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On the Fekete-Szegd problem for close-to-convex functions 11

By

WOLFRAM KOEPF

Let C(f), § = 0, denote the family of normalized close-to-convex functions of order S.
For 8 =1 this is the usual set of close-to-convex functions, which had been defined by
Kaplan.

In a previous paper [3] we solved the Fekete-Szegd problem of maximizing |a; — A a3|,
4 e[0, 1], for close-to-convex functions. The largest number A, for which |a; — 4, a3| is
maximized by the Koebe function z/(1 — z)? is 4, = 1/3.

Now we generalize this result to C(f), f = 1, showing that the largest number A, (f)
for which |as — 44 (f)a3| is maximized over C(f) by k, with

1 14+ z\f*1
k””:2w+n<Gf3> '_Q

. 2 P
1s/10(ﬁ)——3ﬂ+1.
On the other hand, for all # 2 0, |a; — 2a}|is maximized over C (B) by the odd function
hy with
A+

h};(z) = m» hp(o) =0,

similarly as in the case § = 1.
Another interesting case is 4 = 1, where we get

a _a2|<{§(1+2ﬁ) if <1
T BE+2p i g2,

with equality for h; and k; if # <1 and B = 1 respectively, generalizing the well-known
elementary inequality for f = 1, which is a consequence of the univalence.
From these results we conclude that

llas] — laal | < 801 + 2p)
if = 1 with equality for k;, and

llas] —la,l| 51 +2p)
if # < 1/2 with equality for h;.
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In the last section we give the sharp bound of a Nehari type condition for C (),
generalizing therefore Neharis result that convex functions satisfy the Nehari univalence
criterion.

1. Introduction. Let S denote the family of univalent functions f of the unit disk ID,
normalized by

) f@=z+ayz*+a;z> +---.
Let St denote the subset of starlike functions, i. e. functions that have a starlike range with

respect to the origin. A function f, normalized by (1), is called close-to-convex of order
B, B = 0, if there exist a starlike function g and a real number o, so that

|arg (%2 [ (2)/g (2)| < ﬂg.

Let C(f) denote the family of close-to-convex functions of order . For B < 1 it turns out
that a function is close-to-convex of order f, if and only if it maps the unit disk univalently
onto a domain whose complement E is the union of rays, which are pairwise disjoint up
to their tips, so that every ray is the bisector of a sector of angle (1 — p) = which also lies
in E (see [7], p. 176).

In a previous paper [3] we solved the Fekete-Szegd problem of maximizing |a; — A a3|,
4 €0, 1], for close-to-convex functions of order 1. Now we generalize this result to C (f).
For > 1 we are able to show that there is a number 1, > 0 such that |a; — 1,a2] is
maximized over C(p) by the function k; with

1 14 z\fH1 ©
vy ) S

2
The largest number with this property is A, = -3-/3—_'[:_1 For all f = 0 we show that
las — 2a3| is maximized over C(f) by the odd function h, with
T+ 2 5
m@) == L B

similarly as in the case § = 1.
If A =1, then the result splits:

B,—B:=B, if p=1
las — a3| < -
= 42— 4, if g=1.

This seems to be the most interesting result of this paper, especially in the case f <1,
because it generalizes the well-known estimate for § = 1, which is a consequence of the
univalence.

2. On the Fekete-Szeg problem. The following notations will be used throughout the
present section. For f(z) = z + a,z2 + a5 2% + --- € C(P) there is representation of the
form

@) 70=99 40).

z
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with some function g(z) = z + b, z> + b3 z* + -- - € St and some function
@ =1+Gqiz+82" +-

with §(z) = (P, plz2)=1+p,z+ p,z> + -+ and Re(e®p(2) > 0, a € ]—7/2, m/2[.
Note that

1 ﬁﬁla
3 . B—1_
2=5<2+ 3 P1)-

Tl

(Rt

The function p(z) =1 + p, z + p,z> + - - -, defined by

@ p,=cosa-e “-p.  neN

has positive real part. Comparing coefficients in (2) one gets
3a3=b3+q:b, + 4y,
2a, =b, + 4y,

so that with aid of (3) it follows that

1 3 3 -1
a; — Aaj =§<b3 —leﬁ) +§<ﬁz - (Ziﬁ—%—>ﬁf>
%) )
+Bp,1b, <§_§>

Now we consider the case 4 = 2/3.

Theorem 1. Let f(z) =z + a,z2 + a3z + -+~ € C(B). Then
lay —2a3| < B; — 5 B; =5(1 +2f).
Proof From (5) and the triangle inequality it follows that

2 B|. N
a3—§a§ +§P2—§Pf-

1 1
3ba—3h

=

Now |b; — %b%l <1 (see e.g. [3], Lemma 3). Further in the proof of Theorem 2 in [3] it
was shown that

|2

N lp
o] oo 2

1- |sinot|)>,

using the inequality |p, — p3/2| < 2 — |p,|*/2 (see e.g. [3], Lemma 2), so that
2 ,0_1 2B p:|?
3 2

ay; — a3 =

3

A —Jsina)£-(1+2p. O

U] =
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B

Next we choose A = g~———~
36+1

Theorem 2. Let f =1 and f(z) =z + ayz* + azz*> + - - € C(f). Then

2 2
a3 — 3 b a7| £ A5 -3 b
3p+1 3p+1

2
A§=1+§ﬁ.

Proof Let be 1€[0,2/3] and consider Eq. (5). Then we have the estimate
|bs —2b3| < 3(1 — A), which is a consequence of [3], Lemma 3, further Egs. (4) and

|by| < 2, getting
3 —1 .
pz——<2/lﬁ—ﬁ2 >cosoc-e“"pf

B

las — 1a3| <1 —/l-l—gcosoc

2
+ﬁcosoc(§——/l> Pyl

Writing

3 -1 o1
(Zlﬁ—ﬁz )coscx-e"""zi—y,

we have |2u|> =1 — cos?a(1 — p*(1 — 2 A)%), which implies with aid of [3], Lemma 2,
and the triangle inequality

3 ﬂ_l —ia
p2—<‘—‘/1ﬁ— 5 )cosa-e p?

<2+ 'p;|2</1 —cos2a<1 L <1 —%/1>2>— 1),

so that — using the notations y:= cosa, p:=|p,| and y:= 2 — 3 1 — it follows that

2 202
© 31ay — a3 §1+y+ﬂy(2—%<1 —/1 —y2<1 -7 )))Hmp.

2 B 2
Now we specialize, substituting A = ————, i.e. y = ——, and have finall
p g 3p+1 ’ B+1 y
2 B
3 I 2
Y IR

2 r’ ? F
gl+m(1+ﬁyp)+ﬁy<2_7<l_\/1_y (1_(/”1)2))>

=:Fg(p, y).
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Now we shall show that F attains its maximal value for (p, y} € [0, 2] x [0, 1] at the point
(2, 1). Observe that

(7) Fﬁ(2>1)23+2ﬁ’

which leads to the statement of the theorem.

Suppose now, that F; attains its maximal value at an interior point
(o> Vo) €10, 2[ <10, 1[. Then the partial derivative 0F;/Op vanishes at (p,, y,), which
implies the relation

B Y\ 2
p°<1_\/1_y3<1_(ﬁ+1)2>>_/3+1'

Therefore at (p,, y,) the value of F; becomes

2 2Byopo Byopo 2
Fy(Pos Vo) =1+ —— 2By, — =
ﬁ(Poyo) +ﬁ+1+ ﬂ+1+ﬁy0 3 1
2 Byopo
=14 2020
rit g1 T 2P
2 28
<4+ 428 =3428,
B+1 B+1 P B

contradicting our assumption that the value is maximal. So Fj attains its maximal value
at a boundary point. In both cases y = 0 or p = 0 an easy computation shows that the
value (7) is not attained. If y = 1 we have

Fy(p, 1) 1+ﬁ+2/3 %2(4 p)_1+ﬁ—i7+ B+ ﬂ—ﬁ
=342
If p = 2, then
Fﬂ(2,y)=¢Hﬂ(y)=1+—2—(1+2ﬁy)+2By\/1—y2(1— L& )
B+1 (B +1)°

A calculation shows that H, is increasing for y €[0, 1], which implies the result. [

Remark. We note that we conjecture the truth of the statement of Theorem 2 also
for f < 1, but our method does not work in this case, because it is only sharp if y = 1,
and the maximal value of F is not attained at such a point if g €]0, 1[.

From Theorem 2 and the well-known bound |a,| £ 1 + f = 4, (see . g. [1]) it follows
immediately

‘m

Corollary 1. Let 21,04 < % . Then

m
—_

max |a; — Aa3| = A, — 1 A2.
feC(p)
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We remark that for fixed § the number 4, = gﬁ B N is best possible in the sense that
+
for each A € ]4,, 2/3[ there is a function f e C(f) with

lay — La3| > A3 — 1 A2,

Examples come from the choice

z
g(z)=m=z+2zz+3z3+---

and (¢ € [0, 1])

1 1 2
17(2)=t< +Z>+(1—t)< +Zz)=1+2tz+zz+~-,

1—z 1—z
for which — writing again y:= 2 — 31 — it follows that
3(as —Aad) =147+ 2B+ 2Byt + 2By B —2)=:F(t).
The relation F'(t,) = 0 implies that

_ v
2—9p

If now 4 € ]4q, 2/3[, i.e. y €10, 2/(f + 1)[, then this number ¢, lies between 0 and 1 which
shows that F has a local maximum at t,, so that k; does not give the maximum.

These arguments hold also if 8 < 1.

Now we come to the case A = 1, which seems to be the most interesting part of this
paper, because it generalizes the well-known estimate |a; — a2| < 1 for close-to-convex
functions, which is a consequence of the univalence. Here we shall also study the question
which functions give equality. Therefore we shall use the following

to

Lemma. Let be g(z) = z + by z*> + byz® + -+ € St. Then

|5, ?

<1-
- 4

3
by — b3

Proof. This follows from the fact that for each g e St the function { (g(8)/0) d¢ is
0

convex and from a corresponding result for convex functions (see e.g. [9]). O
We get

Theorem 3. Let f(z) =z + a, 2% + a3z + --- € C(B). Then

gy — a2 < B2 Bi=3(+26) i fel0d]
SUHE A, =L 2B i B2t
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Equality holds if and only if

_fhyGed, Ixl=1 i ps1
f(z)_{k,,(xz), Ixl=1 if p=1.

Proof From (5) we deduce by the same procedure as in Theorem 2, using the
Lemma, that

p

2 2
3|a3—a§|§1—%+ﬁy(2—5(1— 1—y2(1—52/4))>+w

2
:Fﬁ(ps bs y)’

where p:=|p,|, b:=|b,| and y:= cos .

From this the result follows at once if § = 0. (The case of equality is considered at the
end of the proof))

We shall show that F; takes its maximal value in 0 : = [0, 2% x [0, 1] at the point (2, 2, 1)
if § = 1 and at the point (0,0, 1) if § < 1, which gives the result.

Let firstly 8 = 2. Then the coefficient of p? is nonnegative so that F, is maximized at
p = 2. Furthermore

2
Fa.b, 9 =1~ o+ 2py T4 A D + fyb

b2
S1—4+p+pb,

which takes its maximal value for b € [0, 2] at b = 2, as is easily veryfied.
Next we show that for § € ]0, 2[ the maximal value of Fj is attained at the boundary
of Q. Suppose, the maximal value of F; were attained at an interior point (py, by, ¥o) Of

0, then the partial derivatives vanish there. The equation OF, (4o5 bo» yo) = 0 gives the
relation 0b

(8) by = BYoPo>
oF
and —2 (py, by, vo) = 0 implies
op
©) bo=2po(1 — /1 —ys (1 — B?/4)),

so that, using both (8) and (9), we get

w0 - Jiopa-pm=t
A simple calculation then gives

(11) Yo=F.
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For B = 1 this contradicts our assumption, that F, has its maximal value at (pg, by, yo),
whereas for § < 1 we get

(8) 2.2 .2 2
Fy(poy by = 1+ P 2000 4 g <2 ~Da-yT=5a- ﬁ2/4))>
1 +zﬁyo—ﬁy2°”°<1 -J/1=3d —ﬁ%—%)

(10)
— 1428y, <1+28,

such that here we get a contradiction, too, and the maximal value is attained (only) at the
boundary of Q.

Now we are able to get our conclusion for § = 1 (which is known as a consequence of
the univalence of close-to-convex functions of order 1). Because of (11) we know that the
maximum is attained at y = 1, where

Now it remains to show that

1+28 for pelo 1]

B +2p for Belt, 2]

on the boundary of Q. For y = 0, p = 0 and for b = 0 the easy proof of (12) is left to the
reader. Thus we must show (12) for the open faces {y = 1}, {p =2} and {b = 2} of Q as
wellastheedges {p=b=2},{p=2,y=1}and {b =2, y = 1}. For § =+ 1 the maximal

value is not attained on the open face {y = 1} because of (11).
Consider now the open face {p = 2}. There

(12) Fy(p, b, y) é{

bz
Fy2,b,y)=:Gb,y)=1—1+fyb+2 1—y*(1 ~ B*/4).

The relation 0G/0b = 0 implies

(13) b=28y.
If furthermore 0G/0y = 0 then

1— p*/4
14 b+21—y*(1—p*a)=2y* ,
(14) + y =B =2y Ty

and substituting Eq. (13) yields

o 1 or =
Y T8 =

so that

(15) Y=y (=B =3
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and

(13)
Gb,y) =1+py"+2By/1-y* (1 - B*/4)

(15

=1+ +p<1+p>+8,

which implies (12).
Consider the open face {b = 2}. Then

2
Fy(p,2,y)=:H(p,y) =By (2 —%(1 — /1=y (1~ B>/4) +p>-
The relation 0H/dp = 0 implies

p(l—J1—y* (1 —p4)=1,

so that

H(p,y)=ﬁy<2—’—2’+p>=ﬁy(2 +§) <38,

which gives (12).
Now we study the edges of Q. For a local maximum of F; on the edge {p = b = 2} we
get (14) so that

OV (R S IR o
N

which implies
VI=y A=) =13,
and so it follows
Fy22,0)=2Fy(+ /1y 1 - F/4) =3y <38,

which gives (12).
For a local maximum of F; on the edge {p = 2, y = 1} we get from (8) that

(16) b=28.

For § > 1 this statement is false so that there exists no local maximumon {p = 2,y = 1}.
For €10, 1[ we get using (16) that

bZ
Fp(z,b,1)=1—z+ﬁ2+ﬂb=1+2ﬂ2<1+2ﬁ.

For a local maximum of F; on the edge {b = 2, y = 1} we get from (9) that

) P=5"%"
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For f > 1 this statement is false so that there exists no local maximum on {b = 2,y = 1}.
For €10, 1] we get using (17)
2
p B B
Fp,2,)=p(2-2(1-2 =28+ <1+2B.
3(p:2,1) ﬁ( 2( 2>+p> ﬁ+2—ﬂ< +2B

A calculation of F; at the corners of Q finishes the proof of inequality (12).

Now we study the case of equality. An inspection of the proof shows that equality holds
if and only if y = 1 and

B=1 and |b,|=|p|=0
or
=1 and |b,|=|p,|=2.

Now let |b,| = |p,| = 2. Then

_= e, =1
g9(2) A w27 | ]
and
N 1+wz
PO =1 =1
—wz

(see e.g. [8], Theorem 1.5 and Corollary 2.3). An easy computation gives now that
equality implies w = x, and so f(z) = kz(xz). If |b,| =|p;| =0, then the use of
|b; —2b%| £ 1 —|b,|*/4 and |p, — pi/2| £ 2 — |p,|?/2 establishes that equality implies
|bs] =1 and |p,| = 2. So |p,| = 0 and |p,] = 2, which gives

1+ wz?
_ ,

P2

= =1
1—-wz Iwl

(see [8], Corollary 2.3). Also from |b,}| = 0 and |b;| = 1 it follows elementarily (using again
[8], Corollary 2.3) that

z
g9(2) = 5 x| =1.
Xz
A computation shows now that equality implies w = x, and so f(z) = hy(xz). [
From Theorem 1 and Theorem 3 it follows with the triangle inequality
Corollary 2. Let e[0,1], 1 €[2/3,1]. Then

max |a; — AaZ|=B,— AB2=1(1+2§).
fec(m| 3 2 3 3=301+28)

3. On successive coefficients. From the results of Sect. 2 it follows

Theorem 4. Let B =1, f(z) =z + ayz> + a3z> + --- € C(B). Then

“a3|“|az||§A3—-A2=§(1 +2p).
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Proof. At first we show
(18) lasl —lasl £ 528% + B).
We use Corollary 1, choosing A = 1/3, and get
las| — lay| < lay — a3l + 310, — |ay]
S3B*+ 28+ 2+ 3lay)* —lay| =:F(a,)).

Because F defines a convex parabola, it takes its maximum at the boundary of its interval
of definition. Furthermore the relation

F(lay) =3Q2B* + B)
implies that |a,| =2 — f or |a,| =1 + f, so that
(19) fla) =32B* +p) for |aylel2— 51+l

From this (18) follows if 8 = 2, because |a,| < 1 + Bin C(f). Let now § € [1, 2[. Then with
aid of Theorem 1 we have furthermore that

las| — lasl §|a3——§a%|+~§—|a2|2—la2|
20
20 <L+ 26) + 2ay — las] =:G(ay)).
The same procedure as above shows that

G(a,) =528+ p) for laJell — B, + 3,

which, together with (19), gives (18).
Now we shall show that

la,| —las| £ 528% + B),

which is trivially true if |a,| €0, (2 2 + B)/3]. This gives the result for g = (\/7 + 1)/2.
For f < (\ﬁ + 1)/2 let now lie |a,| in the remaining interval [(2 82 + f)/3, 1 + B]. Then
Theorem 3 gives

lazl = las] = [a, > — las] — |a,1* + lay] £ |63 — a;3] — |ay|* + |a,]
< 1B +2P) — lay)® + layl =:H(|a,)).

H takes its global maximum at |a,| = 1/2 which does not lie in the interval considered.
Thus, for |a,| e [(2 > + B)/3, 1 + Bl, H is decreasing, and it remains to show that

H(2B + B3 <5282+ p),
i.e. 32+ 68 < (2% + B)? which obviously holds for f = 1. O

For B < 1 one gets

Theorem 5. Let B < 1/2, f(z) =z + ayz% + azz> + --- € C(B). Then
lasl — lay] < B; — B, =3(1 + 2p).
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Proof. Theorem 1 implies (20). Because § < 1/2 we have |a,| € [0, 3/2], and it follows
easily that G(la,) (1 +2p)/3. O

We are not able to show that |a,| — |a;| £ 4, — A for B = 1, but give a weaker result
in this direction.

Theorem 6. Let f =1, f{z) =z + a,2° + a3 2% + a,z* + --- € C(B). Then
(1+ﬁ)

lay —lay) | £ 4y — A4, =———(F* +2p).

Proof We use[2], Lemma, implying that with f(z) = z + a,z* + a,z> + --- € C(B)
the function h(z) = z + b, z? + by z° + - -+, defined by K (z) = (' (z2)¥%, h(0) = 0, is an
odd close-to-convex function of order /2. Now, because § = 1, we can use the coefficient
domination theorem for such functions [2], Theorem 1, and get

LA+hH)
= 50

3 al
(22) |b,| = 50243 +72

2a4 (B2 428+ 6).

If we consider b5, we get once more Corollary 1 for 4 = 1/3, namely

242 2
3_§a§ S.ﬁ__-l_ﬁ_

) =
23) b5l =5 |a <t

10

Now we get with aid of (22) and (23) that

< 3 al| 3 1,
las| —la,| = a4“1“2“3+1 +Z|a2I as—gaz —la,|
2
TP opre iy B2y
<P apre 2 0p ).

Because (2 + 28 — 2) = 0 it follows now from |a,| < 1 + f that

(ﬁ)

lag| —la,| = (ﬁz+2ﬁ)
On the other hand, for § = 1
1+
0zl — lagl <1y £ TP 3 U P o

is trivially true. I

4. Close-to-convex functions and the Schwarzian derivative. For ¢ > 0 let N (o) denote
the family of analytic and locally univalent functions of ID, which are normalized by (1)



432 W. KOEPF ARCH. MATH.

and have the property that
(24) S(f)I=Sug(1 — 12218, s o.

"\ 1 "\ 2
Here S;:= (%) —5 <%> denotes the Schwarzian derivative of f.

The Nehari univalence criterion [4] states that N (2) < S. On the other hand it is easily
seen that S < N (6) (see e.g. [4]).

Note the well-known transformation property that if w is an automorphism of ID, then

25 (1 — 12121850 (@ =1 — @) S, (@@)].

The following result generalizes the statements K = C(0) < N(2) (see [5])., and
C(1) = N(6).

Theorem 7. Let f e C(B), and let s(f) defined by (24). Then

2+4p  if p=1
00 sy bt
Equality holds for the functions f defined by
1422
(li_—zf—),,l—l A
27 fO) =0, f'(z) = s
1+ z) )
1z if pz1.

Proof Let feC(f) and aeID. Then the function g(z) =z + byz*> + byz> + ---,

defined by
z+a
(i22)-so

f@-(—laP) ’

also lies in C(f) (see e.g. [1]). An application of Theorem 3 gives
%(14—2[3) if g1

1B*+2p) if pz1’

g(z) =

(28) Iba—bilé{

so that the relation
(1 —[a]??S,(a) = 5,(0) = 6(b; — b3),

which is a consequence of (25), implies the result, because a was arbitrary. The functions
£, defined by (27), give the sharp bounds in (28), and so in (26). O
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