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On the Fekete-Szeg6 problem for close-to-convex functions II 

By 

WOLFRAM KOEPF 

Let  C (fl), fl > 0, denote  the family of no rmal i zed  c lose- to-convex funct ions of  o rder  ft. 
F o r  fl = 1 this is the usual  set of  c lose- to-convex functions,  which had  been defined by  
Kap lan .  

In  a prev ious  pape r  [3] we solved the Fekete-Szeg6 p r o b l e m  of maximiz ing  l a 3 - 2 a2l, 
2 ~ [0, 1], for c lose- to-convex functions.  The  largest  n u m b e r  20 for  which [a a - 20 a2[ is 
max imized  by  the K o e b e  funct ion z / ( 1  - z) 2 is 20 = 1/3. 

N o w  we generalize this result  to C (fl), fl > 1, showing  tha t  the largest  n u m b e r  20 (fl) 
for which l a 3 - 20 (fl)a2[ is max imized  over  C (fl) by  k a with 

ka (~) - 2 (/~ + 1) \ \ V C S -  ~ /  

2 /~ 
is 20 (fl) - 3/~+1 

On the other hand, forallfl > 0 , [ a  3 2 2 - g a21 is max imized  over  C (fl) by  the odd  funct ion 
h a with 

(1 + zZ)  a 
h'f l(z) - (1 -- z2) a + l '  ha(0) = 0,  

s imilarly as in the case fl = 1. 
Ano the r  interest ing case is 2 = 1, where  we get 

{ -~(1 + 2 f l )  if f l < l  
l a a - a ~ l <  13 = 

3 ( f l z + 2 f i )  if f l > l ,  

with equal i ty  for h a and  k a if fl < I and  fl > 1 respectively, general izing the wel l -known 
e lementa ry  inequal i ty  for fl = 1, which is a consequence  of the univalence.  

F r o m  these results we conclude tha t  

[la31 -- la211 < ~ ( I  + 2fl) 

if fl => 1 with equal i ty  for ka, and  

]la31 - [a21 ] __< �89 + 2fl) 

if fl < 1/2 with equal i ty  for h a. 
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In the last section we give the sharp bound of a Nehari type condition for C (fl), 
generalizing therefore Neharis result that convex functions satisfy the Nehari univalence 
criterion. 

1. Introduction. Let S denote the family of univalent functions f of the unit disk D,  
normalized by 

(1) f ( z )  = z + a 2z 2 + a 3z 3 + . . . .  

Let St denote the subset of starlike functions, i. e. functions that have a starlike range with 
respect to the origin. A function f, normalized by (1), is called close-to-convex of order 
fi, fl > 0, if there exist a starlike function g and a real number ~, so that 

[ arg (e i~ z f '  (z)/g (z))[ < fl 2" 

Let C (fl) denote the family of close-to-convex functions of order ft. For  fl < 1 it turns out 
that a function is close-to-convex of order fl, if and only if it maps the unit disk univalently 
onto a domain whose complement E is the union of rays, which are pairwise disjoint up 
to their tips, so that every ray is the bisector of a sector of angle (I - fl) ~z which also lies 
in E (see [7], p. 176). 

In a previous paper [3] we solved the Fekete-Szeg6 problem of maximizing ]a 3 - 2 a~h 
2 ~ [0, 1], for close-to-convex functions of order 1. Now we generalize this result to C(fl). 
For  fl > 1 we are able to show that there is a number 20 > 0 such that l a3 --  2 0 a2l is 
maximized over C (fl) by the function kt~ with 

k~(z) - 2(~ + i~ \ \ Y ~ -  ~j - 1 = .=,~ A.z". 

2 fl 
The largest number with this property is 2 o - - - .  For  all fl > 0 we show that 

3 /~+1  
l a  B 2 2 

- -  5 a 2 [  is maximized over C (fl) by the odd function hp with 

(1 + (2)p 
de = ~ B.z" ,  ha(z) = ao ( i -  --~2~ 41 ,=1 

similarly as in the case fl = 1. 
If 2 = 1, then the result splits: 

]a 3 _ a2 ] < {B3 - B2 z = B3 if fl = 1 
= A 2 A 3 if fl=> 1. 

This seems to be the most interesting result of this paper, especially in the case fl < 1, 
because it generalizes the well-known estimate for fl = 1, which is a consequence of the 
univalence. 

2. On the Fekete-Szegii problem. The following notations will be used throughout  the 
present section. For  f (z) = z + a 2 z 2 + a3 z 3 + "'" ~ C (fl) there is representation of the 
form 

(2) f '  (z) = 9 (z). q (z). 
Z 
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with some function g (z) = z + b 2 z 2 q- b 3 z 3 + "'" e S t  and some function 

q ( z )  = 1 -~ q l  Z ~t- ~2 Z2 ..~ , . ,  

with ~(z) = (/~(z)) p, p(z) = 1 +/~1 z +/~2 z2 + ' "  and Re (e~'~(z))  > 0, c~ e ] -  re/Z, n/2[. 
Note that 

ql =/~Pl, 
(3) c~2 = fl (/~z + fi@l/~lz) " 

The function p (z) = 1 + P l  z + P2 z2 + "" ", defined by 

(4) ~, = cos o:. e- i~ ' ,  p , ,  n e N 

has positive real part. Comparing coefficients in (2) one gets 

3 a 3 = b 3 -+- t~l b 2 + q2 '  

2 a 2 = b 2 + c]1, 

so that with aid of (3) it follows that 

2a  2 ~(b3 ~ 2b2) ~(ff2 ( : 2 f l - f i - l ) / ~ 2 )  
a 3 -  = - + - 2 

(5) 

Now we consider the case 2 = 2/3. 

T h e o r e m  

P r o o f .  

Now Ib 3 - 
was shown 

1. L e t  f (z) = z + a2 z 2 + a3 z 3 + . . .  ~ C (fl). T h e n  

a 2 2 2 
- s a z l  < B 3 - S  B z =  �89  +2f l ) .  

From (5) and the triangle inequality it follows that 

_ 1_ I bE 2 fl /~2 - ~ f f 2  . a3 -2a21<3 b a - 2  + 3  3 21= 

1 2 b2 [ < 1 (see e.g. [3], Lemma 3). Further in the proof of Theorem 2 in [3] it 
that 

/ ~ 2 - ~ / 7 2 <  cosc~ ( 2 -  [~1--2 (1 - Isin~l)), 

using the inequality ]Pz - p ~ / 2 [  < 2 -Ip112/2 (see e.g. [3], Lemma 2), so that 

212(1 1 2 1 [P I sin c~ I) < ~ (1 + 2 fl) a 3 - -  ~ a 2 ~ ~ + COS ~ -- fl cos ~ - -  -- = . [] 
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Next  we choose 2 - 
2 /~ 
3 / ~ + 1  

Theorem 2. Le t  fl > 1 and f (z) = z + a2 Z2 -Jr a3 z3  -Jr- . . .  ~ C (fl). Then 

a2 2 2 fl < A 3  2 fl A 2 Z = l +  ft. 
a3 3 f i + l  = 3 f l + 1  

P r o  of.  Let  be 2 e [ 0 , 2 / 3 ]  and consider Eq. (5). Then  we have the estimate 
3 b2l < 3 (1 - 2), which is a consequence of [3], L e m m a  3, further Eqs. (4) and  Iba - x = 

I b2l < 2, gett ing 

[ a a - 2 a Z l < l - 2 + s c ~  - 2 f l - f l - 1 2  " 

Writ ing 

( ~ 2 f l - - f i  1 ) c o s ~ .  e -i= 1 
2 = 2 - # '  

we have 12#12 = 1 - cos 2 c~(1 - /~2 (1  - ~ 2)2), which implies with aid of [3], L e m m a  2, 
and  the triangle inequali ty 

_ 

- 2 cos c~. e ,=p2 

- -  1 - -  C O S 2 ( ~  1 - -  ]~2  1 - -  - -  I , 

so that  - using the nota t ions  y : =  cos cq p : =  [Pa] and  7 : =  2 - 3 2 - it follows that  

(6) 3[a  3 2 a ~ ] < l + 7 + f l y  - 2  I 1 y2 1 7 2 . . . .  + f l T Y P .  

N o w  we specialize, substi tuting )~ - 
2 fl 2 
3 fl + 1 '  i.e. 7 - fl + 1 '  and  have finally 

2 fl a~ 
3 a3 3/~+~ 

f 1 2  <+2 (2 0 = 1  y ~ i ( l  + : Y P )  + /SY - - (13 

=:Fp(p, y). 
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Now we shall show that Fp attains its maximal value for (p, y) ~ [0, 2] x [0, 1] at the point 
(2, 1). Observe that 

(7) Fp(2, 1) = 3 + 2fl,  

which leads to the statement of the theorem. 
Suppose now, that Fa attains its maximal value at an interior point 

(Po, Yo)e ]0, 2[ x ]0, 1[. Then the partial derivative OFp/Op vanishes at (Po, Yo), which 
implies the relation 

f12 2 

Therefore at (Po, Yo) the value of F~ becomes 

2 2f lyop  o flYoPo 2 
Fp(po, Y o ) = l + ~ - +  f l + ~ + Z f l Y ~  2 f l + l  

2 flYoPo 
= 1 + ~ i  + ~ i -  + 2flyo 

< 1 + ~ i +  + 2 f l = 3 + 2 f l ,  

contradicting our assumption that the value is maximal. So Fp attains its maximal value 
at a boundary point. In both cases y = 0 or p = 0 an easy computation shows that the 
value (7) is not attained. If y = 1 we have 

2 2fl 2 fl P ( 4 - p ) < l  + + 2 f l + - -  
Fp(P' 1) = I + f l ~ i -  + 2fl + fl + ~  "2 = f l + i  f l + l  

= 3 + 2 f l .  

If p = 2, then 

2 / ( f12 ) (fl +- 1) 2 F~(2, y ) = : H p ( y ) = l + ~ ( l + 2 f l y ) + 2 f l y  l - - y  2 1 . 

A calculation shows that Hp is increasing for y e [0, 1], which implies the result. [] 

R e m a r k. We note that we conjecture the truth of the statement of Theorem 2 also 
for fi < 1, but our method does not work in this case, because it is only sharp if y = i, 
and the maximal value of Fp is not attained at such a point if f l e  ]0, 1 [. 

From Theorem 2 and the well-known bound la21 < 1 + fl = A 2 (see e.g. [1]) it follows 
immediately 

Corollary 1. Let fl >= 1, 0 <_ 2 <_ 2 ~ .  Then 
- - 3 B + 1  

max [a 3 - 2 a z 2 I = A  3 - 2 A 2  2. 
f ~C(fl) 
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2 /7 
We remark  that  for fixed/7 the n u m b e r  2 o - 

3/ +1 
for each 2 e ]2o, 2/3[ there is a funct ion  f 6  C(/~) with 

la 3 - ;Oa~l > A 3 - 2 A  2. 

Examples  come from the choice 

- -  is best possible in the sense that  

Z 
9(z) - - -  - z + 2z  2 + 3z  3 + " "  

(1 - z)  2 

and  (t e [0, 1]) 

/7(1 J-Z~ (1 "~ Z2~ 
/7(z)= \ l - z / + ( 1 - t ) t , ~  ]=1 + 2 t z + z  z + . . . ,  

for which - wri t ing again  3' : = 2 - 3 2 - it follows that  

3(a  3 - 2a ] )  = 1 + 3' + 2/7 + 2/~3't + t2/~(3'/~ i 2) = : F ( t ) .  

The re la t ion F '  (to) = 0 implies tha t  

3' 

t o - 2 _ 3 '  8 

If now 2 e ]2 o, 2/3[, i.e. 3' e ]0, 2/ (8  + 1)[, then  this n u m b e r  to lies be tween 0 and  1 which 
shows that  F has a local m a x i m u m  at t o, so that  kp does no t  give the max imum.  

These a rgumen t s  hold  also if/7 < 1. 

N o w  we come to the case 2 -- 1, which seems to be the mos t  interest ing par t  of this 
paper,  because it generalizes the wel l -known est imate l a 3 - a~l < 1 for close-to-convex 
funct ions,  which is a consequence  of the univalence.  Here we shall also s tudy the ques t ion  
which funct ions  give equality.  Therefore we shall use the fol lowing 

Lemma.  L e t  be g (z) = z + b2 Z2 "]- b3 z 3 + "'" ~ St.  T h e n  

b3 3 [bz[ 2 
____1-- T 

z 
P r o o f. This  follows from the fact that  for each g ~ S t  the funct ion  S ( g ( ~ ) / ~ ) d (  is 

0 
convex and  from a cor respond ing  result  for convex funct ions  (see e.g. [9]). [] 

We get 

Theorem 3. L e t  f (z) = z + a 2 z 2 + a3 z 3 + "'" e C (8). T h e n  

B 3 - B ~ = � 8 9  + 2 / 7 )  if /7~[0 ,1]  

l a 3 - a 2 2 1 <  A 2 A 3 = � 8 9  i f  8 > 1 .  
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Equality holds if and only if 

~ha(xz), Ixl = 1 if f ~ 1 
f(z) = (kts(xz), Ixl I /f f ~ 1. 

P r o o f. F rom (5) we deduce by the same procedure as in Theorem 2, using the 
Lemma, that 

) 31a3-a~l__<l ~ t - f ly  ~ _ ( l _ x / l _ y 2 ( l _ f 1 2 / 4 ) )  + f l ypb  

=:  F~ (p, b, y), 

where p : =  ]Pl], b : =  ]b21 and y :=  cos c~. 
F rom this the result follows at once if f = 0. (The case of equality is considered at the 

end of the proof.) 
We shall show that F~ takes its maximal  value in Q : = [0, 2] 2 • [0, 1] at the point (2, 2, 1) 

if f > I and at the point (0, 0, 1) if f < 1, which gives the result. 
Let firstly fl > 2. Then the coefficient o f p  2 is nonnegative so that F~ is maximized at 

p = 2. Fur thermore 

b 2 
Fp(2, b,y) = 1 - ~-  + 2 f l y \ / 1  + y Z ( f 2 / 4 -  1) + f lyb  

b 2 
_<1 - - - + f i 2 + f i b ,  
- 4 

which takes its maximal value for b e [0, 2] at b = 2, as is easily veryfied. 
Next we show that  for f ~ ]0, 2[ the maximal value of F~ is attained at the boundary  

of Q. Suppose, the maximal  value of Fp were attained at an interior point (Po, bo, Yo) of 
~v~, 

Q, then the partial derivatives vanish there. The equation ~b (qo, bo, Yo) = 0 gives the 
relation 

(8) bo = f YoPo, 

and ~-p (Po, bo, Yo) = 0 implies 

(9) b o = 2po (1 - ~/1 - y~ (1 - fz/4)),  

so that, using both (8) and (9), we get 

fyo  (10) 1 - , , / 1  - y o  2 (1 - f2/4) - 
2 

A simple calculation then gives 

(11) Yo = ft. 
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For  fl > I this contradicts  our  assumption,  that  F~ has its maximal  value at (Po, bo, Yo), 
whereas for fl < 1 we get 

(8) .o2 2 2 P YoPo Fp (Po, bo, Yo) = 1 + 

= i + 2fly o 

p2 (1 - , , / 1  - y2 (1 - fl2/4))) +flyo(2- 7 

f lY~P~(1-x /1- -  y2(l - - f i 2 / 4 ) - ~  2) 

(a0) 

= l + 2 f l y o < l + 2 f l ,  

such that  here we get a contradict ion,  too, and the maximal  value is at tained (only) at the 
b o u n d a r y  of Q. 

N o w  we are able to get our  conclusion for fl = 1 (which is k n o w n  as a consequence of 
the univalence of close-to-convex functions of order  1). Because of (11) we know that  the 
m a x i m u m  is at tained at y = 1, where 

Fa(p,b , 1) = 3 - � 8 8  _ p ) 2  __< 3. 

N o w  it remains to show that  

f l + 2 f l  for fl ~10, 1[ 
(12) Fo__p(p,b,y)<=[fl2+2fl for f l ~ ] l ,  2[ 

on  the b o u n d a r y  of Q. For  y = 0, p = 0 and for b = 0 the easy p roo f  of (12) is left to the 
reader. Thus  we must  show (12) for the open faces {y = 1}, {p = 2} and {b = 2} of Q as 
well as the edges {p = b = 2}, {p = 2, y = 1} and  {b = 2, y = 1}. For  fi 4 :1  the maximal  
value is not  at tained on the open face {y = 1} because of (11). 

Consider  now the open face {p = 2}. There 

b 2 
rp (2, b, y) = :  G (b, y) = 1 - ~ -  + f ly  (b + 2 x / l  - y2 (1 - fl2/4)). 

The relation OG/Ob = 0 implies 

(13) b = 2fly. 

If fur thermore  ~G/Oy = 0 then 

(14) b + 2 ~/1 - y2 (1 - fl2/4) = 2y2 

and substi tut ing Eq. (13) yields 

1 1 y2 _ or y2 _ 
2+fl 2-fl 

so that  

1 - f l 2 / 4  

x/1 _ y2 (1 -- fl2/4) ' 

(15) y x/1 y2 (1 -- fl2/4) _ 1  
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(t3) 
G(b,y) = 1 + f12y2 4- 2 f l y x / 1  - y2(1 - fl2/4) 

05)  
= 1 + ~ 2 / + / ~ < 1 + ~ + ~ ,  

which implies (12). 
Consider  the open face {b = 2}. Then  

(2 ) Fa(p, 2, y ) = : H ( p , y ) = f i y  - - ~ - ( 1  --., ,/1 - y 2 ( 1  - f l z / 4 ) ) + p  . 

The relation 8H/~p = 0 implies 

p (1 - -  J 1  - -  y2 (1 - -  fl2/4)) = 1, 

so that  

ARCH. MATH. 

(16) b = 2ft .  

Fo r  fl > 1 this s tatement  is false so that  there exists no local m a x i m u m  on {p = 2, y = 1}. 
For  fl �9 ]0, 1[ we get using (16) that  

b 2 
Fp(2, b, 1) = 1 - 7  +/~2 + / ~ b  = 1 + 2 f l 2 <  I + 2 f t .  

For  a local max imum of Fp on the edge {b = 2, y = 1} we get f rom (9) that  

2 
(17) P - 2 - / ~ "  

/-/(p,y)=/~y - g + p  =/~y 2+ <3/~, 

which gives (12). 
N o w  we study the edges of Q. For  a local max i mum of F~ on the edge {p = b = 2} we 

get (14) so that  

1 - /~2/4  
1 + x/1 -- y2 (1 -- fl2/4) = y2 

x/1 _ y2 (1 - /72 /4)  ' 

which implies 

,,/1 y2 (1 - , 8 2 / 4 ) - ~  

and so it follows 

F~ (2, 2, y) = 2 fl y (1 + ,,/1 - y2 (1 - fl2/4)) = 3 f ly  < 3 fl, 

which gives (12). 
Fo r  a local m a x i m u m  of Fp on the edge {p = 2, y = 1} we get f rom (8) that  
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F o r / / >  1 this statement is false so that  there exists no local max imum on {b = 2, y = 1}. 
F o r / / ~  ]0, l[ we get using (17) 

Fa(p, 2 , 1 ) = / /  - - ~ -  1 - -  + = 2 / / +  < 1 + 2 / / .  

A calculation of Fa at the corners of Q finishes the proof  of inequality (12). 
Now we study the case of equality. An inspection of the proof  shows that equality holds 

if and only if y = 1 and 

/ / <  1 and [b21 = [Pll = 0 
o r  

fl > 1 a n d  Ib21 = IPl l  = 2 .  

Now let [b21 = IPll = 2. Then 

and 

g(z) (1-xz)  2 '  Ix l=l  

l + w z  
p ( Z )  - l _ w z ,  Iwl=l 

(see e.g. [8], Theorem 1.5 and Corollary 2.3). An easy computat ion gives now that 
equality implies w = x, and so f ( z ) =  ka(xz) .  If I b2[ = Ipal = 0, then the use of 
[b 3 _ ~3 b21 =< 1 - [b212/4 and IP2 -p2 /21  = < 2 - IP112/2 establishes that equality implies 
Ib3l = 1 and ]P2I = 2. So [Pl] -- 0 and [P2[ = 2, which gives 

I - -~-WZ 2 

p ( Z ) - l _ w z  2 '  Iwl=l  

(see [8], Corollary 2.3). Also from I b2[ = 0 and [b31 = I it follows elementarily (using again 
[8], Corollary 2.3) that  

Z 

g ( Z ) -  l _ x z  2 '  Ix l= l .  

A computat ion shows now that  equality implies w = x, and so f (z) = h a (x z). 

F rom Theorem 1 and Theorem 3 it follows with the triangle inequality 

[] 

Corollary 2. L e t / / ~  [0, 1], 2 ~ [2/3, 1]. Then 

max l a 3 - 2 a 2 2 1 = n  3 - 2 B  2 = � 8 9  
f ec (#) 

3. On successive coefficients. F rom the results of Sect. 2 it follows 

Theorem 4. Le t  fl >= 1, f (z) = z + a2 z2 + a3 z 3 + . . .  ~ C (//). Then 

[[a3[ - [ a 2 [ [ <  A3- -  Az = fiz(l + 2//). 
3 
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P r o o f. At first we show 

(18) [ a 3 [ - l a 2 [  < �89 (2 f12 + ]3). 

We use Coro l l a ry  1, choos ing  2 = 1/3, and  get 

1 a2[ + �89 la/12 lazl laz[ - la21 < la3 - 3 

< 1 2 1 [a212 = g ( ] 3  + 2 1 3 + 2 ) + 3  - ] a 2 l = : F ( l a 2 1 ) "  

Because F defines a convex  pa rabo la ,  it takes  its m a x i m u m  at  the b o u n d a r y  of its interval  
of  definition. F u r t h e r m o r e  the re la t ion 

1 (2 ]32 + ]3) V(la2l) = 3  

implies tha t  la21 = 2 - ]3 or  la21 = 1 + ]3, so tha t  

1 (19) f ( l a 2 D < ~ ( 2 1 ~ 2 + ] 3 )  for 1 a 2 1 ~ [ 2 - / ~ , 1 + ] 3 ] .  

F r o m  this (18) follows if ]3 > 2, because  I a21 < I + ]3 in C (]3). Let  now ]3 e [1, 2[. Then  with 
aid of T h e o r e m  1 we have fu r the rmore  tha t  

2 a2l + ~ la2l 2 [a21 la3l - ]a2[ < l a 3 -  3 

(20) < �89 + 2]3) + 2[azl  2 _ lazl = : a ( l a 2 1 ) .  

The  same p rocedure  as above  shows tha t  

G (la2l) =< �89 (2 ]32 _~_ ]3) for l a2 [ ~ [1 -- ]3, ]3 + �89 

which, together  with (19), gives (18). 
N o w  we shall show tha t  

l a 2 l -  la31 < 1(2132 + ]3), 

which is trivially t rue if ]a21 ~ [0, (2]3 2 + ]3)/3]. This  gives the result  for ]3 > (x /~  + 1)/2. 
F o r  ]3 < (a /~  + 1)/2 let now lie la2[ in the remain ing  interval  [(2]3 2 + ]3)/3, 1 + ]3]. Then  
T h e o r e m  3 gives 

la21 - la31 = la212 - laal -- [a212 + la21 < la 2 - a3[ - la2l 2 + [a21 

=~( ]3  + 2 f i ) - l a 2 ]  2 + l a 2 [ = : H ( l a 2 l  ). 

H takes  its g lobal  m a x i m u m  at  l a21 = 1/2 which  does not  lie in the interval  considered.  
Thus,  for la21E [(2]32 + ]3)/3, I + ]3], H is decreasing,  and  it r emains  to show tha t  

H ((2 ]32 + ]3)/3) < �89 (2 ]32 + ]3), 

i.e. 3//2 + 6 ]3 < (2 ]32 + ]3)2, which obvious ly  holds for ]3 > 1. [] 

F o r  ]3 < I one gets 

Theo rem 5. L e t  ]3 < 1/2, f (z) = z + az z z + a3 z3 + . . .  ~ C(]3). Then  

1(1 + 2]3). la31 - la2l < B3 - B2 = 
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P r o o fi Theorem 1 implies (20). Because/3 < 1/2 we have la2] ~ [0, 3/2], and it follows 
easily that G (1 a 2 l) < (1 + 2/3)/3. [] 

We are not able to show that I a41 - [a31 ~ A4 - -  A3 for/3 > 1, but give a weaker result 
in this direction. 

Theorem 6. Le t /3  > 1, f ( z )  = z + a2 z2 + aa z 3 + a4 z 4 + . . .  E C(/3). Then 

(l +/3) (/32 + 2/3). I la41 - la211 _-< A~ - A 2 3 

P r o o f. We use [2], Lemma,  implying that with f (z) = z + a 2 z 2 + a 3 z 3 + . . .  ~ C (/3) 
the function h (z) = z + b 2 z 2 + b 3 z 3 + .. -, defined by h' (z) = ( f '  (z2)) 1/2, h (0) = 0, is an 
odd close-to-convex function of order/3/2. Now, because fl > 1, we can use the coefficient 
dominat ion theorem for such functions [2], Theorem 1, and get 

1 2 a 4 - - 2  a 2 a 3 + 3  2a 3 (1 "~ /3) (/32 (22) IbT] = 7  = < 42 + 2 / 3 + 6 ) .  

If we consider bs, we get once more Corollary 1 for 2 = 1/3, namely 

3 1 a2 /32 + 2/3 + 2 
(23) Ibsl = ]-~ a3 - ~ < 

= 10 

Now we get with aid of (22) and (23) that 

a 4 - - 4  a2a3 ~ 3 a3 --31 a2 la41 - la21 - -< + ~la2[ 2 --la21 

_ 3 (/32 + 2/3 + 2) 
< (1 +/3) (/32 + 2/3 + 6) + ~ la2l la21 
= 12 3 

(1 + /3) 
(/32 + 2/3 + 6) + ~ (/32 + 2/3 - 2). < 

= 12 

Because (/32 + 2/3 - 2) > 0 it follows now from l a2[ ~ 1 -t- /3 that  

la41 - l a = l  ~ (1 +/3~ (/32) + 2/3). 
3 

On the other hand, for/3 > I 

la2l - l a 4 1  ~ la2] ~ _ _ . ( 1  +/3) 3 _< (1 +/3)(/32 + 2/3) 
3 - 3 

is trivially true. [] 

4. Close- to-convex  functions and the Schwarzian derivative. For  a => 0 let N (a) denote 
the family of analytic and locally univalent functions of K), which are normalized by (1) 
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and have the property that 

(24) s ( f ) : =  sup (1 - ]z[2) 2 ]Ss(z)] < a .  
z~D 

Here Ss :=  \ f , j  2 \ f ' l  denotes the Schwarzian derivative of f 

The Nehari univalence criterion [4] states that N (2) c S. On the other hand it is easily 
seen that S c N (6) (see e.g. [4]). 

Note the well-known transformation property that if co is an automorphism of ID, then 

(25) (1 - -  Iz12) 2 ISSoo,(z) l  = (1 - -  Ico(z)12) 2 I S s ( ~ o ( z ) ) l .  

The following result generalizes the statements K = C ( 0 ) c  N(2) (see [51), and 
C (1) = N (6). 

Theorem 7. Let f e C (fl), and let s ( f )  defined by (24). Then 

2 + 4/7 /f / 7 < 1  
(26) s(f)<= 2 /72+4 /7  /f / 7 > 1 .  

Equality holds for the functions f defined by 

(1 + z2) p 
( l _z2 )p+  1 /f /7_<_1 

(27) f (0) = 0, f '  (z) = 
(1 + z)~ 

( l - z ) P  +~ /f /7 -->1 

P r o o f .  Let f ~  C(fl) and a ~ D .  Then the function g(z) = z + h2 z2 --t- b3z 3 d- "" ,  
defined by 

/ z + a \  

g(z) = 
f ' ( a ) .  (1 -- [a[ 2) ' 

also lies in C (/7) (see e.g. [1]). An application of Theorem 3 gives 

~ �89 if / 7 < 1  
(28) Ib a - b22l N ~1(/72 .~_ 2/7) if /7 _--> 1 '  

SO that the relation 

(1 - [ a l 2 )  2Sf(a) = So(O ) = 6(b a - bE), 

which is a consequence of (25), implies the result, because a was arbitrary. The functions 
f, defined by (27), give the sharp bounds in (28), and so in (26). [] 
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