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Abstract

In a previous paper we have determined a generic formula for the polynomial solution families of the well-known
differential equation of hypergeometric type

g ()Y, (X) + 1(x) y, (X) = Ay yu (x) = 0.

In this paper, we give another such formula which enables us to present a generic formula for the values of monic
classical orthogonal polynomials at their boundary points of definition.
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1. Introduction

In previous work [3], we found a generic polynomial solution for the differential equation

a(xX)y, (X) + (X)y, (x) = Anya(x) =0, 6]

where ¢(x) = ax? + bx + c is a polynomial of degree at most 2, 7(x) = dx + e is a polynomial of degree
atmost 1 and 4, =n(n — 1)a + nd is the eigenvalue parameter dependingonn =0, 1,2, ....
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Since we will need this formula in this article, we state it here again. In the following theorem from

3] Pn( d e
a

b e x) denotes the monic polynomial solution of Eq. (1).

2. Theorem

The main differential equation
(ax® + bx + Ayn(x) 4+ (dx +e)y,(x) —n((n— Da+d)y,(x)=0;, ne 7t 2)

has a monic polynomial solution which is represented as

n
13n<adbec x>:Z(Z)G;(cn)(a,b,c’d,e)xk, )
k=0
where
—n 2ae — bd d
G(n)z( 2a )k F k—n, 2b2——4+1_5_n 27b2 = dac ‘
k b+Vb2_4aC a Z—adc/a—2n b+‘/b2_4ac
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Note that
o k
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is the Gauss hypergeometric function [2] and (), = I'(« + k) /I'(«) denotes the Pochhammer symbol.
For a = 0 these identities can be adapted by limit considerations and give (3) with
b2
cd

b k—n K cd — be 1
G (0.b.c.d.e)=lim G{"(a.b.c.d.e)= (—) o | KT T P
a— C

(%)
which is valid for ¢, d # 0, leading to
- d e b\"[eb — cd —n d cd
P, == — ) F|eb—cd|——x——=]. 6
(0 b Cx) (d>( b )nl 1( b? b bz) ©
Fora =b =0 and d # 0 we finally get
n n—1
- d e .= d e e\ - _ 2cd
P, — lim P, — —) F ’ e
(oo el mn (o) = o2 5| G)
(7)

In this note, we intend to obtain another representation for the polynomial solution of the main equation
(2). To reach this goal, we use the general form of the Rodrigues representation of the polynomials

Pn< d e )

a b c
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First, if Eq. (2) is written in self-adjoint form, then a weight function W (x) will be derived that satisfies
Pearson’s differential equation (d/dx)(a(x) W(x)) = 7(x) W(x). In other words, we have

d—2 —b
W(adbec x):exp( ( a)x + (e )dx>. (8)

ax?+bx +c¢
Now, without loss of generality, let us assume that ax?+bx+c= a(x + 01)(x + 0) where

b —b? —4ac b+ Vb? —4ac
0 = —2 and 0p = —2 . 9
a a

Note that in the generic case, —0; and —6, are the boundary points of the underlying interval for the
corresponding orthogonal polynomials. Moreover, if 01 and 6, are finite and equal, then the polynomials
are of the Bessel type and if both 01 and 6, are finite but different from each other, then the polynomials are
of the Jacobi type, whereas if one of these values tends to +00, then the polynomials are of the Laguerre
type, and finally if both values are o0, then the polynomials are of the Hermite type.

But relation (9) implies that (8) is simplified as

d e
W(abc

where R is a constant and

x) = R(x + 0D (x + 02)5, (10)

d 2ae — bd d 2ae — bd
and B =

P e & _faehd
2a 2a+/b? — 4ac 2a 2a+/b? — 4dac

(1)

Relation (10) follows because the logarithmic derivative of the function W*(x) = (x + 01)A(x + 02)3
equals the logarithmic derivative of function (8), and since

u'(x)  v(x)

u(x) - v(x)

< u(x) = Rv(x). (12)

Hence (10) is valid.

On the other hand, it is known that the Rodrigues representation of P, ( d
a

b ¢ . x) can generally be
written as [4, Chapter 1, Section 2]

1
x): -
A+ Ak —Da) W ‘. x)

a b
x)) (13)

n

X
dx”

A/\
Q
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Q

<(ax2 +bx +o)"W
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Therefore if (10) is substituted in (13), then

- d e
P"(abcx

) (@ /dx™)(Ra" (x + 0)" (x + 02)" (x + 01)* (x + 02)®)

RTIEZ! (d + (n + k —2)a)(x + 1) (x + 02)
1 dar

- (n—1+d/a),(x +0)2(x + 0,)° dx"

(x4 0)"™ A (x + 0" 8. (14)

But according to the Leibniz rule

d"(f()g(X) = (n n—
B TR > (k> FP " P ) (15)
k=0
we have
d"((x + 00" (x + 02)"E) "
T =(=D kzz(:) ( k) (=1 = A)p(=n = B), ¢
X (x 4 01" AR (x 4 02)BTE (16)

Hence, (14) is simplified as

- d e
P"(abc

n

X == -_-n — — -
2—-2n-d/a), =0 k 2a 2a~/b? —4dac/ i

x( d 14 2ae — bd )
_n_— —_—
2a 2a~/b* —dac) i
n—k k
( b—vb2—4ac> ( b+vb2—4ac>
x x4+ —— X )

17
2a 2a (n

The above relation is in fact another general representation for the polynomial solution of Eq. (2). Note
that (17) is a universal formula. For instance, after simplification of this formula for n =0, 1, 2, 3 we get

- d e
Po(a b cx)_l

_ d e e
Pl(a b cx>_x+2

132 d e N =x2+2 €+bx+C(d+261)+8(€+b) (18)
a b c d+2a (d+2a)(d + a)

— d e 3 e+ ) c(d+4a)+ (e + b)(e + 2b)

P; X = x°4+3—x 3
a b c d+4a (d +4a)(d + 3a)

n 2c(d 4+ 3a)(e + 2b) + ce(d + 4a) + e(e + b)(e + 2b)
(d +4a)(d + 3a)(d + 2a) ’
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Combining relations (3) and (17), we get straightforwardly

X”: n d+1 2ae — bd d+1+2ae—bd
= k 2a 2a/ « 2a 2a4 Nk
+b—A n—k +b+A k
X X X
2a 2a

n 2 k—n
:(2—2n—d/a)nZ(Z) (bfA)

k=0

2ae — bd d
kon, 2207 4] s
x o F) ( Y Toaa T T ”‘ —) x*, (19)

2—d/a—2n b+4

where 4 = v/b? — 4ac.

Relation (17) can also be represented in hypergeometric form as

B d e o) = (—n —(d/2a) + 1 + (2ae — bd)/(2aA)),(x + 01)"
"\a b c - 2—-2n-d/a),
d L1 2ae — bd
a 2a/ X+ 0
<2k d dac—bd pars (20)
2a 2aA

where 0] and 0, are defined by (9).
This hypergeometric representation can still be simplified. For this purpose, we use the hypergeometric
identity

2 F (

r =DM = (1 ek k 1—q—n
q ?+S>_ @t Z<k)r zFl( 1—p—n

k=0

l) sk @
S

which was used already in [3, formula (1.5)]. If we choose in particular

d 2ae — bd d 2ae — bd Vb? —4ac
p=—n——+1-——\ =07 ————, r=bh -0 =—-,
2a 2a+v/b? — dac 2a  2a+/b? — dac a

b —~b? —4ac

2a 22)

s=1 and fr=x+
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then by (21) relation (20) reads as

- ( d e ) (=1)"(—=n — B),(—n — A),
P, x| =
a b c 2-2n—-d/a),(1+ B),

n A n—k . o
XZ(Z) (5) 2F1< k1+”A B‘l) (x + 0k,
k=0

Using Gauss’s identity

F(a b‘l)_F(C)F(c—a—b)
R e " I'(c —a)[(c — b)

(23) can be further simplified as

d 2ae — bd
(Vb2 —4ac)" (— + —)
p d e )= 2a = 2a+/b% —4ac/,
"\a b c N a*(2 —2n —d/a),
—n n—14d/a —ax —b+ b2 ~4ac
X »F, i—l— 2ae — bd \/zi—k e
2a ' 2ab? — dac b+ — 4dac 24/b* — 4ac
On the other hand, since
5 id e = d e )
P"(ia b Jc x>_P"<a b ¢ x) vi£0
is valid, for 1 = —1, relation (25) can be also brought in the following form:
5 d e (Vb2 —4ac)"((d/2a) — (2ae — bd)/(2a~/b? — 4ac)),
x| =
"\a b c (—a)"(n —1+d/a),

—n n—1+d/a
x o F, d B 2ae — bd
2a  2a+/b? —4ac

ax N b+ Vb2 — dac
Vb2 —dac  2Vb2 —4dac |

3. Values of the classical orthogonal polynomials at the boundary points

S~—

103

(23)

(24)

(25)

(26)

27)

Using our explicit representations for the monic classical orthogonal polynomials of the last section,
we can now compute the generic value of these polynomials at their boundary points of definition, —6;

and —0,, respectively.
If we set in (27)

ax +b—|—vb2—4ac_{0
Vb2 —4ac 2D —4dac  |!

(28)
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then
—b — A/b? —4ac —b 4+ /b? —4ac
X = 5 =—0, and x= > = —0y, (29)
a a

respectively. Therefore we get

F d e | _,\_ (Vb2 —4ac) ((d/2a) — Qae — bd) | (2a~/b? — 4ac)), 30)
! ( a b c 2) B (—a)'(n — 1+d/a), (
and
- < d e ) (Vb% —4ac)"((d/2a) + (2ae — bd)/(2a~/b? — 4ac)),
P, -0 )= . (3D
a b c a"(n — 1 4+d/a),

For example, for the monic Jacobi orthogonal polynomials P,f“’ﬁ ) (x) [5] we have (a,b,c,d,e) =
(-1,0,1, —a — p— 2, —a+ p). In this case, (30) and (31) therefore yield

PP (41) = 2 (x4 1), _ JIT+1+0)l(n+ 1404 p) (32)
n+14+a+p), I'a+DI2n+1+a+p)
POP (1) = (—2)" FtDn  _ (_z)nr(n HIEPI+1+atf) (33)

n+14+a+p), rB+Dr2n+1+oa+p)

Moreover, for the monic Laguerre polynomials i,(f‘) (x) with (a, b, c,d,e)=(0,1,0, —1, «+ 1) we have
ax? + bx + ¢ = x. Therefore just one root, i.e., 0] = 0 is derived. Hence by computing the corresponding
limit one gets

L@ 0) = (—=1)"(1 + 2),,. (34)

On the other hand, since the Hermite polynomials can be written in terms of the Laguerre polynomials
(see, e.g., [1, 22.5.40]), we can also conclude that

n!

0= i

(I+(=D". (35)

Finally, for the Bessel polynomials B,(l‘“) (x)with (a, b, ¢, d, e)=(1, 0, 0, a+2, 2) we have ax2+bx+c=x2.
Consequently, after computing the corresponding limit we get

2}’1

ntita, (36)

B (0) =

Note that the last result follows from our formula although the Bessel polynomials are not orthogonal in
areal interval.
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