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Student’s t-distribution has found various applications in mathematical statistics. One of the main
properties of the t-distribution is to converge to the normal distribution as the number of samples tends
to infinity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution
function with four free parameters and show that it converges to the normal distribution again. We
provide a comprehensive treatment of mathematical properties of this new distribution. Moreover,
since the Fisher F-distribution has a close relationship with the t-distribution, we also introduce a
generalization of the F-distribution and prove that it converges to the chi-square distribution as the
number of samples tends to infinity. Finally, some particular sub-cases of these distributions are
considered.
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1. Introduction

The Pearson differential equation is given as

dW

dx
= dx + e

ax2 + bx + c
W(x), (1)

which is intimately connected with classical orthogonal polynomials and defines their weight
functions W(x), see e.g. [1], and its solution

W(x) = W

(
d e ∣∣∣x

a b c

)
= exp

∫
dx + e

ax2 + bx + c
dx, (2)
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where a, b, c, d, e are all real parameters. There are several special sub-cases of equation (2).
One of them is the Beta distribution, which is usually represented by the integral [2]∫

C

(L1(t))
a(L2(t))

bdt, (3)

where L1(t) and L2(t) are linear functions, a, b are complex numbers and C is an appropri-
ate contour. The Euler and Cauchy integrals [3] are two important sub-classes of Beta-type
integrals which are often used in applied mathematics. The Euler integral is given by∫ b

a

(t − a)c−1(t − b)d−1dt = �(c)�(d)

�(c + d)
(a + b)c+d−1

(Re c > 0, Re d > 0, a > 0, b > 0), (4)

while the Cauchy integral is represented by the formula

1

2π

∫ ∞

−∞
dt

(a + it)c(b − it)d
= �(c + d − 1)

�(c)�(d)
(a + b)1−(c+d), (5)

in which i = √−1, Re (c + d) > 1, Re a > 0 and Re b > 0. Note that in both relations (4)
and (5), �(a) = ∫ ∞

0 xa−1e−xdx denotes the Gamma function.
The relation (5) is a suitable tool to compute some different-looking definite integrals. For

this purpose, we use the relation

(
a − ib

a + ib

)iq

= exp

(
2q arctan

b

a

)
(a, b, q ∈ R) (6)

which rewrites the complex left-hand side in terms of the real right-hand side. Consequently,

(b − it)p+iq(b + it)p−iq = (b2 + t2)p exp

(
2q arctan

t

b

)
. (7)

Now if equation (7) is substituted, then the integral (5) changes towards

1

2π

∫ ∞

−∞
(b2 + t2)p exp

(
2q arctan

t

b

)
dt = �(−2p − 1)

�(−p + iq)�(−p − iq)
(2b)2p+1. (8)

The above integral plays a key role to introduce a generalization of the t-distribution.

2. A generalization of the t-distribution

The Student t-distribution [4, 5] having the probability density function (pdf)

T (t, m) = �((m + 1)/2)√
mπ�(m/2)

(
1 + t2

m

)−((m+1)/2)

(−∞ < t < ∞, m ∈ N) (9)

is perhaps one of the most important distributions in the sampling problems of normal popu-
lations. According to a theorem in mathematical statistics, if X̄ and S2 are, respectively, the
mean value and variance of a stochastic sample with the size m of a normal population having
the expected value µ and variance σ 2, then the random variable T = (X̄ − µ)/(S/

√
m) has

the probability density function (9) with (m − 1) degrees of freedom [5]. This theorem is used
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in the test of hypotheses and interval estimation theory when the size of the sample is small,
for instance less than 30.

Now, by using equation (8), one can extend the pdf of the t-distribution. To meet this goal,
we substitute t → t/

√
m, b = 1, p = −((m + 1)/2) and q → q/2 in equation (8). This yields

∫ ∞

−∞

(
1 + t2

m

)−((m+1)/2)

exp

(
q arctan

t√
m

)
dt =

√
m21−m�(m)π

�((1 + m + iq)/2)�((1 + m − iq)/2)
.

(10)
Since the right-hand side of equation (10) is an even function with respect to the variable q,
we take a linear combination and get accordingly

∫ ∞

−∞

(
1 + t2

m

)−((m+1)/2) (
λ1 exp

(
q arctan

t√
m

)
+ λ2 exp

(
−q arctan

t√
m

))
dt

= (λ1 + λ2)
√

m 21−m�(m)π

�((1 + m + iq)/2)�((1 + m − iq)/2)
. (11)

Therefore, the above integral can be used to generalize distribution (9) by

T (t, m, q, λ1, λ2) = �((1 + m + iq)/2)�((1 + m − iq)/2)

(λ1 + λ2)
√

m 21−m�(m)π

(
1 + t2

m

)−((m+1)/2)

×
(

λ1 exp

(
q arctan

t√
m

)
+ λ2 exp

(
−q arctan

t√
m

))
(12)

where −∞ < t < ∞, m ∈ N, q is a complex number and λ1, λ2 ≥ 0.
Note that λ1, λ2 ≥ 0 is a necessary condition, because the probability density function must

always be positive. Also note that the normalization constant

�((1 + m + iq)/2)�((1 + m − iq)/2)

(λ1 + λ2)
√

m 21−m�(m)π

of equation (12) is real, because the corresponding integrand is a real function on (−∞, ∞).
It is clear that for q = 0 in equation (12), the usual t-distribution is derived. Moreover, for
q = 0 the normalization constant of distribution (12) is equal to the normalization constant of
the t-distribution. This fact can be proved by applying Legendre’s duplication formula [3], i.e.

�
( z

2

)
�

(
z + 1

2

)
=

√
π

2z−1
�(z). (13)

But, according to one of the basic theorems in sampling theory, T (t, m) converges to the pdf
of the standard normal distribution N(t, 0, 1) as m → ∞ [2, 5], that is

lim
m→∞ T (t, m) = N(t, 0, 1). (14)

Here, we intend to show that this matter is also valid for the generalized distribution
T (t, m, q, λ1, λ2). To prove this claim, we use the dominated convergence theorem (DCT) [6]
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to the real sequence of functions

S(1)
m (t, q, λ1, λ2) =

(
1 + t2

m

)−((m+1)/2) (
λ1 exp

(
q arctan

t√
m

)

+ λ2 exp

(
−q arctan

t√
m

))
. (15)

For every m ∈ N, it is not difficult to see that

|S(1)
m (t, q, λ1, λ2)| ≤ (λ1 + λ2) exp

(
|q|π

2

)
(t ∈ R). (16)

Therefore, we have

lim
m→∞

(
1 + t2

m

)−((m+1)/2) (
λ1 exp

(
q arctan

t√
m

)
+ λ2 exp

(
−q arctan

t√
m

))

= (λ1 + λ2) exp

(
− t2

2

)
. (17)

The DCT states that if for a continuous and integrable function g(x), we have |fm(x)| ≤ g(x),
then

lim
m→∞

∫ b

a

fm(x)dx =
∫ b

a

lim
m→∞ fm(x)dx. (18)

Considering the limit relation (17), we therefore obtain

lim
m→∞ T (t, m, q, λ1, λ2)

= limm→∞(1 + t2/m)−((m+1)/2)(λ1 exp(q arctan(t/
√

m)) + λ2 exp(−q arctan(t/
√

m)))∫ ∞
−∞ limm→∞(1 + t2/m)−((m+1)/2)(λ1 exp(q arctan(t/

√
m)) + λ2 exp(−q arctan(t/

√
m)))dt

= (λ1 + λ2) exp(−t2/2)∫ ∞
−∞(λ1 + λ2) exp(−t2/2)dt

(19)

= 1√
2π

exp

(
−1

2
t2

)
= N(t, 0, 1).

Remark 1 Taking the limit on both sides of (11) as m → ∞, the following asymptotic relation
is obtained for the Gamma function

lim
x→∞

�(x + iy)�(x − iy)

2−(2x−1)
√

2x − 1�(2x − 1)
= 2√

2π
. (20)

To compute the expected value of the distribution given by the pdf (12), it is sufficient to
consider the definite integral

∫ ∞

−∞
t

(
1 + t2

m

)−((m+1)/2)

exp

(
q arctan

t√
m

)
dt

=
√

m 21−m�(m)π

�((1 + m + iq)/2)�((1 + m − iq)/2)

(
q
√

m

m − 1

)
, (21)
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which gives the expected value of (12) as

E[T ] =
(

λ1 − λ2

λ1 + λ2

)
q
√

m

m − 1
. (22)

In contrast, as E[1 + T 2/m] can be easily computed, after some calculations, we get for the
variance measure of (12)

Var[T ] = E[T 2] − E2[T ] = m(q2 + m − 1)

(m − 2)(m − 1)
−

(
λ1 − λ2

λ1 + λ2

)2 (
mq2

(m − 1)2

)
. (23)

It is valuable to point out that as expected, q = 0 in equations (22) and (23) gives the expected
value and variance of the usual t-distribution, respectively.

It is known that the t-distribution has a close relationship with the Fisher F-distribution [1],
defined by its pdf

F(x, m, k) = �((m + k)/2)(k/m)k/2

�(k/2)�(m/2)
xk/2−1

(
1 + k

m
x

)−((m+k)/2)

(m, k ∈ N, 0 < x < ∞),

(24)
where x = t2 and k = 1 in equation (24). In other words, we have

T (t, m) = F(t2, m, 1) (25)

By referring to the above relation and the fact that the t-distribution was generalized by
relation (12), it is now natural to generalize the pdf of the F-distribution (24) as follows

F(x, m, k, q, λ1, λ2) = Bxk/2−1

(
1 + k

m
x

)−((m+k)/2)
(

λ1 exp

(
q arctan

√
k

m
x

)

+ λ2 exp

(
−q arctan

√
k

m
x

))
, (26a)

where

1

B
=

∫ ∞

0
xk/2−1

(
1 + k

m
x

)−((m+k)/2)
(

λ1 exp

(
q arctan

√
k

m
x

)

+ λ2 exp

(
−q arctan

√
k

m
x

))
dx. (26b)

For q = 0, equation (26a) is the usual F-distribution defined in equation (24).
According to the following theorem, the generalized function (26) converges to a special

case of the Gamma distribution [5], defined by

G(x, α, β) = β−α

�(α)
xα−1 exp

(−x

β

)
(α, β > 0, 0 < x < ∞). (27)

THEOREM 1 If the Gamma distribution is given by definition (27), then we have

lim
m→∞ F(x, m, k, q, λ1, λ2) = G

(
x, α = k

2
, β = 2

)
= χ2

k ,

where χ2
k denotes the pdf of the chi-square distribution.
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Proof Let us define the sequence

S(2)
m (x, k, q, λ1, λ2) = xk/2−1

(
1 + k

m
x

)−((m+k)/2)
(

λ1 exp

(
q arctan

√
k

m
x

)

+ λ2 exp

(
−q arctan

√
k

m
x

))
.

It is easy to show that

|S(2)
m (x, k, q, λ1, λ2)| ≤ (λ1 + λ2)x

(k/2)−1 exp
(
|q|π

2

)
(x ∈ [0, ∞), k ∈ N), (28)

and

lim
m→∞ S(2)

m (x, k, q, λ1, λ2) = (λ1 + λ2)x
(k/2)−1 exp(−x/2). (29)

Therefore, according to the DCT, we have

lim
m→∞ F(x, m, k, q, λ1, λ2) = limm→∞ S(2)

m (x, k, q, λ1, λ2)∫ ∞
0 limm→∞ S

(2)
m (x, k, q, λ1, λ2)dx

= x(k/2)−1 exp(−x/2)∫ ∞
0 x(k/2)−1 exp(−x/2)dx

= G

(
x,

k

2
, 2

)
. (30)

Moreover, it is not difficult to show that

F(t2, m, 1, q, λ1, λ2) = T (t, m, q, λ1, λ2). (31)

�

3. Some particular sub-cases of the generalized t (and F) distribution

In this section, we will study some symmetric and asymmetric sub-cases of the generalized
distributions (12) and (26).

3.1 A symmetric generalization of the t-distribution, the case q = ib and λ1 = λ2 = 1/2

If the special case q = ib and λ1 = λ2 = 1/2 is considered in (12), then

T

(
t, m, ib,

1

2
,

1

2

)
= TS(t, m, b) = �((1 + m + b)/2)�((1 + m − b)/2)√

m 21−m�(m)π

×
(

1 + t2

m

)−((m+1)/2)

cos

(
b arctan

t√
m

)
(32)

is a symmetric generalization of the ordinary t-distribution in which −1 ≤ b ≤ 1.
The usual pdf of the t-distribution is obviously derived by b = 0 in (32). Note that according

to the Legendre duplication formula we reach the normalization constant of the t-distribution
if b = 0 is considered in equation (32). In other words, we have

b = 0 =⇒ �2((1 + m)/2)√
m 21−m�(m)π

= �((1 + m)/2)√
mπ�(m/2)

. (33)

Also note that the parameter b in the generalized distribution (32) must belong to
[−1, 1], because the pdf must always be positive and, therefore, we ought to have
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cos(b arctan(t/
√

m)) ≥ 0. In contrast, as for −(π/2) ≤ θ ≤ π/2 we have cos θ ≥ 0, therefore,
to prove cos(b arctan(t/

√
m)) ≥ 0, it is sufficient to prove that

−1 ≤ b ≤ 1 ⇐⇒ b arctan
t√
m

⊆
[
−π

2
,
π

2

]
(t ∈ R, m ∈ N). (34)

For this purpose, let us consider the sequence Um(t) = arctan t/
√

m. We have

U ′
m(t) =

(
1√
m

) / (
1 + t2

m

)
> 0 =⇒ [min Um(t), max Um(t)]

= [Um(−∞), Um(∞)] =
[
−π

2
,
π

2

]
. (35)

Now, if we demand the sequence bUm(t) = b arctan t/
√

m to belong to [−π/2, π/2], it is
clear that we must have |b| ≤ 1, which proves relation (34). Figures 1 and 2 clarify this matter
for b ∈ [−1, 1] and b /∈ [−1, 1] in the interval (−10, 10).

Figure 1 shows the pdf TS(t, 4, 1/2) with normalization constant 35
√

2/128 and figure 2
shows the non-positive function TS(t, 4, 3) = (4/π)(1 + t2/4)−5/2 cos(3 arctan(t/2)) in the
interval (−10, 10). As these figures show, the generalized distribution (32) is symmetric, i.e.

TS(−t, m, b) = TS(t, m, b) (t ∈ R). (36)

Moreover, according to equations (22) and (23), the expected value and variance of
distribution (32) take the forms

E[t] = 0, Var[t] = m(m − 1 − b2)

(m − 1)(m − 2)
. (37)

Clearly, b = 0 in these relations gives the expected value and variance of the t-distribution.

THEOREM 2 TS(t, m, q) converges to N(t, 0, 1) as m → ∞.

Figure 1. b = 1/2, m = 4.
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Figure 2. b = 3, m = 4.

Proof If the sequence S(3)
m (t, b) = cos(b arctan t/

√
m)(1 + t2/m)−((m+1)/2) is considered,

then one can show that

|S(3)
m (t, b)| =

∣∣∣∣cos

(
b arctan

t√
m

)∣∣∣∣ ·
∣∣∣∣∣
(

1 + t2

m

)−((m+1)/2)
∣∣∣∣∣ ≤ 1 (t ∈ R). (38)

Consequently, we have

lim
m→∞ TS(t, m, b) = lim

m→∞
cos(b arctan(t/

√
m))(1 + t2/m)−((m+1)/2)∫ ∞

−∞ cos(b arctan(t/
√

m))(1 + t2/m)−((m+1)/2)dt

= limm→∞ cos(b arctan(t/
√

m))(1 + t2/m)−((m+1)/2)∫ ∞
−∞ limm→∞ cos(b arctan(t/

√
m))(1 + t2/m)−((m+1)/2)dt

= exp(−t2/2)∫ ∞
−∞ exp(−t2/2)dt

= N(t, 0, 1).

(39)

By referring to equation (26a), we can now define the generalized F-distribution corresponding
to the first given sub-case as follows

F

(
x, m, k, ib,

1

2
,

1

2

)
= F1(x, m, k, b) = Bx(k/2)−1

(
1 + k

m
x

)−((m+k)/2)

× cos

(
b arctan

√
k

m
x

)
(−1 ≤ b ≤ 1), (40a)

where

1

B
=

∫ ∞

0
x(k/2)−1

(
1 + k

m
x

)−((m+k)/2)

cos

(
b arctan

√
k

m
x

)
dx

= 2
(m

k

)k/2
∫ π/2

0
sin(k−1) θ cos(m−1) θ cos(bθ)dθ. (40b)

�
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THEOREM 3 F1(x, m, k, b) converges to the chi-square distribution as m → ∞.

Proof We define the sequence S(4)
m (x, k, q) = xk/2−1(1 + (k/m) x)−((m+k)/2) cos(b arctan√

k/m x ) to get

|S(4)
m (x, k, b)| ≤ x(k/2)−1 (x ∈ [0, ∞), k ∈ N, |b| < 1). (41)

Hence, according to DCT, we find out that

lim
m→∞ F1(x, m, k, b) = lim

m→∞
S(4)

m (x, k, b)∫ ∞
0 S

(4)
m (x, k, b)dx

= x(k/2)−1 exp(−x/2)∫ ∞
0 x(k/2)−1 exp(−x/2)dx

= G

(
x,

k

2
, 2

)
. (42)

It is not difficult to verify that the generalized distributions TS(t, m, b) and F1(x, m, k, b) are
related with each other as follows

F1(t
2, m, 1, b) = TS(t, m, b). (43)

�

Remark 2 Here is a good position to mention that in ref. [7], a class of orthogonal polynomials
is studied, whose weight function [8] corresponds to the ordinary t-distribution. The related
polynomials are defined as

I (p)
n (x) = n!

�n/2�∑
k=0

(−1)k
(

p − 1
n − k

) (
n − k

k

)
(2x)n−2k. (44a)

and satisfy the orthogonality relation∫ ∞

−∞
(1 + x2)−(p−1/2)I (p)

n (x)I (p)
m (x)dx

=
(

n!22n−1√π�2(p)�(2p − 2n)

(p − n − 1)�(p − n)�(p − n + 1/2)�(2p − n − 1)

)
δn,m (44b)

where m, n = 0, 1, 2, . . . , N < p − 1 and δn,m =
{

0 if n 
= m

1 if n = m
.

For n = m = 0 in equation (44b), an integral is derived that corresponds to the t-distribution.
Furthermore, the mentioned comment holds for the F-distribution. In [7], a sequence of
orthogonal polynomials is studied which is defined by

M(p,q)
n (x) = (−1)nn!

n∑
k=0

(
p − (n + 1)

k

) (
q + n

n − k

)
(−x)k, (45)

and satisfies the orthogonality relation∫ ∞

0

xq

(1 + x)p+q
M(p,q)

n (x)M(p,q)
m (x)dx =

(
n!(p − (n + 1))!(q + n)!

(p − (2n + 1))(p + q − (n + 1))!
)

δn,m

(46)
where m, n = 0, 1, 2, . . . , N < p − (1/2), q > −1.

Clearly, the weight function of integral (46) corresponds to the usual F-distribution in the
case n = m = 0.
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3.2 An asymmetric generalization of the t-distribution, the case λ2 = 0

From the orthogonality relations (44b) and (46), it can be concluded that the category of
Pearson distributions must have a related class of orthogonal polynomials. In ref. [9], a class
of orthogonal polynomials is studied, whose weight function is a specific case of (2) and is
represented by

W(p,q)
n (x; a, b, c, d) = ((ax + b)2 + (cx + d)2)−p exp

(
q arctan

ax + b

cx + d

)
(−∞ < x < ∞),

(47)
where a, b, c, d, p, q are all real parameters. This function is a sub-case of the Pearson
distribution (2), because the logarithmic derivative of function (47) is a rational function.
Hence, equation (47) is a special case of the Pearson distribution family. For convenience, we
chose a particular sub-case of (47) in ref. [9] to generalize the usual t-distribution.

If a = 1/
√

m, b = 0, c = 0, d = 1 and p = −((m + 1)/2) (m ∈ N) is selected in
equation (47), one gets

W(−(m+1)/2,q)

(
t; 1√

m
, 0, 0, 1

)
=

(
1+ t2

m

)−((m+1)/2)

exp

(
q arctan

t√
m

)
(m ∈ N, q ∈ R).

(48)
As ∫ ∞

−∞

(
1 + t2

m

)−((m+1)/2)

exp

(
q arctan

t√
m

)
dt = √

m

∫ π/2

−π/2
eqθ cos(m−1) θ dθ, (49)

we have∫ π/2

−π/2
eqθ cos(m−1) θ dθ = (m − 1)!(q − (1 + (−1)m/2)(q − 1))(eqπ/2 + (−1)me−qπ/2)∏�(m−1)/2�

k=0 (q2 + (m − 2k − 1)2)
.

(50)
Hence, an asymmetric generalization of the t-distribution may be defined as

TA(t, m, q) = K

(
1+ t2

m

)−((m+1))/2

exp

(
q arctan

t√
m

)
(−∞ < t < ∞, m ∈ N, q ∈ R)

(51a)
such that

K =
∏�(m−1)/2�

k=0 (q2 + (m − 2k − 1)2)√
m(m − 1)!(q − (1 + (−1)m/2)(q − 1))(eqπ/2 + (−1)me−qπ/2)

. (51b)

The distribution (51a) with normalization constant given by (51b) was defined in ref. [9] based
on this particular approach. But here we can modify and simplify it. For this task, we set λ2 = 0
in (12), and get

TA(t, m, q) = �((1 + m + iq)/2)�((1 + m − iq)/2)√
m 21−m�(m)π

(
1 + t2

m

)−((m+1)/2)

× exp

(
q arctan

t√
m

)
. (52a)

This is in fact an explicit representation of the asymmetric generalization of the t-distribution.
For this distribution, we clearly have

TA(−t, m, q) = TA(t, m, −q). (52b)

The asymmetry is also shown by figures 3 and 4.
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Figure 3. q = 1, m = 4.

According to equations (51a) and (51b), the explicit definitions of the two mentioned figures
have, respectively, the forms

From figure 3,

TA(t, 4, 1) = 5

6 cosh(π/2)

(
1 + t2

4

)−5/2

earctan(t/2)

From figure 4,

TA(t, 3, 1) = 5
√

3

12 sinh(π/2)

(
1 + t2

3

)−2

earctan(t/
√

3)

The following statements (A1–A5) collect the properties of the asymmetric distribution (52).

Figure 4. q = 1, m = 3.
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(A1) The expected value and variance of (52) are, respectively, represented by

E[t] = q
√

m

m − 1
, Var[t] = m(q2 + (m − 1)2)

(m − 2)(m − 1)2
, (53)

q = 0 in these relations gives the expected value and variance of the t-distribution.
(A2) TA(t, m, q) converges to N(t, 0, 1) as m → ∞.

The proof is similar to the first case if one chooses λ2 = 0 and λ1 = 1 in the defined
sequence S(1)

m (t, q, λ1, λ2).
(A3) By the definition (26) and considering the case λ2 = 0, we can define

F(x, m, k, q, λ1, 0) = F2(x, m, k, q) = D xk/2−1

(
1 + k

m
x

)−((m+k)/2)

× exp

(
q arctan

√
k

m
x

)
(q ∈ R, m, k ∈ N, 0 < x < ∞),

(54a)

where

1

D
=

∫ ∞

0
xk/2−1

(
1 + k

m
x

)−((m+k)/2)

exp

(
q arctan

√
k

m
x

)
dx

= 2
(m

k

)k/2
∫ π/2

0
sin(k−1) θ cos(m−1) θ eqθ dθ. (54b)

(A4) F2(x, m, k, q) converges to the chi-square distribution as m → ∞.
The proof is similar to the proof of Theorem 1 when λ2 = 0 and λ1 = 1.

(A5) The distributions F2(x, m, k, q) and TA(t, m, q) are related to each other by

F2(t
2, m, 1, q) = TA(t, m, q). (55)

Remark 3 There is another symmetric generalization of the t-distribution when we set λ1 =
λ2 in definition (12). Its pdf is given as

T (−t, m, q, λ1, λ1) = T (t, m, q, λ1, λ1) = �((1 + m + iq)/2)�((1 + m − iq)/2)√
m 21−m�(m)π

×
(

1 + t2

m

)−(m+1)/2

cosh

(
q arctan

t√
m

)
. (56)

Therefore, to summarize the last section, we in fact considered the three following particular
sub-cases of the general distribution (12),

(a) q = ib and λ1 = λ2 = 1/2; symmetric case
(b) λ2 = 0; asymmetric case
(c) λ1 = λ2; symmetric case
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