 

We remark that Corollary 5.1 also follows from Lemma 5.1. 

5.2 The coefficients of the logarithmic derivative and an ap- 
plication 

In the Introduction we gave a dense subset of p .  As an application of the 
solution of the coefficient problem for the logarithmic derivative we get a 
family of inequalities for sets of consecutive points on the unit circle. 
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CO 

Theorem 5.2 Let p E F and z$(z )  = 
j=i 

have (ymI 2 2 m ,  and this is sharp as p ( z )  = 

Proof- Let p E 9. Then there is a number z E 8I.D such that p 4 e, so 
that l n p  + In (1 + zz) + (- ln(1 - z) ) .  The last function on the right hand 
side has the expansion 

y j d  . Then for  all m E IN we 

for z E dlD shows. 

O3 zk 
G ( z )  := - ln ( l -  z )  = - k , k=i  

so that for each g 4 G and each m E IN holds 

lam(g)l<= ai(G) = 1 7 (5.10) 

as the coefficients am(G) form a decreasing and convex sequence of positive 
real numbers (see e.g. [39], Theorem 216). For f(z) + F ( z )  := l n ( l +  2%) it 
also follows that 

l a m ( f ) l S  ai(G) = 1 (5.11) 

as F ( z )  = -G(-zz) and so we have (with some U E B )  

lam(1np)l = lam(J’ 0 w )  + am(G 0 w)I _I l a m ( f ) l +  lam(g)l<= 2 9 

implying the result. For the function p ( z )  = 

Applying the theorem to the dense subset of P of Lemma 1.3 leads to 

Corollary 5.2 Let n E IN be given and Zk,yI, E am (k = 1,. . . ,n) have 
the property 

equality holds as is easily 
0 verified, which finishes the proof. 

arg xi  < arg yi < arg 2 2  < arg yz <- - - < arg Zn < arg yn < arg 21  + 21r , 
then for  all m E IN 

12 (ZF - Y a I  5 2 m  
k = l  

Equality uccurs for given m E N if n = m, X k  = e2Tik/mz0 and Y k  = eTi/mzk 
(k = 1,. . . , m) fur sume xo E dID. 

We remark that for m = 1 the Corollary is a statement about the sum of 
the lengths of the vectors Z k  - yk, which can be proven also by geometrical 
means. In this sense Corollary 5.2 is a geometrical statement. 
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