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1 Introduction

Let P denote the linear space of polynomials with coefficients in C, the field of complex
numbers. A polynomial sequence {pn}n≥0 in P is called a polynomial set (or system) if pn

is of exact degree n for all nonnegative integers n. Given a polynomial set {pn}n≥0, the so-
called multiplication problem associated to this family consists in finding the coefficients
Dm(n, a) in the expansion

pn(ax) =
n∑

m=0
Dm(n, a)pm(x), (1)

where a designates a nonzero complex number. Such identities have applications in
many problems in pure and applied mathematics, especially in combinatorial analysis.
The multiplication formula (1) is sometime called dilation formula, see e.g. [37], [38].

Chaggara and Koepf [8], Ismail [21] and Rainville [30] used generating functions to
solve the multiplication problem for some classical continuous orthogonal polynomials
and classical discrete orthogonal polynomials (only for the specific case a = −1). In this
work, we use the same approach as in [21, page 103], [30, page 209] and also an algorith-
mic approach to solve the multiplication problem for the classical continuous orthogo-
nal polynomials (Jacobi, Gegenbauer, Laguerre, Hermite, Bessel polynomials), the classi-
cal discrete orthogonal polynomials (Hahn, Meixner, Krawtchouk, Charlier polynomials),
the q-classical orthogonal polynomials (Big q-Jacobi, q-Hahn, Big q-Laguerre, etc.) as
well as the classical orthogonal polynomials on a quadratic lattice (Wilson polynomials,
etc.) and a q-quadratic lattice (Askey-Wilson polynomials, etc.). The major algorithmic
tools for our development are Zeilberger’s algorithm ([25], [29]), the Petkovšek-van-Hoeij
algorithm [25], Algorithm 2.8 of [25] and it q-analogue. Our results recover and extend
works by Chaggara and Koepf [8], Ismail [21] and Rainville [30]. Moreover, proceeding as
in [21] and [30], we find the coefficients Dm(n, a) of the translation formula

pn(a +x) =
n∑

m=0
Dm(n, a)pm(x)

of the Hahn, Meixner, Krawtchouk and Charlier polynomials. If we define the notion
of degree of complexity as the number of summations of elementary terms in Dm(n, a),
then it is useful to note that we obtain nice results with degree of complexity zero whereas
others are of degree of complexity one, two or three.

Classical orthogonal polynomials of a continuous, a discrete and a q-discrete vari-
able, and on a quadratic or q-quadratic lattice x = x(s) are known to satisfy, respectively,
the following second-order differential, difference, q-difference and divided-difference
equations (see e.g. [11], [23], [27]):

σ(x) d 2

d x2 y(x)+τ(x) d
d x y(x)+λn y(x) = 0,

σ(x)∆∇y(x)+τ(x)∆ y(x)+λn y(x) = 0,

σ(x)Dq D 1
q

y(x)+τ(x)Dq y(x)+λn,q y(x) = 0, (2)

σ(x(s))D2
x yn(x(s))+τ(x(s))SxDx yn(x(s))+λn yn(x(s)) = 0, (3)

where ∆, ∇, and Dq are, respectively, the forward, the backward and the Hahn operators
defined by

∆ f (x) = f (x +1)− f (x), ∇ f (x) = f (x)− f (x −1), Dq f (x) = f (qx)− f (x)

(q −1)x
, q 6= 1, x 6= 0,
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with Dq f (0) = lim
x→0

Dq f (x) = f ′(0), provided that f ′(0) exists. Dx andSx are the operators

defined by [11]

Dx f (x(s)) = f (x(s + 1
2 ))− f (x(s − 1

2 ))

x(s + 1
2 )−x(s − 1

2 )
, Sx f (x(s)) = f (x(s + 1

2 ))+ f (x(s − 1
2 ))

2
,

σ(x) = ax2 +bx + c, τ(x) = d x + e, are polynomials of maximum degree 2 and 1 respec-
tively, and λn , λn,q are constants depending on the coefficients a and d of σ and τ.

The content of this paper is organized as follows: In Section 2, we compute the mul-
tiplication coefficients of classical orthogonal polynomial of a continuous variable. Sec-
tion 3 is devoted to coefficients of the multiplication and translation formulas of classical
discrete orthogonal polynomials. In Sections 4 and 5, the multiplication coefficients are
given for q-classical orthogonal polynomials and classical orthogonal polynomials on a
quadratic and q-quadratic lattice, respectively.

2 Multiplication Coefficients of Classical Continuous Orthogonal Polynomials

Note that by P (α,β)
n (x), C (α)

n (x), L(α)
n (x), Hn(x), B (α)

n (x), we denote, respectively, the Ja-
cobi, Gegenbauer (ultraspherical), Laguerre, Hermite and Bessel polynomials. Their hy-
pergeometric representations are given as [23]

P (α,β)
n (x) = (α+1)n

n!
2F1

( −n,n +α+β+1

α+1

∣∣∣∣∣ 1−x

2

)
, α>−1, β>−1

= (−1)n (β+1)n

n!
2F1

( −n,n +α+β+1

β+1

∣∣∣∣∣ 1+x

2

)
,

C (α)
n (x) = (α)n2n xn

n!
2F1

( −n/2,−n/2+1/2

−n −α+1

∣∣∣∣∣ 1

x2

)
, α>−1

2
and α 6= 0,

L(α)
n (x) = (α+1)n

n!
1F1

( −n

α+1

∣∣∣∣∣x

)
, α>−1,

Hn(x) = 2n xn
2F0

( −n/2,−n/2+1/2

−

∣∣∣∣∣− 1

x2

)
,

B (α)
n (x) = 2F0

( −n,n +α+1

−

∣∣∣∣∣− x

2

)
, n = 0,1, . . . , N , α<−2N −1.

In the above definitions,

p Fq

(
a1, . . . , ap

b1, . . . ,bq

∣∣∣∣∣x

)
=

∞∑
m=0

(a1)m · · · (ap )m

(b1)m · · · (bq )m

xm

m!
,

where (a)m denotes the Pochhammer symbol (or shifted factorial) defined by

(a)0 = 1, (a)m = a(a +1)(a +2) · · · (a +m −1) if m = 1,2, . . . .
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To get the multiplication formulas of the above classical orthogonal polynomials of a con-
tinuous variable, we use their inversion formulas, that is, a formula expanding a general
basis bn(x) into a family of orthogonal polynomials pn(x)

bn(x) =
n∑

m=0
Im(n)pm(x). (4)

Theorem 1 The following representations of the powers in terms of the classical continu-
ous orthogonal polynomials are valid:

(1−x)n = 2nΓ(α+n +1)
n∑

m=0

(α+β+2m +1)Γ(α+β+m +1)

Γ(α+m +1)Γ(α+β+n +m +2)
(−n)mP (α,β)

m (x)

(see e.g. [21], [24]),

(1+x)n = 2nΓ(β+n +1)
n∑

m=0
(−1)m(−n)m

(α+β+2m +1)Γ(α+β+m +1)

Γ(β+m +1)Γ(α+β+n +m +2)
P (α,β)

m (x)

(see e.g. [5], [21], [24]),

xn = n!

(α)n2n

b n
2 c∑

m=0

(−n
2 − α

2 +1)m(−n −α)m

(−n
2 − α

2 )mm!
(−1)mCα

n−2m(x) = n!

2n

b n
2 c∑

m=0

n +α−2m

m!(α)n+1−m
C (α)

n−2m(x)

(see e.g. [24], [30]),

xn = (1+α)n

n∑
m=0

(−n)m

(1+α)m
L(α)

m (x) = n!
n∑

m=0

(
n +α
n −m

)
(−1)mL(α)

m (x)

(see e.g. [21], [24], [33]),

xn =
b n

2 c∑
m=0

(−n
2 )m(−n

2 + 1
2 )m

m!2n−2m Hn−2m(x) = n!

2n

b n
2 c∑

m=0

1

m!(n −2m)!
Hn−2m(x)

(see e.g. [21], [24]),

xn = (−2)n

(α+2)n

n∑
m=0

(−n)m(α+1)m(α2 + 3
2 )m

(n +2+α)m(α2 + 1
2 )mm!

B (α)
m (x)

= (−2)n
n∑

m=0
(2m +α+1)

(−n)mΓ(α+m +1)

m!Γ(n +m +α+2)
B (α)

m (x)

(see e.g. [24], [33]), where bn/2c denotes the largest integer smaller or equal to n/2.

In the following theorem, using the hypergeometric representations of classical continu-
ous orthogonal polynomials and their inversion formulas given in Theorem 1, we provide
known multiplication formulas and moreover, we get new results for Jacobi and Gegen-
bauer polynomials.



Coefficients of Multiplication Formulas for Classical Orthogonal Polynomials 5

Theorem 2 The following multiplication formulas of the classical orthogonal polynomi-
als of a continuous variable are valid:

P (α,β)
n (ax) =

n∑
m=0

n−m∑
j=0

(−a)m(1−a) j (−n)m+ j (α+1)n(n +α+β+1)m+ j

2 j n! j !(α+1)m+ j (α+β+m +1)m

×2F1

(
α+m +1,− j

α+β+2m +2

∣∣∣∣∣ 2a

a −1

)
P (α,β)

m (x),

C (α)
n (ax) = Γ(n +α)an

bn/2c∑
m=0

n +α−2m

m!Γ(α+n −m +1)
2F1

( −m,m −n −α
−n −α+1

∣∣∣∣∣ 1

a2

)
C (α)

n−2m(x),

L(α)
n (ax) =

n∑
m=0

(α+1)n am(1−a)n−m

(n −m)!(α+1)m
L(α)

m (x)

(see e.g. [8], [21], [30, p. 209], [34, Exercise 67, p. 387], compare [26]),

Hn(ax) =
bn/2c∑
m=0

ann!(1−a−2)m

(n −2m)!m!
Hn−2m(x)

(see e.g. [8], [21], compare [16]),

B (α)
n (ax) =

n∑
m=0

(−a)m(−n)m(α+n +1)m

m!(α+m +1)m
2F1

(
m −n,α+m +n +1

α+2m +2

∣∣∣∣∣a

)
B (α)

m (x)

(see e.g. [10], [26]).

Remark 3 1. The multiplication coefficients given above for the Laguerre and Hermite
polynomials were already given by Rainville [30, p. 209, formula (5)] (only the Laguerre
formula), Ismail [21, (4.6.32), (4.6.33)] and Chaggara and Koepf [8] using generating func-
tions. Those of Jacobi are new, as far as we know. However, Chaggara and Koepf [8] ex-

panded P (α,β)
n (1−ax) in terms of P (α,β)

m (1−x) and got

P
(α,β)
n (1−ax) =

n∑
m=0

am (1+α)n (α+β+1+n)m

(n −m)!(1+α)m (α+β+1+m)m
2F1

(
m −n,m +n +α+β+1

2m +α+β+2

∣∣∣∣∣a

)
P

(α,β)
m (1−x).

From this formula, the multiplication formula for the Laguerre polynomials can be de-
rived following the limit relation

L(α)
n (x) = lim

β→∞
P (α,β)

n (1−2β−1x).

2. In the proof of this theorem, we use Zeilberger’s (see e.g. [25, Chap. 7]1) and the
Petkovšek-van-Hoeij algorithms2 (see e.g. [25, Chap. 9]). Zeilberger’s algorithm deals
with the question of how to determine a holonomic recurrence equation ( i.e., homoge-

neous and linear with polynomial coefficients) for sums Sn =
∞∑

m=−∞
F (n,m) where F (n,m)

is a hypergeometric term, i.e., the term ratio F (n+1,m)
F (n,m) , F (n,m+1)

F (n,m) represents a rational func-
tion of the variable n and m, respectively. The Petkovšek-van-Hoeij algorithm finds all
hypergeometric term solutions of a holonomic recurrence equation.

1 explicitly the Maple procedure sumrecursion of the accompanying hsum package
2 explicitly the Maple procedure LREtools[hypergeomsols] written by van Hoeij [17]
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Proof In the proof, we consider three cases. In every case, the coefficients A j (n) and
Im(n) are, respectively, those of the hypergeometric representations and the inversion
formulas.

1. Jacobi family P (α,β)
n (x).

We use the following variant of the binomial theorem

(1−ax) j =
j∑

k=0
Bk ( j , a)(1−x)k with Bk ( j , a) = ak

(
j

k

)
(1−a) j−k .

Combining

P (α,β)
n (ax) =

n∑
j=0

A j (n)(1−ax) j , (1−ax) j =
j∑

k=0
Bk ( j , a)(1−x)k

and

(1−x)k =
k∑

m=0
Im(k)P (α,β)

m (x)

and interchanging the order of summation yields the representation

P (α,β)
n (ax) =

n∑
m=0

Dm(n, a)P (α,β)
m (x)

with

Dm(n, a) =
n−m∑
j=0

j∑
k=0

A j+m(n)Bm+k ( j +m, a)Im(k +m).

To complete the proof, we use Algorithm 2.8, p. 22 of [25]3 to convert the sum
j∑

k=0
Bm+k ( j +m, a)Im(k +m) into hypergeometric notation.

2. Gegenbauer family C (α)
n (x) and Hermite family Hn(x).

In the Gegenbauer and Hermite cases, we combine

Pn(ax) =
b n

2 c∑
j=0

A j (n, a)xn−2 j and x j =
b j

2 c∑
m=0

Im( j )P j−2m(x)

which yield

xn−2 j =
b n

2 c− j∑
m=0

Im(n −2 j )Pn−2 j−2m(x)

and substitute m by m − j to obtain

Pn(ax) =
b n

2 c∑
m=0

Dm(n, a)Pn−2m(x) with Dm(n, a) =
m∑

j=0
A j (n, a)Im− j (n −2 j ).

In the Hermite case, Zeilberger’s algorithm finds a holonomic recurrence equation of
first order with respect to m from which the result follows. But in the Gegenbauer
case, we get a recurrence equation of order 2 which according to the Petkovšek-van-
Hoeij algorithm doesn’t have a hypergeometric term solution.

3 explicitly the Maple procedure Sumtohyper of the hsum package
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3. Laguerre family L(α)
n (x) and Bessel family B (α)

n (x)
In both cases, we combine

Pn(ax) =
n∑

j=0
A j (n, a)x j and x j =

j∑
m=0

Im( j )Pm(x)

and interchange the order of summation to get

Dm(n, a) =
n−m∑
j=0

A j+m(n, a)Im( j +m).

For the Laguerre family, Zeilberger’s algorithm finds a recurrence equation of first
order with respect to m from which the result follows. But in the Bessel case, we get a
recurrence equation of order 2 which according to the Petkovšek-van-Hoeij algorithm
doesn’t have a hypergeometric term solution.

ut

3 Coefficients of Multiplication and Translation Formulas of Classical Discrete
Orthogonal Polynomials

3.1 Multiplication Coefficients of Classical Discrete Orthogonal Polynomials

Using generating functions, Chaggara and Koepf [8] solved the multiplication problem

pn(ax) =
n∑

m=0
Dm(n, a)pm(x)

for the Charlier, Meixner and Krawtchouk polynomials but only for the specific case a =
−1. Recurrence relations satisfied by the multiplication coefficients were also given. Area
et al. [4] presented an algorithmic approach to obtain these recurrence relations. Their
approach was based on the so-called NaViMa algorithm. In this section the general mul-
tiplication problem for classical discrete orthogonal polynomials is solved.

We denote by Qn(x;α,β, N ), Mn(x;γ,µ), Kn(x; p, N ) and Cn(x;µ), the Hahn, Meixner,
Krawtchouk and Charlier polynomials, respectively. Their hypergeometric representa-
tions are given in [23]

Qn(x;α,β, N ) = 3F2

( −n,−x,n +1+α+β
α+1,−N

∣∣∣∣∣1

)
,

n, x = 0,1, . . . , N , α>−1 and β>−1, or α<−N and β<−N ,

Mn(x;γ,µ) = 2F1

( −n,−x

γ

∣∣∣∣∣1− 1

µ

)
, γ> 0, 0 <µ< 1, x = 0,1, . . . ,

Kn(x; p, N ) = 2F1

( −n,−x

−N

∣∣∣∣∣ 1

p

)
, 0 < p < 1, n, x = 0,1, . . . , N ,

Cn(x;µ) = 2F0

( −n,−x

−

∣∣∣∣∣− 1

µ

)
, µ> 0, x = 0,1, . . . .



8 D. D. Tcheutia et al.

In the continuous case, the polynomials were represented in terms of the powers xn .
The corresponding choice in the discrete case is a representation in terms of the falling
factorials

xn = x(x −1) · · · (x −n +1) = (−1)n(−x)n .

To get the multiplication formulas of the classical discrete orthogonal polynomials, we
use their inversion formulas. Gasper [14], Koepf and Schmersau [24], Ronveaux et al. [32]
(compare [1], [41]) proved that

Theorem 4 The following representations for the falling factorials in terms of the classical
discrete orthogonal polynomials are valid:

xn =
n∑

m=0

(1+α)n(−N )n(−1)n

(α+β+2)n

(α+β+1+2m)

(α+β+1)

(−n)m(α+β+1)m

(n +2+α+β)mm!
Qm(x;α,β, N ), (5)

xn =
n∑

m=0

(−1)n(γ)n( µ
µ−1 )n(−n)m

m!
Mm(x;γ,µ),

xn =
n∑

m=0

(−1)n(−N )n pn(−n)m

m!
Km(x; p, N ),

xn =
n∑

m=0

µn(−n)m

m!
Cm(x;µ).

Using the hypergeometric representations and the inversion formulas of the classical dis-
crete orthogonal polynomials, we get

Theorem 5 For the classical discrete orthogonal polynomials, the following multiplica-
tion relations are valid.

Qn (ax;α,β, N ) =
n∑

m=0

(α+β+1+2m)(α+β+1)m

(α+β+1)m!

n−m∑
j=0

(α+1,−N )n− j (−n + j )m

(α+β+2)n− j (α+β+n − j +2)m (n − j )!

×
j∑

k=0

(−n,n +α+β+1)k+n− j

(α+1,−N )k+n− j (k +n − j )!
×

n− j∑
l=0

(−1)l

(
n − j

l

)
(−al )k+n− j Qm (x;α,β, N ),

Mn(ax;γ,µ) =
n∑

m=0

n−m∑
j=0

(γ)n− j (−n + j )m

m!(n − j )!
×

j∑
k=0

(−n)n+k− j

(n +k − j )!(γ)n+k− j

(µ−1

µ

)k

×
n− j∑
l=0

(−1)l

(
n − j

l

)
(−al )n+k− j Mm(x;γ,µ),

Kn(ax; p, N ) =
n∑

m=0

n−m∑
j=0

(−N )n− j (−n + j )m

m!(n − j )!

×
j∑

k=0

(−n)n+k− j

pk (−N )n+k− j (n +k − j )!

n− j∑
l=0

(−1)l

(
n − j

l

)
(−al )n+k− j Km(x; p, N ),

Cn(ax;µ) =
n∑

m=0

n−m∑
j=0

(−n + j )m

m!(n − j )!

j∑
k=0

(−n)n+k− j

(n +k − j )!(−µ)k

n− j∑
l=0

(−1)l

(
n − j

l

)
(−al )n+k− j Cm(x;µ).
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The proof of this theorem uses the following result, namely the discrete analog of the
Taylor expansion.

Lemma 6 (Compare [7, p. 35]) If f is a polynomial w.r.t. x of degree n, then

f (x) =
n∑

k=0
fk xk , (6)

where

fk = 1

k !

k∑
l=0

(−1)k−l

(
k

l

)
f (l ).

Replacing f (x) by (ax)n in (6), we are led to

Corollary 7 The following multiplication formula holds:

(ax)n =
n∑

k=0
Ek (n, a)xk =

n∑
k=0

(−1)n+k

k !

k∑
l=0

(−1)l

(
k

l

)
(−al )n xk .

Proof (of Theorem 5) Combining

pn(ax) =
n∑

k=0
Ak (n)(ax)k , (ax)k =

k∑
i=0

Ei (k, a)xi with Ei (k, a) =
i∑

l=0
Fl (i ,k, a),

and

xi =
i∑

m=0
Im(i )pm(x),

interchanging the order of summation and substituting i by n−m− j yields the multipli-
cation relation

pn(ax) =
n∑

m=0
Dm(n, a)pm(x)

with

Dm(n, a) =
n−m∑
j=0

j∑
k=0

n− j∑
l=0

Ak+n− j (n)Fl (n − j ,k +n − j , a)Im(n − j ),

where the coefficients Ak (n), Fl (i ,k, a) and Im(i ) are, respectively, those of the hyper-
geometric representations, the multiplication formula of the above Corollary 7 and the
inversion formulas. ut

Remark 8 We remark here that the degree of complexity of the above multiplication co-
efficients is three, which is rather high. It could be necessary to find conditions on the
parameters a to reduce it or to find another approach to simplify this degree. In fact if
we give some specific values to the parameter a (for example a = −1 or a = 2), then the

last sum
∑n− j

l=0 (−1)l
(n− j

l

)
(−al )n+k− j simplifies to a hypergeometric term and the degree

of complexity of the coefficients Dm(n, a) decreases to two.
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3.2 Coefficients of Translation Formulas of Classical Discrete Orthogonal Polynomials

In this section, proceeding as in [21, page 103], [30, page 209], we use generating func-
tions of classical discrete orthogonal polynomials to find their translation formulas. The
generating functions of the Charlier, Meixner and Krawtchouk polynomials are given be-
low (see e.g. [23]), respectively, with some relevant relations they verify:

G1(x, t ) := e t
(
1− t

µ

)x =
∞∑

n=0

Cn (x;µ)

n!
t n , G1(ax, t ) =

(
1− t

µ

)a
G1(x, at ),

G2(x, t ) :=
(
1− t

µ

)x (
1− t

)−x−γ =
∞∑

n=0

(γ)n

n!
Mn (x;γ,µ)t n , G2(ax, t ) =

(
1− t

µ

)a(
1− t

)−a
G2(x, at ),

G3(x, t ) :=
(
1− 1−p

p
t
)x

(1+ t )N−x =
N∑

n=0

(
N

n

)
Kn (x; p, N )t n , G3(ax, t ) =

(
1− 1−p

p
t
)a(

1− t
)−a

G3(x, at ).

Using the above generating functions, we prove that

Theorem 9 The following translation formulas are valid for the Charlier, Meixner, Krawtchouk
and Hahn polynomials, respectively:

Cn(x +a;µ) =
n∑

m=0

(
n

m

)
(−a)n−m

µn−m Cm(x;µ),

Mn(x +a;γ,µ) =
n∑

m=0

n−m∑
k=0

n!(γ)m(−a)k (a)n−m−k

m!k !(γ)nµk (n −m −k)!
Mm(x;γ,µ),

Kn(x +a; p, N ) =
n∑

m=0

n−m∑
k=0

(−1)n−m−k
(N

m

)
(−a)k (1−p)k (a)n−m−k(N

n

)
k !pk (n −m −k)!

Km(x; p, M),

Qn(a +x;α,β, N ) =
n∑

m=0

n−m∑
j=0

(−1)m(m −n) j (−n)m(−a) j (α+β+n +1)m+ j

j !m!(m −N ) j (α+m +1) j (α+β+m +1)m

×3F2

( − j ,m −N ,α+m +1

a +1− j ,α+β+2m +2

∣∣∣∣∣1

)
Qm(x;α,β, N ).

Proof The translation formulas for the Charlier, Meixner and Krawtchouk polynomials
follow by equating coefficients of t n in the relations between Gi (ax, t ) and Gi (x, at ), i =
1,2,3 using the binomial theorem

(1− z)−a =
∞∑

n=0

(a)n

n!
zn , |z| < 1.

For the Hahn polynomials, we combine the representation of Qn(x +a;α,β, N ) in terms
of (−x −a)n , the Chu–Vandermonde identity

(a +x)n =
n∑

m=0

(
n

m

)
(a)n−m(x)m

and the inversion formula (5) to get the result. ut



Coefficients of Multiplication Formulas for Classical Orthogonal Polynomials 11

4 Multiplication Coefficients of q-Classical Orthogonal Polynomials

The polynomial systems which are solution of the q-difference equation (2) form the q-
Hahn tableau. They are represented as basic hypergeometric series rφs defined by

rφs

(
a1, . . . , ar

b1, . . . ,bs

∣∣∣∣∣q ; z

)
=

∞∑
k=0

(a1, . . . , ar ; q)k

(b1, . . . ,bs ; q)k

(
(−1)k q

(k
2

))1+s−r zk

(q ; q)k
,

where (a1, . . . , ar ; q)k := (a1; q)k · · · (ar ; q)k , is the product of the q-Pochhammer symbol
defined by

(a; q)0 = 1, (a; q)k = (1−a)(1−aq)(1−aq2) · · · (1−aqk−1) if k = 1,2,3, . . . ,

and

(a; q)∞ =
∞∏

k=0
(1−aqk ), 0 < |q| < 1.

The following systems are members of the q-Hahn tableau [23]:

1. the big q-Jacobi polynomials

Pn(x;α,β,γ; q) = 3φ2

(
q−n ,αβqn+1, x

αq,γq

∣∣∣∣∣q ; q

)
,

which for α=β= 1 are the big q-Legendre polynomials

Pn(x;γ; q) = 3φ2

(
q−n , qn+1, x

q,γq

∣∣∣∣∣q ; q

)
,

2. the q-Hahn polynomials

Qn(x̄;α,β, N |q) = 3φ2

(
q−n ,αβqn+1, x̄

αq, q−N

∣∣∣∣∣q ; q

)
, with x̄ = q−x and n = 0,1, . . . , N ,

3. the big q-Laguerre polynomials

Pn(x;α,β; q) = 3φ2

(
q−n , x,0

αq,βq

∣∣∣∣∣q ; q

)
,

4. the little q-Jacobi polynomials

pn(x;α,β|q) = 2φ1

(
q−n ,αβqn+1

αq

∣∣∣∣∣q ; qx

)
,

which for α=β= 1 are the little q-Legendre polynomials

pn(x|q) = 2φ1

(
q−n , qn+1

q

∣∣∣∣∣q ; qx

)
,

5. the q-Meixner polynomials

Mn(x̄;β,γ; q) = 2φ1

(
q−n , x̄

βq

∣∣∣∣∣q ;−qn+1

γ

)
, with x̄ = q−x ,
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6. the quantum q-Krawtchouk polynomials

K qtm
n (x̄; p, N ; q) = 2φ1

(
q−n , x̄

q−N

∣∣∣∣∣q ; pqn+1

)
, with x̄ = q−x and n = 0,1, . . . , N ,

7. the q-Krawtchouk polynomials

Kn(x̄; p, N ; q) = 3φ2

(
q−n , x̄,−pqn

q−N ,0

∣∣∣∣∣q ; q

)
with x̄ = q−x and n = 0,1, . . . , N ,

8. the affine q-Krawtchouk polynomials

K Aff
n (x̄; p, N ; q) = 3φ2

(
q−n , x̄,0

pq, q−N

∣∣∣∣∣q ; q

)
with x̄ = q−x and n = 0,1, . . . , N ,

9. the little q-Laguerre / Wall polynomials

pn(x;α|q) = 2φ1

(
q−n ,0

αq

∣∣∣∣∣q ; qx

)
,

10. the q-Laguerre polynomials

L(α)
n (x; q) = (qα+1; q)n

(q ; q)n
1φ1

(
q−n

qα+1

∣∣∣∣∣q ;−qn+α+1x

)
,

11. the alternative q-Charlier or q-Bessel polynomials

yn(x;α; q) = 2φ1

(
q−n ,−αqn

0

∣∣∣∣∣q ; qx

)
,

12. the q-Charlier polynomials

Cn(x̄;α; q) = 2φ1

(
q−n , x̄

0

∣∣∣∣∣q ;−qn+1

α

)
, with x̄ = q−x ,

13. the Al-Salam-Carlitz I polynomials

U (α)
n (x; q) = (−α)n q

(n
2

)
2φ1

(
q−n , x−1

0

∣∣∣∣∣q ;
qx

α

)
,

14. the Al-Salam-Carlitz II polynomials

V (α)
n (x; q) = (−α)n q−(n

2

)
2φ0

(
q−n , x

−

∣∣∣∣∣q ;
qn

α

)
,

15. the Stieltjes-Wigert polynomials

Sn(x; q) = 1

(q ; q)n
1φ1

(
q−n

0

∣∣∣∣∣q ;−qn+1x

)
,
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16. the discrete q-Hermite I polynomials

hn(x; q) = q
(n

2

)
2φ1

(
q−n , x−1

0

∣∣∣∣∣q ;−qx

)
,

the discrete q-Hermite I polynomials are the Al-Salam-Carlitz I polynomials withα=
−1 i.e. hn(x; q) =U (−1)

n (x; q),
17. the discrete q-Hermite II polynomials

h̃n(x; q) = i−n q−(n
2

)
2φ0

(
q−n , i x

−

∣∣∣∣∣q ;−qn

)
,

the discrete q-Hermite II polynomials are related to the Al-Salam-Carlitz II polyno-
mials with α=−1 by h̃n(x; q) = i−nV (−1)

n (i x; q).

The representation of the polynomials pn(x) belonging to the q-Hahn tableau as basic
hypergeometric series suggests four natural bases {Vm} to obtain expansions of the form

pn(x) =
n∑

m=0
Am(n)Vm(x).

These expansion bases are the q-shifted factorials (i.e. Vm(x) = (x; q)m), the powers of x
(i.e. Vm(x) = xm), Vm(x) = (i x; q)m and Vm(x) = (x−1)(x−q) · · · (x−qm−1) = (x−1; q)m xm .
These four bases can be generalized to the q-power basis [36]

(b�a)n
q =

{
(b −a)(b −aq) · · · (b −aqn−1), n ∈N,
1, n = 0,

where a, b ∈C. Indeed, we have

(x; q)n = (1�x)n
q , xn = (x �0)n

q , (i x; q)n = (1� i x)n
q and (x−1; q)n xn = (x �1)n

q .

For q-classical orthogonal polynomials (in short q-COP), we propose two different meth-
ods to solve the multiplication problem (1).

4.1 First Method

Here once more, we proceed as in [21, page 103], [30, page 209], using generating func-
tions of some q-COP given below with some relevant relations they verify:

1. the discrete q-Hermite II polynomials

G(x, t ) := (−xt ; q)∞
(−t 2; q2)∞

=
∞∑

n=0

q
(n

2

)
(q ; q)n

h̃n(x; q)t n , G(ax, t ) = (−a2t 2; q2)∞
(−t 2; q2)∞

G(x, at ),

2. the discrete q-Hermite I polynomials

G(x, t ) := (t 2; q2)∞
(xt ; q)∞

=
∞∑

n=0

hn(x; q)

(q ; q)n
t n , G(ax, t ) = (t 2; q2)∞

(a2t 2; q2)∞
G(x, at ),
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3. the Stieltjes-Wigert polynomials

G(x, t ) := 1

(t ; q)∞
0φ1

( −
0

∣∣∣∣∣q ;−qxt

)
=

∞∑
n=0

Sn(x; q)t n , G(ax, t ) = (at ; q)∞
(t ; q)∞

G(x, at ),

4. the Al-Salam-Carlitz II polynomials

G(x, t ) := (xt ; q)∞
(t ,αt ; q)∞

=
∞∑

n=0

(−1)n q
(n

2

)
(q ; q)n

V (α)
n (x; q), G(ax, t ) = (at ,αat ; q)∞

(t ,αt ; q)∞
G(x, at ),

5. the Al-Salam-Carlitz I polynomials

G(x, t ) := (t ,αt ; q)∞
(xt ; q)∞

=
∞∑

n=0

U (α)
n (x; q)

(q ; q)n
t n , G(ax, t ) = (t ,αt ; q)∞

(at ,αat ; q)∞
G(x, at ),

6. the q-Charlier polynomials

G(x, t ) := 1

(t ; q)∞ 0φ1

( −
−α−1q

∣∣∣∣∣q ;−α−1qxt

)
=

∞∑
n=0

Cn (x;α; q)

(−α−1q, q ; q)n
t n , G(ax, t ) = (at ; q)∞

(t ; q)∞
G(x, at ),

7. the q-Laguerre polynomials

G(x, t ) := 1

(t ; q)∞ 0φ1

( −
qα+1

∣∣∣∣∣q ;−qα+1xt

)
=

∞∑
n=0

L(α)
n (x; q)

(qα+1; q)n
t n , G(ax, t ) = (at ; q)∞

(t ; q)∞
G(x, at ),

8. the little q-Laguerre / Wall polynomials

G(x, t ) := (t ; q)∞
(xt ; q)∞ 0φ1

( −
αq

∣∣∣∣∣q ;αqxt

)
=

∞∑
n=0

(−1)n q
(n

2
)

(q ; q)n
pn (x;α|q)t n , G(ax, t ) = (t ; q)∞

(at ; q)∞
G(x, at ).

Using the above generating functions G(x, t ) and the relations between G(ax, t ) and G(x, at )
we prove

Theorem 10 The following multiplication and translation formulas are valid for:

1. the discrete q-Hermite II polynomials

h̃n(ax; q) =
b n

2 c∑
m=0

(−1)m an−2m q
(n−2m

2

)
(q ; q)n(a2; q2)m

q
(n

2

)
(q2; q2)m(q ; q)n−2m

h̃n−2m(x; q),

2. the discrete q-Hermite I polynomials

hn(ax; q) =
b n

2 c∑
m=0

an(q ; q)n(a−2; q2)m

(q2; q2)m(q ; q)n−2m
hn−2m(x; q),

3. the Stieltjes-Wigert polynomials

Sn(ax; q) =
n∑

m=0

am(a; q)n−m

(q ; q)n−m
Sm(x; q),

4. the Al-Salam-Carlitz II polynomials

V (α)
n (ax; q) =

n∑
m=0

n−m∑
k=0

(−a)mαk q
(m

2

)
(q ; q)n(a; q)k (a; q)n−m−k

(−1)n q
(n

2

)
(q ; q)k (q ; q)m(q ; q)n−m−k

V (α)
m (x; q),
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5. the Al-Salam-Carlitz I polynomials

U (α)
n (ax; q) =

n∑
m=0

n−m∑
k=0

anαk (q ; q)n(a−1; q)k (a−1; q)n−m−k

(q ; q)m(q ; q)k (q ; q)n−m−k
U (α)

m (x; q),

6. the q-Charlier polynomials

Cn(q−(x+a);α; q) =
n∑

m=0

q−ma (q−a ; q)n−m(−α−1q, q ; q)n

(q ; q)n−m(−α−1q, q ; q)m
Cm(q−x ;α; q),

7. the q-Laguerre polynomials

L(α)
n (ax; q) =

n∑
m=0

am(a; q)n−m(qα+1; q)n

(q ; q)n−m(qα+1; q)m
L(α)

m (x; q),

8. the little q-Laguerre / Wall polynomials

pn(ax;α|q) =
n∑

m=0

(−1)m(−a)n q
(m

2

)
(q ; q)n(a−1; q)n−m

q
(n

2

)
(q ; q)m(q ; q)n−m

pm(x;α|q).

Proof The results follow by equating coefficients of t n in the relations between G(ax, t )
and G(x, at ), using the q-binomial theorem (see e.g. [23, page 16])

(az; q)∞
(z; q)∞

=
∞∑

n=0

(a; q)n

(q ; q)n
zn , 0 < |q | < 1, |z| < 1.

ut

4.2 Second Method

In this method, for the remaining families of q-classical orthogonal polynomials we use
the inversion formulas (4). It has been shown that

Theorem 11 (See [28], [39], compare [2], [12]) The inversion coefficients of the polyno-
mial systems of the q-Hahn class are given in Table 1.

Due to the bases in which the q-COP are represented, we consider here two cases.

4.2.1 Multiplication Coefficients of q-Orthogonal Polynomials Expanded in the Basis {xn}

We suppose that the q-COP pn(x) are expanded in the basis xn , i.e.

pn(x) =
n∑

j=0
A j (n)x j ,

so that

pn(ax) =
n∑

j=0
A j (n)a j x j .

We combine the latter expression with the inversion formula

x j =
j∑

m=0
Im( j )pm(x)
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Table 1 Inversion coefficients for q-COP

Family Basis Im (n)

big q-Jacobi {(x; q)n }n (−1)m
[n
m

]
q

q
m(m−1)

2
(αq,γq ;q)n (1−αβq2m+1)

(αβqm+1 ;q)n (1−αβqn+m+1)

q-Hahn {(x; q)n }n (−1)m
[n
m

]
q

q
m(m−1)

2
(αq,q−N ;q)n (1−αβq2m+1)

(αβqm+1 ;q)n (1−αβqn+m+1)

big q-Laguerre {(x; q)n }n (−1)m q
m(m−1)

2
[n
m

]
q

(αq,βq ; q)n

q-Meixner {(x; q)n }n (−1)n−m
[n
m

]
q

q
1
2 (m+1)(m−2n)γn (βq ; q)n

affine q-Krawtchouk {(x; q)n } (−1)m q
m(m−1)

2
[n
m

]
q

(q−N ; q)n (pq ; q)n

q-Krawtchouk {(x; q)n } (−1)m q
m(m−1)

2
[n
m

]
q

(q−N ;q)n
(−pqm ;q)m (−pq2m+1 ;q)n−m

quantum q-Krawtchouk {(x; q)n } (−1)m q
1
2 (m+1)(m−2n)p−n

[n
m

]
q

(q−N ; q)n

little q-Jacobi {xn }n (−1)m
[n
m

]
q

q
m(m−1)

2
(αq ;q)n (1−αβq2m+1)

(αβqm+1 ;q)n (1−αβqn+m+1)

alternative q-Charlier {xn }n (−1)m
[n
m

]
q

q
m(m−1)

2 (1+αq2m )
(−αqm+1 ;q)n (1+αqm )

to get

pn(ax) =
n∑

m=0
Dm(n, a)pm(x) with Dm(n, a) =

n−m∑
j=0

a j+m A j+m(n)Im( j +m).

We use the q-analogue of Algorithm 2.8 of [25, p. 22]4 to convert Dk (n, a) into q-hypergeometric
notation. It follows that

Theorem 12 The multiplication formulae of the little q-Jacobi and alternative q-Charlier
polynomials represented in the basis {xn} are given, respectively, by:

pn (ax;α,β|q) =
n∑

m=0

(−a)m q
m(m+1)

2 (αβqn+1; q)m (q−n ; q)m

(αβqm+1; q)m (q ; q)m
2φ1

(
qm−n ,αβqm+n+1

αβq2m+2

∣∣∣∣∣q ; aq

)
pm (x;α,β|q),

yn (ax;α; q) =
n∑

m=0

(−a)m q
m(m+1)

2 (q−n ; q)m (−αqn ; q)m

(q ; q)m (−αqm ; q)m
2φ1

(
qm−n ,−αqm+n

−αq2m+1

∣∣∣∣∣q ; aq

)
ym (x;α; q).

4.2.2 Multiplication Coefficients of q-Orthogonal Polynomials Expanded in the Bases
{(x; q)n} or {(i x; q)n}

To solve the multiplication problem in these cases, we need the following result given in
[15, Exercise 1.3].

Lemma 13 The multiplication formula of the basis {(x; q)n} is given by

(ax; q)n =
n∑

m=0

[n
m

]
q

am(a; q)n−m(x; q)m . (7)

4 explicitly the Maple procedure sum2qhyper of the accompanying qsum package
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Proof Since

Dq (ax; q)n =−a[n]q (aqx; q)n−1,

it follows by iteration that

Dk
q (ax; q)n = (−a)k q

(k
2

) (qn−k+1; q)k

(1−q)k
(aqk x; q)n−k .

In order to obtain (7) we apply the operator Dk
q to both sides of the relation (ax; q)n =

n∑
m=0

Dm(n, a)(x; q)m . This yields

ak (qn−k+1; q)k (aqk x; q)n−k =
n∑

m=k
Dm(n, a)(qm−k+1; q)k (qk x; q)m−k .

For x = q−k , since (1; q)k = 0, k 6= 0, the latter equation gives the result. ut

Remark 14 Another proof of (7) is by observing that the right hand side equals

(a; q)n 2φ1

(
q−n , x

a−1q1−n

∣∣∣∣∣q ; q

)

which is evaluated by the q-Chu-Vandermonde formula

2φ1

(
q−n , a

c

∣∣∣∣∣q ; q

)
= an (ca−1; q)n

(c; q)n
.

This gives

(a; q)n 2φ1

(
q−n , x

a−1q1−n

∣∣∣∣∣q ; q

)
= (a; q)n

((ax)−1q1−n ; q)n

(a−1q1−n ; q)n
= (ax; q)n .

Using the representation of pn(x) in the basis (x; q)n , Equation (7) and the inversion for-
mulae of these polynomial systems, we prove

Theorem 15 For the classical q-orthogonal polynomials represented in the basis {(x; q)n},
the following multiplication and translation formulae are valid:
1. q-Meixner

Mn (q−(x+a);β,γ; q) =
n∑

m=0

n−m∑
j=0

(−1)m+ j qma qmn+n j+ j (q−a ; q) j (q−n ; q)m (qm−n ; q) j

q
(m

2
)
γ j (βqm+1; q) j (q ; q) j (q ; q)m

×2φ1

(
q− j ,βqm+1

qa− j+1

∣∣∣∣∣q ;− γ

qm

)
Mm (q−x ;β,γ; q),

2. quantum q-Krawtchouk

K
qtm
n (ax; p, N ; q) =

n∑
m=0

n−m∑
j=0

(−a)m p j qmn+n j+ j (q−n ; q) j+m (a; q) j (q−N ; q)m

q
(m

2
)
(q−N ; q) j+m (q ; q) j (q ; q)m

×2φ1

 q− j , qm−N

q1− j

a

∣∣∣∣∣∣q ;
1

pqm

K
qtm
m (x; p, N ; q),
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3. q-Krawtchouk

Kn (q−(x+a); p, N ; q) =
n∑

m=0

n−m∑
j=0

(−q−a )m q j+ m(m+1)
2 (q−n ; q)m+ j (−pqn ; q)m+ j (q−a ; q) j (q−N ; q)m

(q−N ; q)m+ j (q ; q) j (q ; q)m (−pqm ; q)m

×3φ2

(
q− j , qm−N ,0

q1− j+a ,−pq2m+1

∣∣∣∣∣q ; q

)
Km (q−x ; p, N ; q),

4. big q-Laguerre

Pn (ax;α,β; q) =
n∑

m=0

n−m∑
j=0

(−a)m q j+ m(m+1)
2 (a; q) j (q−n ; q)m (qm−n ; q) j

(αqm+1; q) j (βqm+1; q) j (q ; q) j (q ; q)m

×3φ2

 q− j ,αqm+1,βqm+1

q
aq j ,0

∣∣∣∣∣∣q ; q

Pm (x;α,β; q),

5. affine q-Krawtchouk

K
aff
n (ax; p, N ; q) =

n∑
m=0

n−m∑
j=0

(−a)m q j (N+1)+ m(m+1)
2 (

q
qm+ j ; q)N (a; q) j (q−n ; q)m (qm−n ; q) j

(pqm+1; q) j (q ; q) j (q ; q)m (qm ; q) j (q1−m ; q)N

×3φ2

 q− j , qm−N , pqm+1

q
aq j ,0

∣∣∣∣∣∣q ; q

K
aff
m (x; p, N ; q),

6. q-Hahn

Qn (q−(x+a);α,β, N |q) =
n∑

m=0

n−m∑
j=0

(−q−a )m q j+ m(m+1)
2 (qm−n ; q) j (q−n ; q)m (q−a ; q) j (αβqn+1; q)m+ j

(q ; q) j (q ; q)m (qm−N ; q) j (αqm+1; q) j (αβqm+1; q)m

×3φ2

(
q− j , qm−N ,αqm+1

qa− j+1,αβq2m+2

∣∣∣∣∣q ; q

)
Qm (q−x ;α,β, N |q),

7. big q-Jacobi

Pn (ax;α,β,γ; q) =
n∑

m=0

n−m∑
j=0

(−a)m q j+ m(m+1)
2 (qm−n ; q) j (q−n ; q)m (a; q) j (αβqn+1; q)m+ j

(q ; q) j (q ; q)m (αqm+1; q) j (γqm+1; q) j (αβqm+1; q)m

×3φ2

 q− j ,αqm+1,γqm+1

q
aq j ,αβq2m+2

∣∣∣∣∣∣q ; q

Pm (x;α,β,γ; q).

Proof Combining

pn(ax) =
n∑

j=0
A j (n)(ax; q) j , (ax; q) j =

j∑
k=0

Bk ( j )(x; q)k and (x; q)k =
k∑

m=0
Im(k)pm(x)

and interchanging the order of summation gives

pn(ax) =
n∑

m=0
Dm(n, a)pm(x) with Dm(n, a) =

n−m∑
j=0

j∑
k=0

A j+m(n)Bm+k ( j +m)Im(k +m).

We use the q-analogue of Algorithm 2.8 of [25, p. 22] to convert
j∑

k=0
Bm+k ( j +m)Im(k+m)

into q-hypergeometric notation. ut
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Riese [31] developed an algorithm which finds recurrence equations for q-hypergeometric
multiple sums and implemented it in Mathematica in his package qMultisum. Using this
algorithm, we get

Proposition 16 The following recurrence relations are satisfied by the multiplication co-
efficients of:
1. q-Meixner polynomials

−γa2q6 (
qn −qm)(

1−q1+mβ
)(

1−q2+mβ
)

Dm (n, a)−aq3
(
1−q1+m

)(
1−q2+mβ

)(
q2m+4

−aqm+n+3 +aγqm+1(1+q)+γqm+3 −aγqn (1+q +q2)−βγq2m+4 +aβγqm+n+3
)
Dm+1(n, a)

+q
(
1−q1+m

)(
1−q2+m

)(
(aq5+2m −a2q3+m+n +aγqm+3 −aβγq2m+5 +a2βγqm+n+3)(1+q)

−q8+3mβ+a2q6+2m+nβ+a2q2+mγ−a2γqn (1+q +q2)
)
Dm+2(n, a)

−a
(
−1+q1+m

)(
−1+q2+m

)(
−1+q3+m

)(
−q3+m +aqn

)(
q3+m +γ

)
D3+m (n, a) = 0,

2. quantum q-Krawtchouk polynomials

a2q6 (
qm −qn)(

q1+m −qN
)(

qN −qm
)

Dm (n, a)+aq3
(
q1+m −1

)(
q1+m −qN

)(
apq3+m+n+N

+aq2+m+n −q3+2m +q3+m+N −pq4+2m+N −aqn+N (1+q +q2)+aq1+m+N (1+q)
)
Dm+1(n, a)

+q1+N
(
−1+q1+m

)(
−1+q2+m

)(
−pq7+3m +a2pq5+2m+n −a2q2+m+N +a2qn+N (1+q +q2)

+(aq4+2m −a2q2+m+n −aq3+m+N +apq5+2m+N −a2pq3+m+n+N )(1+q)
)
Dm+2(n, a)

−aq2N
(
−1+q1+m

)(
−1+q2+m

)(
−1+q3+m

)(
−1+pq3+m

)(
−q3+m +aqn

)
Dm+3(n, a) = 0,

with the initial conditions Dn(n, a) = an , Dn+s (n, a) = 0, s = 1,2,3.

5 Multiplication Coefficients of Askey-Wilson and Wilson polynomials

In this section, we solve the multiplication problem for the Askey-Wilson and Wilson
polynomials defined, respectively, by

pn(x; a,b,c,d |q) = (ab, ac, ad ; q)n

an 4φ3

(
q−n , abcd qn−1, ae iθ , ae−iθ

ab, ac, ad

∣∣∣∣∣q ; q

)
, x = cosθ,

Wn(x2; a,b,c,d) = (a +b)n(a + c)n(a +d)n 4F3

( −n,n +a +b + c +d −1, a + i x, a − i x

a +b, a + c, a +d

∣∣∣∣∣1

)
.

Our results can be extended to other families of classical orthogonal polynomials on a
quadratic or q-quadratic lattice by means of specialization and / or limiting processes
following the Askey scheme and it q-analogue [23]. To illustrate this approach, we solve
the multiplication problem for the q-Racah polynomials.

The basic hypergeometric resp. the hypergeometric representation of the Askey-Wilson
resp. the Wilson polynomials suggests to use the basis Bn(a, x) resp. ϑn(a, x) defined by
B0(a, x) ≡ 1,

Bn(a, x) = (ae iθ ; q)n(ae−iθ ; q)n = (aq s ; q)n(aq−s ; q)n =
n−1∏
k=0

(1−2axqk+a2q2k ), n ≥ 1, (8)
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where x = x(s) = cosθ = q s +q−s

2
, q s = e iθ ;

ϑn(a, x) = (a + i x)n(a − i x)n . (9)

The operator Dx is appropriate for Bn(a, x) whereas the corresponding operator for the
basis {ϑn(a, x)} is the Wilson operator ([9], [22]) defined for an even function f by

D f (x) =
f
(
x + i

2

)
− f

(
x − i

2

)
2i x

. (10)

5.1 Multiplication Formula of Askey-Wilson Polynomials

In order to get the multiplication coefficients Dm(n,α) of the relation

pn(αx; a,b,c,d |q) =
n∑

m=0
Dm(n,α)pm(x; a,b,c,d |q)

we need the multiplication coefficients of the basis family (Bn(a, x))n given by the follow-
ing

Proposition 17 For the Askey-Wilson polynomial basis (Bn(a, x))n , the multiplication for-
mula

Bn(a,αx) =
n∑

k=0
Ek (n)Bk (a, x) (11)

holds with

Ek (n) = qk
k∑

j=0

q− j 2
a−2 j

n−1∏
l=0

(1−αa2q l+ j −αq l− j +a2q2l )

(q, a2q1+2 j ; q)k− j (q, a−2q1−2 j ; q) j
.

The proof of this proposition uses Theorems 18 and 20 which follow below.

Theorem 18 (Expansion theorem, see e.g. [19], [20]) Let f be a polynomial of degree n,
then

f (x) =
n∑

k=0
fk Bk (a, x),

where

fk = (q −1)k

(2a)k (q ; q)k
q− k(k−1)

4 (Dk
q f )(xk ) (12)

with

xk := 1

2
(aqk/2 +a−1q−k/2),

where Dq is the Askey-Wilson operator defined by (see e.g. [6] )

Dq f (x) = f̌ (q1/2e iθ)− f̌ (q−1/2e iθ)

ě(q1/2e iθ)− ě(q−1/2e iθ)
,

with x = x(s) = cosθ = q s +q−s

2
, q s = e iθ , where for a function f defined on (−1,1) we

have f̌ (e iθ) := f (x), that is

f̌ (z) = f ((z +1/z)/2), z = e iθ ,

and ě(x) = x.
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Remark 19 When we set x = x(s) = cosθ = q s +q−s

2
, q s = e iθ , we haveDx f (x(s)) =Dq f (x).

Proof For m = 0,1, . . . ,k, we apply Dm
q to both sides of f (x) =

n∑
k=0

fk Bk (a, x) to get

Dm
q f (x) =

n∑
k=0

fkDm
q Bk (a, x) = fmDm

q Bm(a, x)+
n∑

k=m+1
fkDm

q Bk (a, x). (13)

By iteration of equation

Dx Bn(a, x) = 2a(1−qn)

q −1
Bn−1(a

p
q , x),

we have

Dm
q Bk (a, x) = (2a)m(qk−m+1; q)m q

m(m−1)
4

(q −1)m Bk−m(aq
m
2 , x). (14)

For all k 6= 0, Bk (aq
m
2 , x) = 0 ⇔ x = xm = 1

2 (aqm/2 +a−1q−m/2). We substitute x by xm in
(13) and use (14) to get the result. ut

We also need the following q-derivative rule due to Cooper [9] which is a generalization
of Relation (14).

Theorem 20 ([9]) The action of Dn
q on a function f is given by

Dn
q f (x) = 2n q

n(1−n)
4

(q1/2 −q−1/2)n

n∑
k=0

[n
k

]
q

qk(n−k)z2k−n f̌ (q
(n−2k)

2 z)

(q1+n−2k z2; q)k (q2k−n+1z−2; q)n−k
, (15)

where x = cosθ = 1
2 (z + z−1) and f̌ (z) = f ((z +1/z)/2) with z = e iθ .

Proof (of Proposition 17) We have xk = 1
2 (aq

k
2 +a−1q

−k
2 ) = 1

2 (z + z−1) with z = aq
k
2 . The

combination of Equations (12) and (15) with x = xk and z = aq
k
2 yields

fk = qk(1−k)
k∑

j=0

q j (2k− j )a2( j−k) f̌ (aqk− j )

(q, a2q1+2(k− j ); q) j (q, a−2q1−2(k− j ); q)k− j
.

If we substitute j by k − j , f (x) by Bn(a,αx), the result follows. ut

Finally we use the inversion formula of the Askey-Wilson polynomials.

Proposition 21 (See e.g. [3], [13]) The inversion formula of the Askey-Wilson orthogonal
polynomial family is given by

Bn(a, x) =
n∑

m=0

[n
m

]
q

q
m(m−1)

2
(−a)m(abqm , acqm , ad qm ; q)n−m

(abcd qm−1; q)m(abcd q2m ; q)n−m
pm(x; a,b,c,d |q). (16)

We can now state and prove the multiplication formula of the Askey-Wilson polynomials.
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Theorem 22 The following multiplication formula is valid for the Askey-Wilson polyno-
mials:

pn(αx; a,b,c,d |q) =
n∑

m=0
Dm(n,α)pm(x; a,b,c,d |q), (17)

with

Dm (n,α) = (−1)m am−n q
(m

2
)+2n (ab, ac, ad ; q)n

(abcd qm−1; q)m

n−m∑
s=0

[n − s
m

]
q

q−2s (abqm , acqm , ad qm ; q)n−m−s

(abcd q2m ; q)n−m−s
×

n−s∑
i=0

a−2i q−i 2

(q, a2q2i+1; q)n−s−i (q,
q

a2q2i ; q)i

s∑
j=0

q j
(
q−n , abcd qn−1; q

)
n+ j−s

n+ j−s−1∏
l=0

(1−αa2q l+i −αq l−i +a2q2l )

(q, ab, ac, ad ; q)n+ j−s
.

Proof From the basic hypergeometric representation of the Askey-Wilson polynomials,
since

pn(x; a,b,c,d |q) =
n∑

j=0
A j (n)B j (a, x) with B j (a, x) defined by (8), we have

pn(αx; a,b,c,d |q) =
n∑

j=0
A j (n)B j (a,αx).

From (11) and from the inversion formula (16), we have

B j (a,αx) =
j∑

k=0
Ek ( j )Bk (a, x) and Bk (a, x) =

k∑
m=0

Im(k)pm(x; a,b,c,d |q),

respectively. The combination of the above representations yields

pn(αx; a,b,c,d |q) =
n∑

m=0
Dm(n,α)pm(x; a,b,c,d |q)

with

Dm(n,α) =
n−m∑
k=0

n−m−k∑
j=0

Im(k +m)A j+k+m(n)Ek+m( j +k +m).

Since

Ek (n) =
k∑

i=0
Fi (k,n) with Fi (k,n) = qk

q−i 2
a−2i

n−1∏
l=0

(1−αa2q l+i −αq l−i +a2q2l )

(q, a2q1+2i ; q)k−i (q, a−2q1−2i ; q)i
,

it follows that

Dm(n,α) =
n−m∑
k=0

n−m−k∑
j=0

Im(k +m)A j+k+m(n)
k+m∑
i=0

Fi (k +m, j +k +m).

From the substitution n −m −k = s, we get

Dm(n,α) =
n−m∑
s=0

Im(n − s)
s∑

j=0

n−s∑
i=0

A j+n−s (n)Fi (n − s, j +n − s)

=
n−m∑
s=0

Im(n − s)
n−s∑
i=0

s∑
j=0

A j+n−s (n)Fi (n − s, j +n − s).

ut
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5.2 Multiplication Formula of Wilson Polynomials

It is possible to proceed by a limiting process to get the multiplication formula for the Wil-
son polynomials from the Askey-Wilson multiplication formula. However, we use here
the Wilson operator defined by Equation (10). Furthermore we need the following multi-
plication formula of the Wilson basis (ϑn(a, x))n .

Proposition 23 The following multiplication formula is valid for the Wilson basis (ϑn(a, x))n :

ϑn(a,αx) =
n∑

k=0

k∑
l=0

(−k)l

k !l !

(2a +2l )(a −αa −αl )n(a +αa +αl )n

(2a + l )k+1
ϑk (a, x). (18)

The proof of this proposition needs the following theorems which are the analogues of
Theorems 18 and 20.

Theorem 24 (See e.g. [22]) Let

yk = i
(
a + k

2

)
,

and assume that f (x) is a polynomial of degree n in x2. Then

f (x) =
n∑

k=0
fkϑk (a, x), with fk = 1

k !
(Dk f )(yk ). (19)

Proof Let j = 0,1, . . . ,k. We apply D j to both sides of f (x) =
n∑

k=0
fkϑk (a, x) and use the

relation

D jϑk (a, x) = k !

(k − j )!
ϑk− j

(
a + j

2
, x

)
, 0 ≤ j ≤ k

to get

D j f (x) = f j j !+
n∑

k= j+1
fk

k !

(k − j )!
ϑk− j (a + j

2
, x).

For x = i
(
a + j

2

)
, since ϑk (a, ai ) = 0, ∀k ≥ 1, we obtain

D j f

(
i

(
a + j

2

))
= f j j !.

This proves the theorem. ut

Theorem 25 (See [9]) The action of Dk on an even function f is given by

Dk f (x) =
k∑

l=0

(−k)l

l !

(2i x −k +2l )

(2i x −k + l )k+1
f

(
x + k −2l

2
i

)
. (20)

Proof (of Proposition 23) We combine (19) and (20) with x = i (a + k
2 ) to get

fk =
k∑

l=0

(−k)l

l !k !

(−2a −2k +2l )

(−2a −2k + l )k+1
f (i (a +k − l )).

If we substitute l by k−l and f (x) byϑn(a,αx), using (−1)k+1(−2a−k−l )k+1 = (2a+l )k+1,
the result follows. ut



24 D. D. Tcheutia et al.

We combine the representation of the Wilson polynomial w.r.t. the basis (ϑn(a, x))n , the
multiplication formula (18) and the inversion formula of the Wilson polynomials given
by ([28], [39])

ϑn(a, x) =
n∑

m=0

(
n

m

)
(−1)m(m +a +b,m +a + c,m +a +d)n−m

(a +b + c +d +m −1)m(a +b + c +d +2m)n−m
Wm(x2; a,b,c,d).

Then we proceed as in the proof of Theorem 22 to get

Theorem 26 The following multiplication formula is valid for the Wilson polynomials:

Wn((αx)2; a,b,c,d) =
n∑

m=0
Dm(n,α)Wm(x2; a,b,c,d) with

Dm (n,α) = (−1)m (a +b, a + c, a +d)n

(a +b + c +d +m −1)m

n−m∑
s=0

(n−s
m

)
(m +a +b,m +a + c,m +a +d)n−m−s

(n − s)!(2m +a +b + c +d)n−m−s

n−s∑
l=0

(−n + s)l (2a +2l )

l !(2a + l )n−s+1

s∑
j=0

(−n,n +a +b + c +d −1)n+ j−s (a −αa −αl , a +αa +αl ) j+n−s

( j +n − s)!(a +b, a + c, a +d) j+n−s
.

5.3 Multiplication Coefficients of the q-Racah Polynomials

The q-Racah polynomials defined by

Rn(µ(x);α,β,γ,δ|q) = 4φ3

(
q−n ,αβqn+1, q−x ,γδq x+1

αq,βδq,γq

∣∣∣∣∣q ; q

)
, n = 0,1, . . . , N ,

where
µ(x) := q−x +γδq x+1 and αq = q−N or βδq = q−N or γq = q−N ,

with a nonnegative integer N , are related to the Askey-Wilson polynomials in the follow-
ing way. If we substitute [23, p. 421]

a2 = γδq, b2 =α2γ−1δ−1q, c2 =β2γ−1δq, d 2 = γδ−1q and e2iθ = γδq2x+1

in the definition of the Askey-Wilson polynomials, we find

Rn(µ(x);α,β,γ,δ|q) = (γδq)
1
2 n

(αq,βδq,γq ; q)n
pn(ν(x); (γδq)

1
2 ,α(γδ)−

1
2 q

1
2 ,βγ−

1
2 (δq)

1
2 , (γq)

1
2 δ−

1
2 |q),

(21)
where

ν(x) = 1

2
γ

1
2 δ

1
2 q x+ 1

2 + 1

2
γ−

1
2 δ−

1
2 q−x− 1

2 .

The following multiplication formula for the q-Racah polynomial family is deduced from
the multiplication formula for the Askey-Wilson polynomials using the above Relation
(21) :

Rn(A ·µ(x);α,β,γ,δ|q) =
n∑

m=0
Dm(n, A)Rm(µ(x);α,β,γ,δ|q)

with

Dm (n, A) = (−1)m q
(m

2
)+2n (αq,βδq,γq ; q)m

(αβqm+1; q)m

n−m∑
s=0

[n − s
m

]
q

(αqm+1,βδqm+1,γqm+1; q)n−m−s

q2s (αβq2m+2; q)n−m−s
×

n−s∑
i=0

(γδq)−i q−i 2

(q,γδq2i+2; q)n−s−i (q,
q−2i

γδ
; q)i

s∑
j=0

q j (q−n ,αβqn+1; q)n+ j−s

j+n−s−1∏
l=0

(1− Aγδq l+i+1 − Aq l−i +γδq2l+1)

(q,αq,βδq,γq ; q)n+ j−s
.
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6 Conclusion and Perspective

In this work, we have used both analytic and algorithmic approaches to compute the
coefficients of the multiplication and translation formulas for all families of classical or-
thogonal polynomials of a continuous, a discrete and a q-discrete variable, and for the
Askey-Wilson, the Wilson and the q-Racah polynomials. Outside the multiplication co-
efficients for the Hermite, the Laguerre and the Bessel polynomials which were already
known, our results are new to the best of our knowledge. As perspective, it would be inter-
esting to simplify multiplication coefficients appearing in double or triple summation or
to see for which values of the parameter a the degree of complexity of those coefficients
can decrease.
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