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Abstract

In his 1984 proof of the Bieberbach and Milin conjectures de Branges used a positivity result of special
functions �nk(t) which follows from an identity about Jacobi polynomial sums that was published by Askey
and Gasper in 1976.
In 1991 Weinstein presented another proof of the Bieberbach and Milin conjectures, also using a special

function system �n
k(t) which (by Todorov and Wilf) was realized to be directly connected with de Branges’,

�̇nk(t) =−k�n
k(t), and the positivity results in both proofs �̇

n
k(t)6 0 are essentially the same.

By the relation �̇nk(t)6 0, the de Branges functions �nk(t) are monotonic, and �nk(t)¿ 0 follows. In this
article, we reconsider the de Branges and Weinstein functions, ;nd more relations connecting them with each
other, and make the above positivity and monotony result more precise, e.g., by showing �nk(t)¿ (n−k+1)e−kt .
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let S denote the family of analytic and univalent functions f(z)=z+a2z2+· · · of the unit disk D. S
is compact with respect to the topology of locally uniform convergence so that kn := maxf∈S |an(f)|
exists. In 1916 Bieberbach [5] proved that k2 = 2, with equality if and only if f is a rotation of the
Koebe function

K(z) :=
z

(1− z)2
=
1
4

((
1 + z
1− z

)2
− 1

)
=

∞∑
n=1

nzn (1)
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and in a footnote he mentioned “Vielleicht ist Kuberhaupt kn = n”. This statement is known as the
Bieberbach conjecture.
In 1923 LKowner [15] proved the Bieberbach conjecture for n = 3. His method was to embed a

univalent function f(z) into a L6owner chain, i.e., a family {f(z; t) | t¿ 0} of univalent functions of
the form

f(z; t) = etz +
∞∑
n=2

an(t)zn; (z ∈D; t¿ 0; an(t)∈C (n¿ 2))

which start with f

f(z; 0) = f(z)

and for which the relation

Rep(z; t) = Re

(
ḟ(z; t)
zf′(z; t)

)
¿ 0 (z ∈D) (2)

is satis;ed. Here ′ and · denote the partial derivatives with respect to z and t, respectively. Eq. (2)
is referred to as the L6owner di7erential equation, and geometrically it states that the image domains
of ft expand as t increases.
The history of the Bieberbach conjecture showed that it was easier to obtain results about the

logarithmic coe:cients of a univalent function f, i.e., the coeMcients dn of the expansion

’(z) = ln
f(z)
z
= :

∞∑
n=1

dnzn

rather than for the coeMcients an of f itself. So Lebedev and Milin [14] in the mid-1960s developed
methods to exponentiate such information. They proved that if for f∈ S the Milin conjecture

n∑
k=1

(n+ 1− k)
(
k|dk |2 − 4

k

)
6 0

on its logarithmic coeMcients is satis;ed for some n∈N, then the Bieberbach conjecture for the
index n+ 1 follows.
In 1984 de Branges [6] veri;ed the Milin, and therefore the Bieberbach conjecture, and in 1991,

Weinstein [19] gave a diNerent proof. A reference other than [6] concerning de Branges’ proof is
[7], and a German language summary of the history of the Bieberbach conjecture and its proofs was
given in [9].
Both proofs use the positivity of special function systems, and independently Todorov [17] and

Wilf [20] showed that (the t-derivatives of the) de Branges functions and Weinstein’s functions
essentially are the same (see also [12]),

�̇nk(t) =−k�n
k(t);

�nk(t) denoting the de Branges functions and �
n
k(t) denoting the Weinstein functions, respectively.

Whereas de Branges applied an identity of Askey and Gasper [2] to his function system, Weinstein
applied an addition theorem for Legendre polynomials to his function system to deduce the positivity
result needed.
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By the relation �̇nk(t)6 0, the de Branges functions �nk(t) are monotonic, and �
n
k(t)¿ 0 follows. In

this article, we reconsider the de Branges and Weinstein functions, ;nd more relations connecting
them with each other, and make the above positivity and monotony result more precise, e.g., by
showing �nk(t)¿ (n− k + 1)e−kt .

2. The L�owner chain of the Koebe function

We consider the LKowner chain

w(z; t) := K−1(e−tK(z)) (z ∈D; t¿ 0) (3)

of bounded univalent functions in the unit disk D which is de;ned in terms of the Koebe function
(1). Since K maps the unit disk onto the entire plane slit along the negative x-axis in the interval
(−∞;− 1

4 ], the image w(D; t) is the unit disk with a radial slit on the negative x-axis increasing
with t.
The function w(z; t) is implicitly given by the equation

K(w(z; t)) = e−tK(z);

and satis;es therefore 1

K ′(w) · w′ = e−tK ′(z):

This gives
1 + w
(1− w)3

· w′(z; t) = e−t 1 + z
(1− z)3

and therefore

w′(z; t) =
(1− w)3

1 + w
e−t 1 + z

(1− z)3

=
(1− w)4

1− w2
e−t 1− z2

(1− z)4

=
w2

1− w2
(1− w)4

w2
e−t 1− z2

(1− z)4

=
w2

1− w2
1

K(w)2
e−t 1− z2

(1− z)4

=
w2

1− w2
e2t

1
K(z)2

e−t 1− z2

(1− z)4

=
w2

1− w2
et
1− z2

z2
: (4)

1 In the following deductions, for simplicity we omit the arguments.
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A calculation shows moreover that w(z; t) has the explicit representations [10]

w(z; t) =
(1− z)

√
1− 2xz + z2 − 1 + (1 + x)z − z2

z(x − 1)
=

4e−tz

(1− z +
√
1− 2xz + z2)2

: (5)

In this article we use interchangeably the variables t; x and y that are related by y=e−t=(1−x)=2.
The interval t ∈ (0;∞) corresponds to the intervals y∈ (0; 1) and x∈ (−1; 1), respectively. 2
From the left-hand representation (5) of w(z; t) we obtain the simple equation

1 + w
1− w

=

√
1− 2xz + z2

1− z
(6)

that we will need later.
The LKowner chain of the Koebe function w(z; t) is a hypergeometric function and has hypergeo-

metric Taylor coeMcients

w(z; t) =− et

2K(z)
· 1F0

( − 1
2

−

∣∣∣∣∣− 4e−tK(z)

)
=

∞∑
n=0

ne−t
2F1

(
1− n; 1 + n

3

∣∣∣∣∣ e−t

)
zn

(see e.g. [12] and for a computer generated proof [13]).
The function

pFq

(
a1; : : : ; ap

b1; : : : ; bq

∣∣∣∣∣ x
)
:=

∞∑
k=0

Akxk =
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

xk

k!
;

where (a)k = a(a + 1) · · · (a + k − 1) denotes the Pochhammer symbol, is called the generalized
hypergeometric series. Its coeMcient term ratio

Ak+1xk+1

Akxk
=
(k + a1) · · · (k + ap)
(k + b1) · · · (k + bq)

x
(k + 1)

is a general rational function, in factorized form. More informations about generalized hypergeometric
functions can be found in [4] or [10].

3. The de Branges and Weinstein functions

de Branges [6] showed that the Milin conjecture is valid if for all n¿ 1 the de Branges functions
�nk : R+ → R (k = 1; : : : ; n) de;ned by the system of diNerential equations

�nk+1(t)− �nk(t) =
�̇nk(t)
k

+
�̇nk+1(t)
k + 1

(k = 1; : : : ; n) (7)

�nn+1 ≡ 0 (8)

with the initial values

�nk(0) = n+ 1− k (9)

2 Sometimes, we use sloppy notation when changing arguments according to these rules, e.g., using the notation �nk(y)
instead of the correct composition �nk(−ln y), considering �nk as function of the variable y. This applies in particular to
our graphs that we generally plot w.r.t. the y-variable in the interval (0; 1).



W. Koepf, D. Schmersau / Journal of Computational and Applied Mathematics 173 (2005) 279–294 283

have the properties

lim
t→∞ �nk(t) = 0 (10)

and

�̇nk(t)6 0 (t ∈R+): (11)

Relation (10) is easily checked using standard methods for ordinary diNerential equations, whereas
(11) is a deep result.
de Branges gave the explicit representation

�nk(t) = e
−kt

(
n+ k + 1

2k + 1

)
4F3

(
k + 1=2; n+ k + 2; k; k − n

k + 1; 2k + 1; k + 3=2

∣∣∣∣∣ e−t

)
(12)

[6,8,16], with which the proof of the de Branges theorem was completed as soon as de Branges
realized that (11) was a theorem previously proved by Askey and Gasper [2].
On the other hand, Weinstein [19] used the LKowner chain (3), and showed the validity of Milin’s

conjecture if for all n¿ 1 the Weinstein functions �n
k : R+ → R (k = 1; : : : ; n) de;ned by

etw(z; t)k+1

1− w2(z; t)
= :

∞∑
n=k

�n
k(t)z

n+1 =Wk(z; t) (13)

satisfy the relations

�n
k(t)¿ 0 (t ∈R+; k; n∈N): (14)

Weinstein did not identify the functions �n
k(t), but was able to prove (14) without an explicit

representation.
Independently, both Todorov [17] and Wilf [20] proved—using the explicit representation (12) of

the de Branges functions—that

�̇nk(t) =−k�n
k(t); (15)

i.e., the (t-derivatives of the) de Branges functions and the Weinstein functions essentially are the
same, and the main inequalities (11) and (14) are identical. In [10] another proof of (15) was given
that does not use the explicit representation of the de Branges functions. Note further that in [13],
we deduced result (14) using a version of the addition theorem for the Gegenbauer polynomials
whose simple proof is contained in the same article.
In this article, we will use inequality (14) which is equivalent to the Askey–Gasper inequality

stated in [2], as well as the inequality

�nk(t)¿ 0 (16)

which easily follows from (14) by (15). Actually, we will re;ne statement (16).
Note that identity (15) yields the representation

�n
k(z; t) = e

−kt

(
k + n+ 1

1 + 2k

)
3F2

(
k + 1=2; k − n; 2 + k + n

1 + 2k; k + 3=2

∣∣∣∣∣ e−t

)
(17)

which however can be also detected directly from the de;ning relations (13), see [11].
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4. Inequalities for the de Branges functions

The following theorem states a recurrence relation between the de Branges functions �nk(t) and
the Weinstein functions �n

k(t).

Theorem 1. We have �kk(t) = �k
k(t) = e

−kt , and for n¿ k + 1 the relation

1
n+ 1

�nk(t)− 1
n
�n−1k (t) =

k
n(n+ 1)

�n
k(t) +

k
n(n+ 1)

�n−1
k (t)

is valid.

Proof. We consider the generating functions

Bk(z; t) := K(z)w(z; t)k =
∞∑
n=k

�nk(t)z
n+1 (18)

(see [12, Theorem 3]), and (13), i.e.

Wk(z; t) =
etw(z; t)k+1

1− w2(z; t)
=

∞∑
n=k

�n
k(t)z

n+1;

of �nk(t) and �
n
k(t), respectively. It is easy to check the diNerential equation

(1− z) zB′
k(z)− (1 + z)Bk(z) = (1 + z) kWk(z) (19)

relating Bk(z) and Wk(z). 3 Writing as Taylor expansions and equating the coeMcients of zn yields

n�nk(t)− (n+ 1)�n−1k (t) = k�n
k(t) + k�n−1

k (t):

This ;nishes the proof.

The theorem has some immediate consequences.

Corollary 2. For n¿ k; 06 t ¡∞ we have (Figs. 1 and 2):

(a) �nk(t) increases w.r.t. n, i.e. �
n
k(t)¿�n−1k (t);

(b) the Taylor expansion of the function w(z;t)k

1−z has nonnegative Taylor coe:cients;
(c) �nk(t)¿ �kk(t) = e

−kt;
(d) 1

n+1 �
n
k(t) increases w.r.t. n, i.e.

1
n+1 �

n
k(t)¿

1
n �

n−1
k (t);

(e) �nk(t)¿
n+1
(k+1) e

−kt .

3 Using a computer algebra system, e.g., the diNerence of left- and right-hand side of (19) easily simpli;es to 0 after
replacing Bk(z) by (18), Wk(z) by (13), w′(z) → w2=(1− w2) (1− z2)=yz2 by (4) and ;nally K(z) → z=(1− z)2.
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Fig. 1. This shows Corollary 2(a) in the form: �nk(y) increases w.r.t. n, for k = 3.

Fig. 2. This shows Corollary 2(e) for k = 3 in the form (k + 1)=(n+ 1)y−k�nk(y)¿ 1.

Proof. The equation

�nk(t)− �n−1k (t) =
1
n
�n−1k (t) +

k
n
�n
k(t) +

k
n
�n−1
k (t)

restates Theorem 1, hence (a) follows by (14) and (16). Inequality (a) and

z
1− z

w(z; t)k = (1− z)Bk(z) =
∞∑
n=k

(�nk(t)− �n−1k (t))zn+1

implies (b). Induction applied to (a) yields (c). Finally, the inequality
1

n+ 1
�nk(t)¿

1
n
�n−1k (t)

is also an immediate consequence of Theorem 1, implying (d). From this, (e) follows by induction,
again.

Summing the identity of Theorem 1, we get moreover:

Corollary 3. For n¿ k + 1; 06 t ¡∞ we have (Figs. 3 and 4):

(a) �nk(t) =
k
n�

n
k(t) + 2k(n+ 1)

∑n−1
j=k

1
j( j+2) �

j
k(t);

(b) ent�nk(t) increases w.r.t. t, i.e.
d
dt (e

nt�nk(t))¿ 0;
(c) �nk(t)¿ e−nt(n− k + 1).
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Fig. 3. This shows Corollary 3(b) in the form: ln(y−n�nk(y)) decreases w.r.t. y, for k = 3.

Fig. 4. This shows Corollary 3(c) for k = 3 in the form (y−n=(n− k + 1))�nk(y)¿ 1.

Proof. (a) Follows by replacing n by j in Theorem 1 and summing for j = k + 1; : : : ; n. (b) From
this formula, it follows

n�nk(t)− k�n
k(t) = 2kn(n+ 1)

n−1∑
j=k

1
j(j + 2)

· �j
k(t)

and by using (15), moreover

n�nk(t) + �̇nk(t) = 2kn(n+ 1)
n−1∑
j=k

1
j(j + 2)

�j
k(t):

Multiplying by ent , we get (b) by using the positivity statement (14).
(c) By (b), the function ent�nk(t) is increasing w.r.t. t, hence by using the boundary value �

n
k(0)

we get (c).

Next, we give a recurrence-diNerential equation which is valid for both �nk(t) and �
n
k(t) keeping

k ;xed.

Theorem 4. The de Branges functions �nk(t) and the Weinstein functions �n
k(t) both satisfy the

following recurrence-di7erential equation

(n+ 1)�n−1k (t)− n�nk(t) = �̇n−1k (t) + �̇nk(t); (n¿ k + 1); �kk(t) = e
−kt ; (20)
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and

(n+ 1)�n−1
k (t)− n�n

k(t) = �̇n−1
k (t) + �̇n

k(t); (n¿ k + 1); �k
k(t) = e

−kt :

Proof. Using Theorem 1 and (15) gives the result for �nk(t). DiNerentiating this result w.r.t. t yields
the result for �n

k(t).

Using de Branges’ original diNerential equations, the following is a consequence of Theorem 4.

Corollary 5 (Recursive computation of the de Branges and Weinstein functions I):
(a) For the de Branges functions the following recurrence relation is valid

k(n+ k)�n−1k−1(t) + (k − 1)(n− k + 1)�n−1k (t) = (k − 1)(n+ k)�nk(t) + k(n− k + 1)�nk−1(t):

(b) This yields the recursive scheme

(k − 1)�nk(t) =− n− k + 1
n+ k

k�nk−1(t) + 2k(2k − 1)

× (n− k + 1)!
(n+ k)!

n−1∑
j=k−1

(j + k − 1)!
(j − k + 2)!

(j + 1)�jk−1(t):

(c) For the Weinstein functions the following recurrence relation is valid

(n+ k)�n−1
k−1(t) + (n− k + 1)�n−1

k (t) = (n+ k)�n
k(t) + (n− k + 1)�n

k−1(t):

(d) This yields the recursive scheme

�n
k(t) =− n− k + 1

n+ k
�n
k−1(t) + 2(2k − 1)

(n− k + 1)!
(n+ k)!

n−1∑
j=k−1

(j + k − 1)!
(j − k + 2)!

(j + 1)�j
k−1(t):

Proof. Writing (20) for k and for k − 1, and writing the de Branges system (7) for n and for n− 1
gives four equations from which the three derivative terms can be eliminated by linear algebra. This
yields (a). DiNerentiating and using (15) yields (c).
To get (d), one writes (c) for n; n − 1; : : : ; k which yields a system of linear equations for the

unknowns �j
k(t); (j = k; : : : ; n). Solving this linear system yields (d). The deduction of (b) follows

in a similar manner.

Note that by an application of Zeilberger’s algorithm [10], one gets recurrence relations with a
;nite number of terms (independent of n) that also enable the recursive computation of �nk(t) and
�n
k(t) which is asymptotically more eMcient. These relations, however, look much more diMcult,
their structure is much less symmetric and their coeMcients contain y = e−t . These results are
collected in

Theorem 6 (Recursive computation of the de Branges and Weinstein functions II):
(a) For the de Branges functions the following recurrence relation w.r.t. n is valid

0= (2n− 1)(n+ k − 2)(n− k − 2)�n−4k (t)
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+2(4yn3 − 4n3 + 15n2 − 12yn2 + 11yn− 17n+ 5 + k2 − 3y)�n−3k (t)

− 4(n− 1)(4yn2 − 3n2 − 8yn+ 6n− k2 − 2 + 3y)�n−2k (t)

+ 2(4yn3 − 4n3 − 12yn2 + 9n2 − 5n+ 11yn− 3y − k2 + 1)�n−1k (t)

+ (−3 + 2n)(n− k)(n+ k)�nk(t):

(b) For the de Branges functions the following recurrence relation w.r.t. k is valid:

0 = y(k − 1)(2k − 3)(n+ k − 2)(n− k + 4)�nk−4(t)− 2(k − 1)

× (4k3 − 4yk3 + 29yk2 − 28k2 − 67yk + 63k + 6yn+ 3yn2 + 51y − 45)�nk−3(t)

+ 2(k − 3)

× (4yk3 − 4k3 − 19yk2 + 20k2 + 27yk − 31k + 6yn+ 3yn2 − 9y + 15)�nk−1(t)

+y(2k − 5)(k − 3)(n+ k)(n− k + 2)�nk(t)− 2(2yk2n2 − 8ykn2 + 3yn2

+ 4yk2n− 16ykn+ 6yn+ 6yk4 − 8k4 − 48yk3 + 64k3 + 137yk2 − 182k2

− 164yk + 216k + 66y − 90)�nk−2(t):

(c) For the Weinstein functions the following recurrence relation w.r.t. n is valid:

0 =−(n+ k − 1)(n− k − 1)n�n−3
k (t)

− (−3n2 + 4yn2 − 2yn+ 2n− k2)(n− 1)�n−2
k (t)

+ n(−3n2 + 4n+ 4yn2 − 6yn+ 2y − 1− k2)�n−1
k (t)

+ (n− k)(n+ k)(n− 1)�n
k(t):

(d) For the Weinstein functions the following recurrence relation w.r.t. k is valid:

0 =−y(k − 1)(n+ k − 1)(n+ 3− k)�n
k−3(t)

− (k − 2)(3yk2 − 4k2 − 8yk + 10k + yn2 + 2yn+ 6y − 6)�n
k−2(t)

+ (k − 1)(3yk2 − 4k2 − 10yk + 14k + yn2 + 9y − 12 + 2yn)�n
k−1(t)

+y(k − 2)(n+ k)(n− k + 2)�n
k(t):

Proof. These computations were done with the Maple sumtools package 4 by the author which
contains an implementation (sumrecursion) of Zeilberger’s algorithm. Note that only equation (b)
is hard and time consuming to obtain, the other three computations take only some seconds.

4 Similarly the package hsum6.mpl [10] can be used.
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In the sequel we would like to strengthen the inequalities that were obtained in Corollaries 2
and 3. For this purpose, we use the identity

Bk(z; t) =
1

1− z

√
1− 2xz + z2Wk(z; t) (21)

between the generating functions of �nk(t) and �
n
k(t), which is easily veri;ed by (6) using the de;ning

equations (18) and (13).
We get

Theorem 7. For n¿ k; 06 t ¡∞ we have (Figs. 5 and 6)

(a) ekt�nk(t) increases w.r.t. t, i.e.
d
dt (e

kt�nk(t))¿ 0;

(b) (n− k + 1)e−kt6 �nk(t)6
(
n+k+1
2k+1

)
e−kt .

Proof. Since

√
1− 2xz + z2 =

∞∑
j=0

C−1=2
j (x)zj;

C�
j (x) denoting the Gegenbauer polynomials (see e.g. [1]), we get

1
1− z

√
1− 2xz + z2 =

∞∑
n=0

sn(x)zn

with

sn(x) =
n∑
j=0

C−1=2
j (x):

As a lemma, we will prove that sn(x) is non-negative for x∈ [− 1; 1]. Since for every non-negative
integer n∈N we have

∑n
j=0 Pj(x)¿ 0 for the Legendre polynomials Pn(x) (see e.g. [3, Theorem

2]) and since [18, (7.11)]

d
dx

C−1=2
j (x) =−C1=2j−1(x) =−Pj−1(x);

we get

s′n(x) =−
n−1∑
j=0

Pj(x)6 0;

hence sn(x) is decreasing. The boundary values sn(−1) = 2 and sn(1) = 0 give 06 sn(x)6 2 which
proves our lemma (Figs. 7 and 8).
By equating coeMcients in (21), we get

�nk(t) =
n−1∑
j=k

sn−j(x) · �j
k(t) + �n

k(t) (n¿ k + 1):
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Fig. 5. This shows the ;rst inequality of Theorem 7 for k = 3 in the form: y−k =
( n+k+1
2k+1

)
�nk(y)6 1.

Fig. 6. This shows the second inequality of Theorem 7 for k = 3 in the form: y−k =(n− k + 1)�nk(y)¿ 1.

Fig. 7. This shows the non-negativity of
∑n

j=0 Pj(x) for n= 0; : : : ; 10.

Fig. 8. This shows the non-negativity and monotony of sn(x) for n= 0; : : : ; 10.
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Fig. 9. This shows Theorem 8 for k = 3 in the form: y−k(�nk(y)− �n−1k (y))¿ 1 and decreasing.

This yields

k�nk(t)− k�n
k(t) = k

n−1∑
j=k

sn−j(x) · �j
k(t);

or by using (15) again,

k�nk(t) + �̇nk(t) = k
n−1∑
j=k

sn−j(x) · �j
k(t):

Multiplying by ekt gives

d
dt
(ekt�nk(t)) = kekt

n−1∑
j=k

sn−j(x) · �j
k(t);

which by (14) and the lemma yields (a).
(b) The initial value �nk(0)= n− k +1 and (a) give the left inequality of (b). The right inequality

is a consequence of the limit relation

lim
t→∞e

kt�nk(t) =

(
n+ k + 1

2k + 1

)
;

which follows easily from the hypergeometric representation (12).

Note that, since n¿ k, Theorem 7(b) is stronger than Corollary 3(d). The following theorem
strengthens Theorem 7.

Theorem 8. For n¿ k; 06 t ¡∞ we have (Fig. 9)

(a) ekt(�nk(t)− �n−1k (t)) increases w.r.t. t, i.e. d
dt (e

kt(�nk(t)− �n−1k (t)))¿ 0;
(b) �nk(t)− �n−1k (t)¿ e−kt .

Proof. From the hypergeometric representation (12) of �nk(t) one deduces by an elementary compu-
tation

�nk(t)− �n−1k (t) = e−kt

(
n+ k

n− k

)
3F2

(
n+ k + 1; k; k − n

k + 1; 2k + 1

∣∣∣∣∣ e−t

)
; (22)
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an explicit hypergeometric representation for the diNerence �nk(t) − �n−1k (t). 5 By diNerentiating the
right hand hypergeometric function of (22) one gets

d
dt 3

F2

(
n+k+1; k; k − n

k + 1; 2k + 1

∣∣∣∣∣ e−t

)
= e−t (n+k+1)k(n−k)

(k+1)(2k+1) 3F2

(
n+k+2; k+1; k+1−n

k + 2; 2k + 2

∣∣∣∣∣ e−t

)

which is of the Askey–Gasper type [2]

(�+ 2)N
N !

· 3F2
( −N; N + 2 + �; (�+ 1)=2

�+ 1; (�+ 3)=2

∣∣∣∣∣ x
)

=
�(N−k)=2�∑

j=0

(
1
2

)
j

(
�
2 + 1

)
N−j

(
(�+3)
2

)
N−2j

(�+ 1)N−2j

j!
(
(�+3)
2

)
N−j

(
(�+1)
2

)
N−2j

(N − 2j)!

× 3F2

(
2j − N; N − 2j + �+ 1; (�+ 1)=2

�+ 1; (�+ 2)=2

∣∣∣∣∣ x
)

for � = 2k + 1; N = n − k − 1, and therefore can be rewritten as non-negative linear combination.
This yields (a). Relation (b) is an immediate consequence thereof.

5. Non-negative hypergeometric functions

In this section we will combine the two main relations �nk(k)¿ 0 (16) and �n
k(t)¿ 0 (14) to

get new non-negativity results for certain hypergeometric functions. This will extract also some
interesting informations about the de Branges and Weinstein functions. In particular, both sum and
diNerence of the de Branges and Weinstein functions turn out to be non-negative, and are only shifts
w.r.t. k of each other.
For this section we use the notation

Snk (t) := e
−kt

(
n+ k + 1

2k + 1

)
4F3

(
k; k + 1=2; k − n; n+ k + 2

k + 1; k + 3=2; 2k

∣∣∣∣∣ e−t

)
:

These functions turn out to be non-negative. We get the following results

Theorem 9. For n¿ k; 06 t ¡∞ we have (Figs. 10 and 11):

(a) Snk (t) =
1
2(�

n
k(t) + �n

k(t)) and S
n
k+1(t) =

1
2(�

n
k(t)− �n

k(t));
(b) �nk(t) = Snk (t) + Snk+1(t) and �

n
k(t) = Snk (t)− Snk+1(t);

(c) Snk (t)¿ 0.

5 Such computations can be done automatically, e.g., by the sumtohyper command of the Maple sumtools package
by the ;rst author.
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Fig. 10. This shows Theorem 9 for k = 3 in the form: 2Snk (t) = �nk(y) + �n
k(y)¿ 0.

Fig. 11. This shows Theorem 9 for k = 3 in the form: �nk(y)− �n
k(y)¿ 0.

Proof. A simple computation 6 shows that
1
2 (�

n
t (t) + �n

k(t)) = Snk (t): (23)

Similarly the equation
1
2(�

n
k(t)− �n

k(t)) = Snk+1(t)

is deduced. This gives (a), whereas (b) follows by linear algebra from (a). Note that the identity
�nk(t)− �n

k(t) = �nk+1(t) + �n
k+1(t) follows also easily from the de Branges diNerential equations (7)

and (15).
By (23) and the non-negativity of �nk(t) and �

n
k(t), (c) follows.

Appendix: Maple code

The authors provide a Maple worksheet containing the computations of this article.
This worksheet can be downloaded from the web site http://www.mathematik.uni-kassel.de/
∼koepf/Publikationen.

References

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1964.

6 For example, using the sumtohyper command of the Maple sumtools package.

http://www.mathematik.uni-kassel.de/~koepf/Publikationen
http://www.mathematik.uni-kassel.de/~koepf/Publikationen


294 W. Koepf, D. Schmersau / Journal of Computational and Applied Mathematics 173 (2005) 279–294

[2] R. Askey, G. Gasper, Positive Jacobi polynomial sums II, Amer. J. Math. 98 (1976) 709–737.
[3] R. Askey, H. Pollard, Some absolutely monotonic and completely monotonic functions, Siam J. Math. Anal. 5 (1974)

58–63.
[4] W.N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, England, 1935, reprinted 1964 by

Stechert–Hafner Service Agency, New York, London.
[5] L. Bieberbach, KUber die KoeMzienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises

vermitteln, S.-B. Preuss. Akad. Wiss. 38 (1916) 940–955.
[6] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985) 137–152.
[7] C.H. FitzGerald, Ch. Pommerenke, The de Branges Theorem on univalent functions, Trans. Amer. Math. Soc. 290

(1985) 683–690.
[8] P. Henrici, Applied and Computational Complex Analysis, Vol. 3, Discrete Fourier Analysis—Cauchy Integrals—

Construction of Conformal Maps—Univalent Functions, Wiley, New York, 1986.
[9] W. Koepf, Von der Bieberbachschen Vermutung zum Satz von de Branges sowie der Beweisvariante von Weinstein,

in: Jahrbuch KUberblicke Mathematik 1994, Vieweg, Braunschweig, Wiesbaden, 1994, pp. 175–193.
[10] W. Koepf, Hypergeometric Summation, An Algorithmic Approach to Summation and Special Function Identities,

Vieweg, Braunschweig, Wiesbaden, 1998.
[11] W. Koepf, Power series, Bieberbach Conjecture and the de Branges and Weinstein Functions, in: Hong, et al. (Eds.),

Proc. of ISSAC 2003, Philadelphia, SIGSAM, 2003, pp. 169–175.
[12] W. Koepf, D. Schmersau, On the de Branges theorem, Complex Variables 31 (1996) 213–230.
[13] W. Koepf, D. Schmersau, Weinstein’s functions and the Askey–Gasper identity, Integral Transforms and Special

Functions 5 (1997) 227–246.
[14] N.A. Lebedev, I.M. Milin, An inequality, Vestnik Leningrad University 20 (1965) 157–158 (in Russian).
[15] K. LKowner, Untersuchungen Kuber schlichte konforme Abbildungen des Einheitskreises I, Math. Ann. 89 (1923)

103–121.
[16] D. Schmersau, Untersuchungen zur Rekursion von L. de Branges, Complex Variables 15 (1990) 115–124.
[17] P. Todorov, A simple proof of the Bieberbach conjecture, Bull. Cl. Sci., VI. SVer., Acad. R. Belg. 12 (3) (1992)

335–356.
[18] F.G. Tricomi, Vorlesungen Kuber Orthogonalreihen, Grundlehren der Mathematischen Wissenschaften 76, Springer,

Berlin, GKottingen, Heidelberg, 1955.
[19] L. Weinstein, The Bieberbach conjecture, Internat. Math. Res. Notices 5 (1991) 61–64.
[20] H. Wilf, A footnote on two proofs of the Bieberbach–de Branges Theorem, Bull. London Math. Soc. 26 (1994)

61–63.


	Positivity and monotony properties of the de Branges functions
	Introduction
	The Löwner chain of the Koebe function
	The de Branges and Weinstein functions
	Inequalities for the de Branges functions
	Non-negative hypergeometric functions
	Appendix. Maple code
	References


