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Abstract:

There are several well-known algorithms to calculate the Puiseux series developments of the branches
of an algebraic function. None of them, however, produces the formal series, even in those cases where
such a formal result is available. They produce, instead, truncated series, and give information that
can be used to handle the series as streams.

Here we give a new approach to the given problem. We show an algorithmic procedure which enables
us to produce the closed form result if it is of hypergeometric type (see [6] and [7]). Furthermore
in each case the algorithm produces a homogeneous and linear recurrence equation with polynomial
coefficients for the series coefficients. Other techniques were used in ([2]-[3]) to arrive at the same
differential and recurrence equations.

A finite linear recurrence equation is optimal for a representation by streams. In ([2]-[3]) it is pointed
out that this algorithm requires only O(NN) operations if N is the order of the number of series terms
considered. However, the complexity of the resulting recurrence equation — as well as of the differential
equation — can be extremely high, a fact, which supersedes the complexity order. We give an example
to illustrate that point.

It turns out, however, that many algebraic functions of low order with a sparse representation are of
hypergeometric type, and so closed form representations for the corresponding series can be given.

Keywords: formal power series, formal Puiseux series, Laurent-Puiseux series, linear differential
equations, linear recurrence equations, hypergeometric functions, functions of hypergeometric type.

1 Introduction

We consider algebraic functions y(x) which are given by some bivariate polynomial equation

N
F(z,y(x)) = Y pr(@)y(2)* =0 (1)
k=0

with coefficient functions py € IKK(x) where K is one of Z,Q, R, or C.



Locally the branches of an algebraic function in a neighborhood of the origin £ = 0 can be
represented by Laurent-Puiseux type series

o0
y(@) = 3 apatln (2)
k=ko
for some ky € IN and n € IN, with coefficients ay € C (kK € Np). If there is a power series
representation, i.e. if kg = 0 and n = 1, the origin is called a regular, otherwise a singular point of
the algebraic function.

There are well-known algorithms to find the coefficients of these representations iteratively,
see e.g. [10]. Roughly, they consist of both a method to find initial values which, in general, are
algebraic quantities, and of an iteration procedure to generate higher coefficients.

These algorithms are implemented in certain Computer Algebra Systems, e.g. in AXIoM [1]
(previously SCRATCHPAD), and MAPLE [8], see [11].

However, none of these algorithms leads to a formula for a;. For that reason AXIOM internally
works with streams, and lazy evaluation, i.e. the series objects are given by a finite number of initial
terms, and an (internally used) formula to calculate further coefficients, see e.g. [9]. Infinite series
representations, however, are not supported.

We will not emphasize on the question how to find suitable initial values. However, we present
an algorithm which generates a homogeneous linear recurrence equation for the coefficients searched
for. In the special case of hypergeometric type, i.e. if the generated recurrence equation possesses
only two summands, the formal solution can explicitly be given. Many algebraic functions of low
order are examples of that type.

2 The Algorithm

In ([6], see also [7]) we published an algorithm which generates the formal Laurent-Puiseux type

series representation § arz®/™ of an explicitly given function f(z) if certain conditions are satis-
k=k

fied. We will use a modioﬁed version of the same algorithm which constructs the coefficients of the

local Laurent-Puiseux representations (2) for the branches of an algebraic function given by (1).
In ([2]-[3]) a different algorithm was introduced generating the same differential equation for

y(z), and recurrence equation for its Puisieux coefficients. These authors gave an elegant algebraic

argument that each algebraic function of order N, given by (1), satisfies a homogeneous, linear

differential equation

N
> ar(@)y®(z) =0 (3)
k=0

with polynomial coefficients a;, € K (z) of order at most N: Equation (3) states that the N + 1 dis-
tinct functions y*) (k = 0,..., N) are linearly dependent members of the (at most) N-dimensional
linear space over IK(z) which is generated by the extension of IK(x) according to (1).

Algorithm

1. Let be given equation (1) with some bivariate polynomial F' for an algebraic function y(z) of
order N. Solving (1) for y(z)" produces then an equation of the form

y(@)™ = Ro(z,y(2)), (4)



where Ry is rational in the first variable z, and a polynomial of degree smaller than N with
respect to the second variable y.

2. Find a homogeneous linear differential equation with polynomial coefficients of
degree at most IN satisfied by y(x)

(a)

Search for a differential equation of first order
Differentiate (1) with respect to z taking into account that y(z) is a function of y. This
leads to a relation

Fi(z,y(z),y'(z)) =0 (5)

with a polynomial Fj that is linear in its third argument. Solving this equation for y'(x)
thus produces

Y (z) = Ri(z,y()) (6)

with rational R;. Simplify the expression

using (4) if y(z)" occurs. If the resulting expression is independent of y(z), then the
equation

y'(z) — Ri(z)y(z) =0
is a valid differential equation of first degree for y(z) which by a multiplication by the
denominator of R; yields the desired form.

Search for a differential equation of second order
If (a) was not successful, differentiation of (5) produces an equation of the form

Fy(z,y(@),y (z), 9" () =0 (7)

with a further polynomial F», linear in its fourth argument. Solving (7) for y"(x) gives
y"(z) = Ra(z,y(2),y (=) (8)

with rational Ry. Introduce the setting
y"(z) + Ay (z) + Aoy(z) =0, (9)

a second order differential equation for y(x) with (still unknown) functions Ay, A; which
are supposed to be rational in z. Substitute (8) in (9) (which eliminates y”(x)), then
multiply the equation by the denominator of the resulting expression (to work with poly-
nomials), substitute (6) in the resulting equation (which eliminates y'(z)), and multiply
again by the denominator. The resulting polyonomial may contain high powers of y(z).
Eliminate all powers greater than N—1 by a recursive application of (4) beginning with
the highest power. Finally we get a formula

P(H?,y(J?),AU,Al) =0 (10)



with a polynomial P whose degree with respect to its second argument ¥ is smaller than
N.

Equate the coefficients of P with respect to the second variable, and try to solve the
corresponding linear system for the 2 unknowns Ay, A;. If solution functions Ay, Ay
exist, then they are rational functions in x. Substituting these solutions in the setting
(9), and multiplying by the common denominator, generates a second order differential
equation of the desired form for y(z).

(c) Search for a differential equation of higher order
If (b) was not successful, continue with the same procedure by iterative differentiation
of (7) and corresponding settings

m—1
y ™ (@) + Y AyP(z) =0, (11)
k=0

a differential equation of degree m for y(z). The successive substitution of the derivatives,
multiplication by the denominators, and substitution of the high powers of y(z) results
in a polynomial equation

P(xay(x)?AOaAla s aAm—l) =0

of degree at most N —1 with respect to the second variable y. Equate the coefficients
of P with respect to y, and solve the corresponding linear system for the m unknowns
Ag, Ay, ..., Ap—1. If a solution exists, then the resulting expressions are rational func-
tions in x that we substitute in the setting (11), and multiply with the common denom-
inator, generating a differential equation of order m of the desired form for y(z).
Continue with this procedure until a differential equation is found. By (3) this procedure
stops at least for m = N.

3. Find the corresponding recurrence equation (for details, see ([6], Section 6))
Transfer the differential equation that was found in step 2 into a recurrence equation for the
coefficients aj. This is done by the formal substitution

alyD (@) = (k+1-1); - apiji (12)

into the differential equation. The resulting recurrence equation is then of the special type
M
ZPjak+j =0 y (13)
j=0

where P; (j =0,...,M) are polynomials in k, and M € IN.

4. Type of recurrence equation (for details, see ([6], Section 7))
If the recurrence equation (13) contains only two summands then y(z) is of hypergeometric
type, and an explicit formula for the coefficients can be found by the hypergeometric coefficient
formula (see [6], Equation (2.2)), and some initial conditions.



The following is a MATHEMATICA' [12] implementation of part 2 of the above algorithm. The
procedure AlgebraicDE[F,x,y] results in the differential equation that is satisfied by the algebraic
function y(xz) given by the equation F(x,y) = 0.

DEout [de_,y_,x_]:=Module[{X,DE,delist,k,n},
DE=(Expand[de] /. {y[x]->1,Derivative[n_] [y][x]->X"n});
delist=CoefficientList [DE,X];
Sum[Factor[delist[[k]]] Derivativel[k-1] [y][x],
{k,2,Length[delist]}]+Factor[delist[[1]]] y[x]==

1;

AlgebraicDE[F_,x_,y_]:=Module[
{n,k,j,z,eq,order,y0,eqlist,ylist,term,setting,intermediate,solution,list,values},
pluginf[expr_,form_,order_]:=Module[{level},

level=Length[CoefficientList [expr,y[x]]1]1-1;
If[level>=order,plugin[Expand[expr /.
y[x]"level->y[x]~(level-order)*form[[1,1,2]]],form,order],
expr]
1;
If [FreeQ[F,y[x]1],eq=(F /. y->y[x]),eq=F];
If [SameQ[Head [F] ,Equall,eq=Expand[eq[[1]]-eq[[2]]1]1==0,eq=Expand[eq]==0];
order=Length[CoefficientList[eq[[1]],y[x]1]1]-1;
y0=(Solveleq /. y[x]“order->z,z] /. z->y[x] order);
eqlist={};
ylist={};
(* normalization done *)
(* first order x)
AppendTo[eqlist,D[eq,x]1];
AppendTo[ylist,Solveleqlist[[1]1],y’ [x11[[1,111];
term=Cancel [Together [ExpandAll[ylist[[1,2]]/y[x]1] /.
{yo[[1,11]1,y[x]1" (-order)->1/y0[[1,1,2]1}]1];
If[FreeQ[term,y[x]],
Return[Denominator[term] y’[x]-Numerator[term] y[x]==0]1];
Print["No differential equation of order ",1," found"];
(* higher order *)
Do[
AppendTo[eqlist,D[eqlist[[n-1]1],x]1];
AppendTo[ylist,Solve[eqlist[[n]],Derivative[n] [y][x]1]1[[1,1]1]1];
setting=Sum[A[k] Derivativel[k] [y]l[x] /. A[n]l->1,{k,0,n}];
intermediate=setting;
Do[intermediate=Numerator[Together[intermediate /. ylist[[k]1]1],{k,n,1,-1}];
solution=plugin[intermediate,y0,order];
Clear[intermediate];
list=CoefficientList[solution,y[x]1];
Clear[solution];
values=Solve[list==Table[0,{k,1,Length[1list]}],Table[A[k],{k,0,n-1}1];
If [Not[values=={}],Return[DEout [Numerator [Together[setting /. values[[1]1]1]1],y,x11],
{n,2,order}]

' MATHEMATICA is a registered trademark of Wolfram Research, Inc.



3 Examples

In this section we want to give some examples for the use of the algorithm.

1. First we consider the algebraic equation

y(x)? +22—r? =0, (14)
ie.
y(@)? =12 — 22 (15)
Differentiation of (14) leads to
2z + 2y(z)y' () = 0 (16)
with the explicit form
, x
(@) =~ a7)

which is independent of y(x) so that the first order differential equation
(r* = 2”)y'(z) + ay(z) = 0 (18)
holds for y(x). By (12) the differential equation (18) is converted to the recurrence equation
(—24k) ax1— (L+k) r*ar1 =0

which is of hypergeometric type, and produces the two formal series

.- r| (2k)! 2k
—
y(@) ,g 42k (2 —1) K2

2. Next we consider the similar equation

(y(z) — 7’)2 +22—7r?>=0 (19)
with the explicit form
y(:r;)2 = 2ry(x) — 2. (20)
Differentiation of (19) leads to
2z + 2(—r + y(z))y' () =0, (21)
or -
y'(z) = — (22)
y(z) —r



In this case a simplification of expression y'(z)/y(x) using (20) yields

y'(z) T

y(z)  2?—ry(z)

which is not independent of y(x) so that no first order differential equation for y(z) is found.

Thus we continue our search, and differentiate (21) again, getting

2 +2y/(z)” +2 (= +y(z)) y"(z) =0, (23)
and L
V'a) = L 4

In the left hand side of the setting (9) we substitute y”(z) by (24), and multiply by the
common denominator of the resulting rational expression to get
2
—1—rAgy(z) + Ao y(e)” —r Ary/ (@) + A1 y(2) ' (2) — ¢/ (2)" .

Then we substitute y'(z) by (22), and multiply by the common denominator again with the
result

—r2—z?—rlg A+ (27’—r3A0 +27’$A1) y(z)+ (—1+3r2A0 —xAl) y(z)>=3r Aoy () + Aoy (z)*.

This expression contains powers of y(z) up to order 4. We reduce the degree to 1 by iteratively
using (20), and get finally

— 27?2 Ag— 2zt Ay — 1Pz A+ 2P A + (—15T3A0 +77’$2A0) y(x) . (25)

Now we set the coefficients of the powers of y(x) in this expression zero, and solve the resulting
linear system for the unknowns Ag and A;, which gives

7“2

A():O, Alzm (26)

If we substitute these values in the setting (9), and multiply by the common denominator,
again, we arrive at the differential equation for y(z)

—r?y'(2) +r’ay"(@) — 2’ y"(2) = 0. (27)
By (12) we get the equivalent recurrence equation for the Puisieux coefficients ay,
(1=k) (=2+k) ap—1 + (=1 +k) (L+k) r°ap41 =0 (28)

which, again, is of hypergeometric type, producing the two formal series

— (2 k)' 242k - (2 k)' 242k
e ) d = 2 —_— .
y() ,;)2-4kr2k L+ k) rk2” and y(@) =2r %2-4%216 1+ k) rk2”



3. Now we consider the algebraic equation

y(z)? +2y(z)? + 22 =0 (29)
of the explicit form
y(2)® = - (zy(z)? + =?) (30)
Differentiation of (29) leads to
2 +y(2)” + (2zy(z) + 3y(2)*)y'(2) =0, (31)
and thus to
Vw)= -y v (32

2ay(z) + 3y(z)?
In this case the first step of considering the expression y'(z)/y(x) is not successful, and
similarly no second order differential equation is found. We present the development for the
differential equation of egree 3.

Therefore we differentiate (31) again twice producing
2+4y(2)y(2) + 224/ (2)” + 6y(2) ¢ (2)” + 22 y(2) y" (@) + 3y(2)*y"(2) = 0
and
6/ (2)°+6y/(2)*+ (6y(2) +6 29 (2)+18y(2) ' (2) )y (=) + (22 y (@) +3y(2)” )y (2) =0
corresponding to
2+4y(@)y () + 22y (2)° + 6y(z) y' (2)°
2z y(r) +3y(x)?

y'(2) = - (33)

and

() = Y@+ 6/ @) +6y(@)y"(@) + 62y (@) y"() + 18y(2) y' (@) v ()
2z y(z) + 3y(x)? '

(34)
We introduce the setting

y"(z) + Ay (z) + A1y (%) + Aoy(z) =0 . (35)

After substituting (34), multiplying by the denominator, substituting (33), multiplying by
the denominator, substituting (32), and multiplying by the denominator again, we get the
following polynomial result (where we suppress the argument z of y(z))

—962° — 4802 y + (—720 23 — 48 2% — 3240 AQ) Y2+ (—288 23 — 192 74 Ag) y
+ (108057 — 245% — 36027 Ay — 322° A1) 4
648 7 + 216 22 — 21622 Ay — 96 7° Ay — 1922 Al) Y
2167 — 6022 — 36022 Ay + 247° Ay — 43223 A — 162* A, + 3247 AO)

+(-
+(
+ (965 — 4325 Ay + 9657 Ay — 43257 Ay — 962° Ay + 240" Ap)
+( 36 — 162 Ay + 1261 Ay — 1622 A; — 216 22 A, +720x3A0) Y8
+(

54 Ay — 216 2 A; + 1080 22 AO) + (=81 Ay + 810z Ag) y'® + 243 Ag y*!



which after an elimination of the powers of y larger than 2 using (30) recursively yields
—242° + 122545 — 8127 A; — 1528 A) — 2% A] — 10828 Ay — 16 2° Ay — 210 4,
+(—480t +362° Ay — 272° Ay + 1457 Ay + 2% Ay — 8147 Ay +152° Ay +2° Ao) y
+(—720% — 122" + 542" Ay + 427 Ay — 16227 A — 7855 Ay — 1627 Ay — 2® A
—24325 Ay — 9027 Ay — 1728 Ag — 2° AO) y? .

If we set the coefficients of this expression with respect to y zero, and solve the corresponding
linear system with respect to Ag, A1, and As, we get the rational solutions

—24
A —
0 z3 (27 +4x)
Y 24
! 2 (27 +4x)
Ay = 6

27T+ 4z

and after a multiplication with the common denominator we arrive at the differential equation
for y(x)
—24y(x) 4+ 24 xy () + 62%y" () + (27 3 + 4$4)y"'($) =0.

By an application of (12) this differential equation is converted to the recurrence equation for
the coeflicients

2 (—24k) (—14k) (=3+2k) ap_1 +3 (—14+k) (—4+3k) (—2+3k) ax =0

which is of hypergeometric type.

If we use the initialization data, we get the three closed term series solutions

x (-1 (1) (_§)2kx§+k n io: (=17 (-1)* (%)2kx§+k

—z
yi(z) = e > 97k LI (%)k k=0 927" k! (g)k

)

DDAy g, S CVCVEI(),

va()= 5 + 3

k=0 2276 (3), = 18-27%kL(3)
and
w)= $ (—1)%(—1)k(z‘+\/§)(—%)ka%+k £ (—1)%(—1)k(_i+\/§)(%)2k$%+k,

o7k k(L Lotk k(2
= 2. 27k k! (S)k = 18 - 27k k! (3)k
where (a); denotes the Pochhammer symbol (or shifted factorial) defined by

__ 1 if k=0
(@) := a-(a+1)---(a+k—1) ifkeN



4. Finally we consider the equation of fifth order (see e.g. [11], Example 1)
y(z)’ + 2z y(x)! —zy(z)’ —24%y(z) +2* — 2> = 0.

It turns out that no differential equation of order smaller than 5 is found. The algorithm then
produces the highly complicated differential equation of order 5 for y(z)

0 = 120 (54432 — 1134108 2 + 37203408 2> + 281967786 > + 1230374520 z*

+11657644290 2° 4 12450677400 2° 4 21363256476 27 — 161323223184 z°
+191964729654 z° + 650433460248 10 + 2279414773653 ' — 4536683337810 z:'2
—1667119660824 '3 + 2238685852584 '+ + 17601207569391 2'° + 9634391651640 z'°
—51665406476124 z'7 + 11346782526764 '® — 31807391940894 z° + 1929550976364 22°
+52687275029734 222 + 1543734656904 222 — 16908484455900 22 — 15461359024160 z>*
+6966972049632 22° — 288513300096 2226 — 197485208704 %7 + 28588643328 228
579962880 2% — 72253442™) (y(z) — 29/ (x))

+30z2 (120960 — 2069424 = + 56432844 22 + 400213278 3 + 1182018600 z*

+18113119074 2° — 138332777886 25 — 412899747018 22" — 176460847236 2.
+1810751206488 z° + 6932166985338 210 4 30112459757565 2! — 142261156307412 22
—41799613173558 22 + 4992317227050 z'* + 998106311239713 :'°

—841181120323800 2:'® — 497453297897334 2:'7 — 661731936759476 °
+2146290039043276 ' — 1848127081491960 2%° + 618680925247376 22!
+604952379151376 22 + 730462307204592 22 — 1275500751217600 z2*
+329313306725248 225 + 16592169798144 226 — 2172758109440 227 — 5639438529536 2
4159425753088 z2° + 5876097024 20 4- 12845056 g;31) Y (z)

+1023 (—145152 — 190944 z + 3437964 > — 769768434 > + 3487469904 z*

—29768539302 2° — 662986405314 5 — 2965998057066 =" — 4492564719768 2°
—25026922213788 7 + 11253928822218 ' + 89916578926269 ' — 94148948385972 z:'2
—289277304749562 '3 — 430857781924080 z'* + 1777988237992521 #:1°
—442086792624120 '8 — 423610968754578 17 — 4733089717358374 %
+11692972472188356 2'° — 10091792544402636 22° — 191982280714744 22!
+1757061267466128 222 + 6037508014604256 223 — 6142357758832608 :2*
+1370459170644480 2% + 58525075983936 26 + 41726406595840 227

—40779892978944 128 + 1237224640512 22° + 52568965120 20 + 143130624 x?’l) y" (z)

+5z* (—1306368 + 6905088 = + 5846580 2 — 835380540 2° + 13312685826 =™

+88564809906 ° — 249799299786 % — 1029878798427 27 — 6402220009146 2°
—26405493601773 27 — 995942403738 z'° + 88139507176443 z'" + 129185204574438 z'?
—147685369152168 2> — 570160264560330 z'* + 361007472690882 1

10



+1458452822920470 ¢ — 1322236450284177 z'7 — 3829698595215556 =8
+7915652686624152 219 — 4395830268317756 22° — 1939579125489742 2!
—124551120304104 222 + 5343794312610332 223 — 4025593530875232 22
+7T7670186871232 2° — 244909732864 25 + 69733357360384 227 — 35221389934080 228
+ 4 1104965650432 2°° + 55056719872 2% + 176160768 x31) Y (2)

+2° (—108— 108 2+ 1080 222 —1863 2> — 12836 z* +4270 2° +14076 2% — 21451 27 + 8192 xS)

(24192 — 309888 7 + 7154010 22 + 43413102 2> + 128874429 z* + 921434754 z°

+641396625 2° — 785077536 27 — 9150010194 2® — 1382801547 2° + 17592751371 z'°
+30927169413 ' — 75484940452 22 + 64747317160 z'* + 60583653282 14
—5107979484 ' — 101167000076 '® + 38111990992 '7 + 1908260032 z'®
4590340992 29 — 1933935360 22° 4 76462848 z2! + 3971072 2°* + 14336 x23) y W) ()

to be converted to the recurrence equation
0 = 3670016 (—32+ k) (=31 + k) (=63 +2k) (=127 +4k) (=125 + 4 k) ap_3
114336 (=31 + k) (1847584169040 — 245474685292 k + 12229317488 k*
—270755297 k° + 2247733 k") ar_s0
+71680 (—30 + k) (5106340398832 — 712934084634 k + 37304640535 k2
—867053838 k* + 7553041 k4) Gh—29
+1792 (—29 + k) (—5733035987328000 + 828032758801088 k — 44832058741478 k>
+1078440566413 k3 — 9724913503 k4) ak_o8
+256 (—28 + k) (104159014914036720 — 15228984809713838 k + 834446273409049 k2
—20307692886592 k> + 185210876261 k4) ap—o7
+128 (=27 + k) (—115213994699295920 + 16581492512727702 k — 890793330408059 k?
+21158083696953 k* — 187324340561 k4) 26
+320 (—26 + k) (261523489660826088 — 44478219897618088 k + 2831030436466297 k>

—79934222131760 k* + 844819438547 k4) Gk—25
+48 (=25 + k) (—9362885878701552592 + 1627753310296951180 &
—105989435137460860 k? + 3063677307904995 k> — 33171523498773 k4) Gk—24
+4 (=24 + k) (178027620674797339280 — 31360093098029528886 k
+2070363509913533231 k2 — 60712730831598066 k> + 667252215072881 k4) Gk—23
+4 (—23 + k) (—54336072942087552000 + 9246137431966092272 k
—586371145952587046 k2 + 16409668072287133 k3 — 170776876006879 k4) Gk—22

11



42 (=22 + k) (—200197610040055697280 + 36772496390714994748 k
—2529609061143644621 k> + 77222406585725912 k3 — 882487681714519 k4) o1
+4 (=21 + k) (48030754028234174320 — 7266357224497754322 k
+371587223129803393 k? — 6684720091603977 k> + 13370025350638 k4) a—20
+4 (=20 + k) (92964173086601713938 — 20367858196521329885 k
+1672814255784693545 k2 — 61029211282013905 k* + 834397378121107 k4) k19
+5 (=19 + k) (—47134872307190169408 + 10371375732712393708 k
—857803740661958792 k% 4 31600868198734667 k> — 437414404863583 k4) Q18
+3 (=18 + k) (—41228087445218516160 + 9266251586762053626
—779191321811937023 k2 + 29067781184443494 k> — 406123488332257 k4) ap_17
+ (=17 + k) (97077703503049159680 — 23486019628240708324 k
+2120748804586146328 k> — 84659168158617701 k> + 1259608661276987 k4) k16
46 (—16 + k) (71175885679600620 — 20141967853819256
+3678814686285739 k? — 309641096342211 k3 + 8847545752434 k4) ak_15
+3 (=15 + k) (—7924587028888143672 + 2131827489759700260 k
—215420923842410090 k2 + 9690285768386445 k3 — 163700813476723 k4) Gh—14

+12 (=14 + k) (—16280403354530310 +10163157396963119 k — 1798786291196759 k>
+125511521736614 k* — 3066345774044 k4) k13

+9 (—13 + k) (393319820385627520 — 124089824864656012 k + 14596866130117436 k>
—756656795626553 k> + 14533795679359 k4) Q12

+15 (=12 + k) (16520649136330852 — 7939611929676696 & + 1299577291158435 k?
—89658804052518 k3 + 2246012071283 k4) ap—11

+18 (=11 + k) (—15350964221844580 + 5205607425117416 k — 657415970944339 k2
+36547228152226 k* — 751507731019 k4) ar—10

+15 (=10 + k) (—3303883425538368 + 1727821099727602 k — 325306212813695 k2
+26380432162394 k> — 781828074733 k4) a9

+18 (=9 + k) (598893763169360 — 142404489157962 k + 3440503510327 k>
+1210614678738 k3 — 72902661603 k4) G—sg

+9 (=8 + k) (346209600203900 — 158105415207988 k + 25096693312979 k2
—1554669870312 k> + 26554458981 k4) Q7
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+18 (=7 + k) (—35193377957700 + 17382891058784 k — 3335152431823 k2
+303312539586 k> — 11293976787 k4) Qg

+18 (=6 + k) (—18307046703640 + 9594956615268 k — 1818119107317
+146714117238 K* — 4210785557 k') ay_s

+54 (=5 + k) (—461116148696 + 200897986010 k — 65516804275 K + 6146512445 &
~196554254 k" ) ax 4

+108 (—4 + k) (32307660700 + 26963077044 k — 8237236449 k* + 1097074359 >
54083304 k" ) a3

+108 (=3 + k) (—1665497540 + 1793441596 k — 689288103 k* + 112508109 &
— 6602202 k4) a2

4864 (=2 + k) (=4 + 3k) (—471485 + 427626 k — 125560 k% + 11904 k3) a1

145152 (3 — k) (=1 +k) (=3 +2k) (=5 +3k) (—1+3k) ay

This example shows that even for small degree of F' with respect to y the complexity of the
resulting differential and recurrence equations can be extremely high.

It turns out, however, that algebraic functions of low degree (smaller than 5 or 6) with sparse
representations often are of hypergeometric type. The following is a list of examples of that type
which we produced by an experimental implementation of our algorithm in MATHEMATICA [12].

F(z,y) differential equation

Bty —y? 2(1+3z)y—2x (1+3x)y +2°> (1+4z)y" =0

z+y:+zy dy + 2z (—4 + 81ac3) y' + 622 (1 + 3z) (1 3z + 93:2) y" + 7 (4 1+ 272%) " =0
2 +y? +zy? 3 (4—7:164) y+3z (—4+47.’L‘4) y +1622%y" + 23 (4—1—27:164) y" =0

1+ + 29 15y + 1772y +6 (2—|—27x2) y' + (4+27x2) y" =0

—z+y+azy’ —2y+2x (1+3x) (1—3x+9x2) y + z? (4+27x3) y" =0

—y? eyt -z (<2478%) y+62 (1422) (1-22+42%) ¢ +42% (1+45%) ¢ =0
“1t2?y + oyt =3 (T44ah) y+3a (T+4ah) v + 2425y +2° (=27 +42") ¥ =0
“1+afy+ay? 2(1+w) (l+a—a?)y+2z (1+2) (1-z+2%) g +2% (4+2°) 4 =0
(22 +42)% — d2%? 3 (8+$2) y— (28+3$2) Y + 222 (8+27z2) y" + o (—16+27$2) y" =0
(22 +12)* — Az%y?  —45Ay+69Azy — 242 (27A+512x4) y" + a3 (27A—256z4) y" =0

corresponding to the recurrence equations of hypergeometric type
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F(z,y) recurrence equation

2ty —y? 2(=2+k) (=5+2k) ag_1 + (—=2+Fk) (=1 +k) a =0

r+y? + oy 27 (=3 +k) (—24+k) (~1+k) ap3+2(—2+Fk) (1+k) (~14+2k) ap =0
2+ y* + 3y’ 3(=3+k) (=13+3k) (=5+3k) ap_s+4 (=3+k) (=14+k) (1+k)ar=0
L+ y* +zy? 3(14+k) 1+3k) (5+3k) ap+4(1+k) (2+k) (3+F) ars2=0
—r+y+ay’ 27 (=3 +k) (—2+k) arp 3+2 (=1 +k) (1+2k) ap =0

—y? +atyt—x (11 44k) (<5 +4k) ap_3+2 (1+k) (=1 4+2k) ar =0

A+ 22y +axy® 4 (-5+k) (=3+k) (~1+k)apa4+3(1—k) (~7+3k) (1+3k) ap=0
~1+22y+xy® (—4+k) (—1+k)ag3+2 (=14+k) (1+2k)ar=0

(®+y)> —42y® 3 (=34+k) (=7T+3k) (=5+3k) apr_o+4 (2—k) (=3+2k) (=1 +2Ek) ar =0
(22 +yH)* — Az?y? 256 (2— k) (=54 k) (—4+Fk) ap_a +3A (=34+k) (=5 +3k) (=1 4+3k) ap =0

The above examples were connected with differential equations of order at most 3. Here are final
examples corresponding to fourth order differential equations. The algebraic functions defined by

—y3 a2yt —2? =0, and 22+ zy(2)® +y(z)°,

respectively, satisfy the differential equations

—720y+152(69+17922 )y + 322 (—97+ 74244 )y + 182 (=3 425625 )y + 24 (2742564 )y (™) =0
and
720y + 62 (—125 + 82) i + 622 (625 + 97z) v + 32> (3125 + 198z) y" + z* (3125 4 108z) y™) =0,
respectively, which correspond to the recurrence equations

256 (=8 +Fk)(—6+k)(—4+k)(—2+Fk)ag_s+3(—6+Fk)(2+Fk)(—10+3k)(—2+3k)ar =0.
and

6 (—1+ k) (=3 + 2k) (—4 + 3k) (=2 + 3k) a1 + 5 (2 — 5k) (3 — 5k) (4 — 5k) (6 — 5k) ap =0,

respectively.

4 First order differential equations

The algorithm given in § 2 is self-explanatory, and it is clear how it produces a homogeneous linear
differential equation with polynomial coefficients for an algebraic function of order N. The fact
that there always exists such a differential equation of order N corresponds to the fact that the
linear system of N equations in the N variables Ag, A1,..., Axy_1 which has to be solved in the
final step of the algorithm is regular if there does not exist a differential equation of smaller order.
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In this section we give a complete description of algebraic functions satisfying a first order
differential equation of the type considered.

Theorem An algebraic function y(z) satisfies a first order homogeneus, linear differential equation
with polynomial coefficients in C(z) if and only if

y(z) = {r(z) = (== (p,q polynomials)

for some n € IN and some rational function r, i.e. if

F(z,y) = q(x)y" —p(z) = 0. (36)

Proof:  Assume firstly, y(z) is of the given type (36). Then by taking the logarithmic derivative
we get
q(z) v _ P2
q(z)  ylz)  p(o)
and thus we arrive at the first order differential equation

?

(= a(@) (@) + (=) ¢ (@) y(@) + np() g(z) y () = 0

for y(x).

Assume now, on the other hand, that y is an algebraic function satisfying a first order homo-
geneus, linear differential equation with polynomial coefficients. Then there is a rational function
R(z) such that

/
ZACI (37)
y(x)
If we integrate (37) using a complex partial fraction decomposition of R(x) we get a representation

of Iny(z) as a sum
d

Iny(z) = Ro(z) + Z ai In Ri(x)
k=1
with rational functions Ri(z) (k =0,...,d) and o € C (k =1,...,d). Thus

@) = P I (Ru(@)™ .
k=1

Now, as y(x) is algebraic, it turns out that the first factor e®(*) must be constant as otherwise

clearly y(z) is transcendental. This can be seen by a consideration of a neighborhood of xz = co.
Considering a neighborhood of the zeros and poles of the functions Ry (k = 1,...,d) shows that
the same is true if one of the exponents «y, is irrational or complex, so that for all k =1,...,d the

numbers o € Q, i.e. o = 2—: (pr € Z, qr € IN). Then, if n denotes the least common multiple of

the numbers g, (k =1,...,d), then Sj := Rzp’“/q’“ (k =1,...,d) are rational functions, and we get

d
y(z) = H S;/n = /S
k=1
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d
with rational S := [[ Sk which finishes the result. O

k=1
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