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Abstract

An alternating sign binomial coefficient identity—available com-
putationally from both a mainstream and specialist algebraic
software package, and also as a special case of an analytic result
due to P. Kirschenhofer—is proven in a novel way via integra-
tion. The method generates another, more complex, identity of
the same type in a similar way and can be extended in principle
to develop further results.
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Introduction

Consider the sum
n∑
k=0

(−1)k

(k +m)2

(
n
k

)
(1)

for m ≥ 1, n ≥ 0 both integer. When converted to the hypergeometric
series (in usual notation)

m−2
3F2

(
m,m,−n

1 +m, 1 +m

∣∣∣∣ 1
)

(2)

it cannot be evaluated to a closed form (involving elementary functions)
via standard hypergeometric results, and a combination of Zeilberger’s and
Petkovšek’s algorithms (implemented by the author W.A.K. using his spe-
cialist software package “hsum6.mpl”,1 see [1]) confirms this. The system
“Mathematica” gives as output for the sum (1) the expression

Γ(m)Γ(n+ 1)
Γ(m+ n+ 1)

[ψ0(m+ n+ 1)− ψ0(m)] (3)

in terms of the Gamma function Γ(z) and a particular Polygamma function
which is defined generally as

ψn(z) =
dn+1

dzn+1
(ln[Γ(z)]) , n ≥ 0, (4)

for complex z. Now,

ψn(z) =
dn

dzn

(
d

dz
(ln [Γ(z)])

)
=

dn

dzn

(
Γ′(z)
Γ(z)

)
=
dnψ0(z)
dzn

, (5)

where ψ0(z) = Γ′(z)/Γ(z) is termed the Digamma (or Psi) function, and it
can be shown that, for integral p ≥ 2 (ψ0(1) = −γ),

ψ0(p) = −γ +
p−1∑
k=1

1
k
, (6)

with γ the Euler-Mascheroni constant. Hence, noting that

Γ(m)Γ(n+ 1)
Γ(m+ n+ 1)

=
1

m

(
m+ n
n

) (7)

1Visit the site http://www.mathematik.uni-kassel.de/∼koepf/Publikationen
for more information.



and, by (6),

ψ0(m+ n+ 1)− ψ0(m) =
m+n∑
k=m

1
k
, (8)

we arrive at the following identity which does not appear in Gould’s well
known listing [2]:

Identity I For integer m ≥ 1, n ≥ 0,

m

(
m+ n
n

) n∑
k=0

(−1)k

(k +m)2

(
n
k

)
=
m+n∑
k=m

1
k
.

In 1996, Peter Kirschenhofer published a paper [3] in which he considered
alternating sums of type

N∑
k=a

(−1)kf(k)
(
N
k

)
, 0 ≤ a ≤ N, (9)

of which (1) describes a special case. Corollary 2.2 therein (p.4) states that,
for K,m positive integers,

K(m− 1)!
(
N +K
K

) N∑
k=0

(−1)k

(k +K)m

(
N
k

)
= Bm−1

(
. . . , (i− 1)!

(
H

(i)
N+K −H

(i)
K−1

)
, . . .

)
, (10)

where H(i)
r =

∑r
k=1 k

−i is a Harmonic number of order i and Bm−1 is a
Bell polynomial. For L ≥ 1, then writing xL = {x1, . . . , xi, . . . , xL} the
Bell polynomials B0 = 1, B1(x1), B2(x2), . . . , appearing in (10) are among
those generated according to the equation

∞∑
n=0

Bn(x)
tn

n!
= exp

( ∞∑
k=1

xk
tk

k!

)
. (11)

Kirschenhofer denotes by Bm(. . . , xi, . . .) the particular m-variate polyno-
mial Bm(x1, . . . , xi, . . . , xm) = Bm(xm), where, explicitly, B1(x1) = x1,
B2(x1, x2) = x2

1 + x2, B3(x1, x2, x3) = x3
1 + 3x1x2 + x3, etc. Equation (10)

has as its r.h.s. a Bell polynomial whose ith variable (of m− 1 in total) is
a linear combination of ith order Harmonic numbers, and recovers imme-
diately Identity I for m = 2 with n,m then replacing N,K.

Noting that the traditional method of dealing with sums of the form (9)



(which are said to arise frequently in connection with the so called “average-
case” analysis of algorithms and data structures) is through complex con-
tour integration, Kirschenhofer derived some powerful summation formulae
from an adept manipulation of generating functions. In this paper we first
present a new proof of Identity I via integration—more specifically, by treat-
ing an integral in two distinct ways. To this extent the technique echoes in
style that of Larcombe et al. [4] in establishing the simpler result

n∑
k=1

(−1)k−1

k

(
n
k

)
=

n∑
k=1

1
k

= H(1)
n (12)

to which, we remark here (this observation was not made in [4]), Proposition
2.1 of [3, p.2] contracts upon setting m = 1, N = n and K = 0. Before
detailing this proof, we mention a quick computer-based confirmation of
Identity I which is typical of a modern day approach to the validation of
such a result. Denoting the r.h.s. sum as

∑m+n
k=m

1
k = R1(m,n), it is a trivial

matter to write down the inhomogeneous recurrence (w.r.t. n)

1 = (m+ n+ 1)[R1(m,n+ 1)−R1(m,n)] (13)

satisfied by it. Replacing n with n+ 1 and combining the result with (13)
yields the homogeneous recurrence

0 = (m+ n+ 2)R1(m,n+ 2)

− [2(m+ n) + 3]R1(m,n+ 1) + (m+ n+ 1)R1(m,n) (14)

which Zeilberger’s algorithm, when executed computationally, generates for
the l.h.s. expression L1(m,n) = m

(
m+n
n

)∑n
k=0[(−1)k/(k+m)2]

(
n
k

)
also; the

identity is established after checking the initial conditions L1(m, 0) = 1
m =

R1(m, 0) and L1(m, 1) = 2m+1
m(m+1) = R1(m, 1).

Proof of Identity I

Define the integral

I(m,n) =
∫ ∞

0

xe−mx(1− e−x)n dx (I1)

for m,n > 0. Integrating by parts gives2

I(m,n) = − 1
m2

[
(1 +mx)e−mx(1− e−x)n

]∞
0

2Observe that, given m,n > 0, the expression evaluated at 0 and ∞ vanishes at each
separate limit.



+
n

m2

∫ ∞
0

(1 +mx)e−(m+1)x(1− e−x)n−1 dx

=
n

m2

∫ ∞
0

(1 +mx)e−(m+1)x(1− e−x)n−1 dx

=
n

m
I(m+ 1, n− 1)

+
n

m2

∫ ∞
0

e−(m+1)x(1− e−x)n−1 dx. (I2)

Now, applying the substitution t(x) = e−x,∫ ∞
0

e−(m+1)x(1− e−x)n−1 dx =
∫ 1

0

tm(1− t)n−1 dt

=
Γ(m+ 1)Γ(n)
Γ(m+ n+ 1)

, (I3)

and (I2) becomes the recurrence

I(m,n) =
n

m
I(m+ 1, n− 1) +

m!n!
m2(m+ n)!

(I4)

that drives this part of the proof. In the first instance, we use (I4) to write

I(m+ 1, n− 1) =
n− 1
m+ 1

I(m+ 2, n− 2) +
m!(n− 1)!

(m+ 1)(m+ n)!
, (I5)

which, when back-substituted into it, gives

I(m,n) =
n(n− 1)
m(m+ 1)

I(m+ 2, n− 2)

+
(

1
m

+
1

m+ 1

)
m!n!

m(m+ n)!
. (I6)

In a likewise fashion,

I(m+ 2, n− 2) =
n− 2
m+ 2

I(m+ 3, n− 3) +
(m+ 1)!(n− 2)!
(m+ 2)(m+ n)!

(I7)

from (I4), and so (I6) reads

I(m,n) =
n(n− 1)(n− 2)
m(m+ 1)(m+ 2)

I(m+ 3, n− 3)

+
(

1
m

+
1

m+ 1
+

1
m+ 2

)
m!n!

m(m+ n)!
. (I8)



Continuing this process a further n− 3 times, it is found that

I(m,n) =
n!

m(m+ 1)(m+ 2) · · · (m+ n− 1)
I(m+ n, 0)

+
(

1
m

+
1

m+ 1
+ · · ·+ 1

m+ n− 1

)
m!n!

m(m+ n)!
, (I9)

which yields (noting that I(m+ n, 0) = 1/(m+ n)2), after a little manipu-
lation,

I(m,n) =
(

1
m

+
1

m+ 1
+ · · ·+ 1

m+ n

)
m!n!

m(m+ n)!

=
1
m

(
m+ n
n

)−1 m+n∑
k=m

1
k
, m > 0, n ≥ 0; (I10)

the result holds at n = 0, where both sides are 1
m2 .

The remainder of the proof is elementary. Expanding (1−e−x)n binomially
as

(1− e−x)n =
n∑
k=0

(−1)k
(
n
k

)
e−kx, n ≥ 0, (I11)

then, from the definition (I1) of I(m,n),

I(m,n) =
∫ ∞

0

xe−mx
n∑
k=0

(−1)k
(
n
k

)
e−kx dx

=
n∑
k=0

(−1)k
(
n
k

)∫ ∞
0

xe−(k+m)x dx

=
n∑
k=0

(−1)k

(k +m)2

(
n
k

)
, m > 0, n ≥ 0. (I12)

Equating I(m,n) as described in (I10) and (I12), the proof is complete.2

We now state another identity of the same type as Identity I, and out-
line its proof by means of the approach seen above, noting that once again
the result is available from (10) due to Kirschenhofer with N = n, K = m,
after setting m = 3.

Identity II For integer m ≥ 1, n ≥ 0,

2m
(
m+ n
n

) n∑
k=0

(−1)k

(k +m)3

(
n
k

)
=

(
m+n∑
k=m

1
k

)2

+
m+n∑
k=m

1
k2
.



Proof of Identity II

Consider, for m,n > 0, the integral

J(m,n) =
∫ ∞

0

x2e−mx(1− e−x)n dx

=
n

m

∫ ∞
0

x2e−(m+1)x(1− e−x)n−1 dx

+
2n
m2

∫ ∞
0

xe−(m+1)x(1− e−x)n−1 dx

+
2n
m3

∫ ∞
0

e−(m+1)x(1− e−x)n−1 dx

=
n

m
J(m+ 1, n− 1) +

2n
m2

I(m+ 1, n− 1)

+
2n
m3

Γ(m+ 1)Γ(n)
Γ(m+ n+ 1)

, (II1)

having integrated by parts as appropriate and deployed (I3). Using (I10),
the last two r.h.s. terms of (II1) combine to give

J(m,n) =
n

m
J(m+ 1, n− 1) +

2m!n!
m2(m+ n)!

m+n∑
k=m

1
k
, (II2)

which, when applied n− 1 times (as in the manner of the proof of Identity
I), leads eventually to

J(m,n) =
2
m

(
m+ n
n

)−1 m+n∑
k=m

1
k

m+n∑
j=k

1
j

(II3)

for m > 0, n ≥ 0. By the previous expansion (I11) of (1− e−x)n, then

J(m,n) = 2
n∑
k=0

(−1)k

(k +m)3

(
n
k

)
(II4)

also (m > 0, n ≥ 0), and, observing that
m+n∑
k=m

1
k

m+n∑
j=k

1
j

=
m+n∑
k=m

1
k2

+
m+n−1∑
k=m

1
k

m+n∑
j=k+1

1
j

=
m+n∑
k=m

1
k2

+
1
2

( m+n∑
k=m

1
k

)2

−
m+n∑
k=m

1
k2


=

1
2

( m+n∑
k=m

1
k

)2

+
m+n∑
k=m

1
k2

 , (II5)



equating J(m,n) in (II3) and (II4) establishes Identity II.2

We should remark that, so far as a computer verification is concerned,
Zeilberger’s algorithm within hsum6.mpl generates the third order (homo-
geneous) recurrence

0 = (m+ n+ 3)2L2(m,n+ 3)

− [3(m2 + n2) + 6mn+ 15(m+ n) + 19]L2(m,n+ 2)

+ 3(m+ n+ 2)2L2(m,n+ 1)

− (m+ n+ 1)(m+ n+ 2)L2(m,n) (15)

easily for the l.h.s. L2(m,n) = 2m
(
m+n
n

)∑n
k=0[(−1)k/(k+m)3]

(
n
k

)
of Iden-

tity II. The computational route to showing that R2(m,n) = (
∑m+n
k=m

1
k )2 +∑m+n

k=m
1
k2 satisfies a recursion which is consistent with (15) is, however,

a lengthy one whose details are omitted here (the procedure is outlined
in a footnote below3). Having done this, it remains but to check that
L2(m,n) = R2(m,n) for the six values n = 0, . . . , 5.

To finish, we highlight an alternative means to obtain Identities I,II us-
ing a result from Gould. Identity Z.5 on p.82 of [2] states that, for any
polynomial f(x) in x of degree ≤ n,

f(x+ y) = y

(
y + n
n

) n∑
k=0

(−1)k
f(x− k)
y + k

(
n
k

)
. (16)

Based on a special case of this, we show how Identity I is derived in the
Appendix and leave the proof of Identity II from it as a reader exercise.

Remark For completeness we note that, whilst m is restricted to positive
integer values in Identities I,II, it would appear from inspection that both
are in fact valid for all complex m 6= 0,−1,−2, . . . ,−n (as indeed it seems
(10) holds for complex K excepting these same values).4 Empirical numeric
investigation conducted by the authors supports this statement.

3The actual homogeneous recursion for R2(m,n) that, given its representation in
terms of Harmonic numbers, can be computed using linear algebra is a complex sixth

order one of the form 0 =
∑6

i=0
fi(m,n)R2(m,n + i) = F (m,n), say. In order to

demonstrate the compatibility of the functions L2(m,n) and R2(m,n) it is sufficient
to substitute (15) into F (m,n) iteratively to deduce zero after simplification. This
corresponds to the fact that the r.h.s. of (15), considered as a recurrence operator
polynomial, is a non-commutative divisor of the operator F (m,n); the precise calcula-
tions can be downloaded as a “Maple” worksheet from http://www.mathematik.uni-
kassel.de/∼koepf/LFK2002.mws, which also includes a computer validation of Iden-
tity I.

4The same may also be said for equations (A1),(A5) of the Appendix, which, being
themselves particular instances of (10), are identities of a similar type.



Summary

The integration technique employed here to prove Identities I,II is interest-
ing, and can be adopted to produce further results of a similar nature by
raising the integer power of x accordingly in the initial integral to be de-
veloped (we have seen the powers 1 and 2 associated with I(m,n), J(m,n),
resp.). The method does, though, have the obvious limitation regarding its
algebraic tractability, and of course is an ad hoc one compared with the ele-
gant generality of (10) formulated by Kirschenhofer. Computer validations
such as those discussed in the paper are also subject to problematic levels
of complexity for extensions of the two identities studied.
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Appendix

Consider (16) with y = m, which, upon choosing f(x) = 1, reads

1 = m

(
m+ n
n

) n∑
k=0

(−1)k

k +m

(
n
k

)
. (A1)

Noting that, for α constant, d
dm{Γ(m + α)} = Γ(m + α)ψ0(m + α), then

differentiating (A1) partially w.r.t. m gives, after some routine algebra,

0 = − m
n∑
k=0

(−1)k

(k +m)2

(
n
k

)

+ {1 +m[ψ0(m+ n+ 1)− ψ0(m+ 1)]}
n∑
k=0

(−1)k

k +m

(
n
k

)
. (A2)

Now, concerning the r.h.s. of (A2), by (6)

1 +m[ψ0(m+ n+ 1)− ψ0(m+ 1)] = 1 +m

(
m+n∑
k=1

−
m∑
k=1

)
1
k

= 1 +m
m+n∑
k=m+1

1
k



= 1 +m

(
m+n∑
k=m

1
k
− 1

m

)

= m
m+n∑
k=m

1
k
, (A3)

whilst
n∑
k=0

(−1)k

k +m

(
n
k

)
=

1
m

(
m+ n
n

)−1

(A4)

directly from (A1), whence Identity I follows immediately.

We remark that partial differentiation of Identity I leads without difficulty
to Identity II in an analogous fashion (the interested reader may care to
check this), and further results can be built up. For example, differentiating
Identity II the next one yielded is, for integer m ≥ 1, n ≥ 0,

6m
(
m+ n
n

) n∑
k=0

(−1)k

(k +m)4

(
n
k

)

=

(
m+n∑
k=m

1
k

)3

+ 3

(
m+n∑
k=m

1
k

)(
m+n∑
k=m

1
k2

)
+ 2

m+n∑
k=m

1
k3
, (A5)

the r.h.s. of which appears naturally as a consequence of the method (and
co-incides with that delivered by (10))—this would not be the case via
the approach by integration presented in the main part of the paper. As
an aside, note that the underpinning equation (A1) can alternatively be
derived from either (i) equation (10), or (ii) consideration of the integral
H(m,n) =

∫∞
0
e−mx(1− e−x)n dx. It may also be found in Graham et al.

[5, p.188] as equation (5.41), where it is obtained by applying the difference
operator ∆f(m) = f(m+ 1)− f(m) n times to the function f(m) = 1

m .
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