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Irrationality of certain infinite series||
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Summary: In a recent paper a new direct proof for the irrationality of Euler’s number
oo
1
e= Z E
k=0

and on the same lines a simple criterion for some fast converging series representing irrational
numbers was given. In the present paper, we give some generalizations of our previous results.

1 Irrationality criterion

Our considerations in [3] lead us to the following criterion for irrationality, where
[X] :=max{n € N |n < x}
denotes the floor function (Gauss bracket).

Theorem 1.1 Let ) {2, bj be a convergent series with bj = 0 for all natural numbers
j eN:={1,2,3,...} and bj > O for infinitely many j € N. Leta := >3j2; bj € R
denoteitslimitand s, := Z?:1 b; denote the corresponding partial sums. If

[n&] = [na]

for almost all n € N, i. e. for all but finitely many n € N, thenaisirrational.

Proof: From the given assumptions on bj it follows that s, < aforall n € N and therefore
ns, <na (neN).

We write ns, = [nsy)] + RyWith0 < Ry < landna= |na] + Rywith0 < R, < 1.
Therefore we have foralln e N
Insh) + Ry < [na) + Ry
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from which it follows by assumption that for almost all n € N
INs) + Ra < [nsn] + Ry

and hence R, > R,. Since R, 2> 0 forall n € N, we therefore get R, > 0 for almost all
n € N. Using [3, Lemma 4.4], we deduce that a is irrational. m|

For convenience, we cite here Lemma 4.4 from [3]:

Lemma4.4[3] Letc € R-q be arbitrary, and let the remainder 0 < R, < 1 be defined
by the division algorithm as

nc=[nc]+ Ry.
If R, > 0 for almost all n € N, then c is irrational.

Our goal is to find rather general families of series satisfying the assumptions of Theo-
rem 1.1. To identify such families we will emphasize on series for which bj € Q.

2 Irrational seriesof rational numbers

In this section we consider converging infinite series 3 {2, bj with bj € Q, bj = 0.
As in § 1, we still use the notations a = »°52, bj and S = ZT:l bk and we write
NSy = NS + Rywith0 S Ry <landna= |[naj + Ra with 0 £ R, < 1. Finally
we use the abbreviations Mp := [nsy] € N>q and My := |[na] € N>, To apply
Theorem 1.1, we need to find sufficient conditions for the property

[nsy] = [na] foralmostalln e N.

For that purpose, we use a constructive approach. Assume (pn)nen IS @ sequence of
integers pn € N>q with

NPnsh € N>q for alln e N. (2.1)

If bj = i—j with aj € N>q, ¢j € Nand ged(aj, ¢j) = 1, then py = lem(c, ..., Cn) is
such a choice.

We would like to note a crucial consequence of (2.1). Since R, = ns; — My, we have
pPn Rh = N ppSh — pn Mn. (2.1) implies n pn Sy — pn Mp € Z, and since Ry, = 0, we get

Pn R € N>y forallneN. (2.2)

Now we consider the remainder sequence ZTinH b; = Z‘j";l bnyj. If we demand
furthermore that the remainder tends to zero in a certain specific way, namely

o0
1
;b"“ < o (2.3)
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then it follows froma = s, + Zj’il bnj that

1
a< s+ foralln e N. (2.4)
N Pn
This finally yields together with s, < a
1
0fa—s < foralln e N. (2.5)
N pn

At this point, we would like to interrupt our general considerations with an instructive
example.

Example 2.1 Consider the series a = ‘J’O 1 convergingtoa = e— 1. Then s, =

Z?:l i, Here obviously n! s, € N, hence pp := (n—1)! is a suitable candidate sequence
satisfying (2.1). The question is whether pp does also satisfy (2.3). Since

[ee]

1 °°n+j—1_°°( 1 1 )
2;(n+j)!<j2_; n+))! _JZ_; n+j-D! n+p)

J:

(i. e., =1 js Gosper-summable [2] w. . t. j), we set

!
a 1 1
S":;((nﬂ ST (n+j>!)’

Therefore I|m S

and we get by telescoping Sy = ! (n+m), n,, hence

> 1
28 < -

j=1
so that pp, satisfies (2.3).
Our considerations result in the following

Theorem 2.2 Assume the series ) {2 bj converges to a and the summands bj satisfy
bj € Qand b; = 0 for all j € N. If there is a sequence (pn)nen Satisfying (2.1) and
(2.3),then [ns,| = [na] isvalidfor all n € N.

Proof: By (2.5), we have

0<a—s <

N Pn

forall n € N, and therefore 0 < ppna— pnnsy < lor

0= pn(mn+~Rn)—pn(Mn+Rn)<1.
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Hence
_pnﬁng pnmn_ PhMh—pnRy<1-— pnﬁn-
Because 0 < Ry < 1, we get

—Pn < pnmn—pnMn—ann<l-

~

Since by (2.2) pn Mn — pn Mp — pn Ry € Z, this yields furthermore
Pn Rh— pn < pnmn—pnMng Pn Rn.

Because 0 < R, < 1, this leads to

—Pn < PnMp — pnMn < pn,
and dividing by pn, finally gives
~1<Mp—My<1.

'I;his relation, however, shows that M, = M, for all n € N as announced because
Mn — Mn e 7. O

Combining Theorem 2.2 with Theorem 1.1 yields

Theorem 2.3 Assume the series » {2, bj converges to a and the summands b; satisfy
bj € Q,bj 2 0forall j e Nandbj > 0 for infinitely many n € N. If thereis a sequence
(Pn)nen satisfying (2.1) and (2.3), then aisirrational.

If we apply Theorem 2.3 to Example 2.1, then we deduce the well-known result that
eis irrational.

3 Exampletypesof irrational series

In this section, we give some rather general example types for which the above criterion
is applicable.

Definition 3.1 (Cantor series) A sequence (gj)jen Of positive integers gj € Ny, is
called a Cantor basis. \\e use the abbreviation Gy, := g; - - - gn. A series of the form

© Z
§ : J
70 + =
j=1 Gj

with zj € N>, Zj S gj—1forall j e Nandzj < gj — 1 for infinitely many j € Nis
called Cantor series with basis (gj) jen, see[4, pp. 69].
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Example 3.2 (Cantor series) Ifwesetgj = j +1,wehave Gh =0g1---On = (n+ 1)L
Hence the exponential series of Example 2.1 is clearly a Cantor series.

W. 1. 0. g. we assume zg = 0. Therefore leta = Z‘J’Ol Tioi Zi € Nxo.z5 = j for
all j and zj < j for infinitely many j. We would like to prove that every such Cantor
series converges towards an irrational number a if the series does not terminate.

Again we set s, = Y7, ﬁ Of course (n + 1)!'s, € N and therefore py =
(n — 1! (n+ 1) satisfies (2.1). Since z; < j forall j and zj < j for infinitely many j,
we get for the residues

Zng | n+ | 1 1
a— , - —
= Z(n+1+1)v X;(n+1+1)! n+1!  npn

by the computation of Example 2.1. Therefore py satisfies (2.3), too. Therefore, by
Theorem 2.3, if the series does not terminate, a is irrational.

We remark that this criterion is sharp in the sense that if we assume z; < j without
having zj < j for infinitely many j, then irrationality is not guaranteed which is shown
by the non-terminating series Z —17 J+1 5 = 1. Note that the summand +1 ; again is
Gosper-summable [2], hence the sum is telescoping, so that this sum can be computed
automatically.

We would like to note that for these very special Cantor series, [4] shows moreover
that every a € R has exactly one representation of the form

o Zj
a=12+ E . (3.1)
et (j+ 1!

withzj e N, z; < j forall j and zj < j for infinitely many j.
As another comment we mention that as soon as one knows the representation (3.1)

of a positive real number a, its irrationality status in clear. This would be of particular
interest for the Euler—Mascheroni constant

n

1
y= (35 -]
J=

whose irrationality status is still unknown, see e. g. [6].
\We give another example.

Example 3.3 In this example we assume that (gj) jen is an arbitrary sequence of positive

integers, and Qj = qu- - -@j. We consider the seriesa = > 72 J,Q with zj € N>0, zj <

jqj —1forall jand zj < jqj — 1 for infinitely many j, and set s, := ZJ 1 J'QJ
Then obviously s, < aforall n € N, and n! Qn s, € N>(. Therefore the numbers

Pn := (N —1)! Qp, satisfy (2.1). We will show that (2.3) is also valid so that Theorem 2.3
applies.
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We get again a telescoping series

I Zn+j o (N4 )0y — 1
a S”_Z(nﬂ)!Qnﬂ- <2 (N+ ! Qnyj

j=+1

2 T

1 1
iz 1((”+J—1)'Qn+1 1 (n+j)!Qn+j)’
so that we conclude that

ad Znyj 1 1
a-si=)» ian < =
=1 N+ PD!'Qntj  N'Qn Nnpp

so that by Theorem 2.3 ais irrational if additionally zj > O for infinitely many j, i. e., if
the series does not terminate.
We apply this criterion to certain specific cases:

1. gj = j leads to

o
A=
12
-1
with zj € N>, z; < j?2—1and zj < j? — 1 for infinitely many j. In particular
one deduces thata = 3724 -L s irrational. Note that a is related to the modified
Bessel function of the first kind:

a=1o(2) —1.

2. qj 2 2 for infinitely many j. Then j g; — 1 = 2j — 1 for infinitely many j. If we
set zj = j — 1, then we get zj < qu —1foral| jandzj = j—1<2j—1for
infinitely many j. Therefore ZJ 21 ,Q is irrational.

Next, we consider a similar example.

Example 3.4 In this example we assume again that (qj)jen is an arbitrary sequence

of positive integers, and Q; = q:---qj. We consider the series a = ZJ 1 J,Q with

zj € N>q, zj > 0 for infinitely many j, and zj < K for some K € Nandall j € N. We

set sy = ZT=1 J,Z—éj and claim that from these assumptions it follows that a := nIim Sh
: — 00

is irrational.

We have obviously s, < a for all n € N since zj > 0 for infinitely many j.
Furthermore n! QnSh € Nx>(. Therefore pn = (n — 1)! Qp is a suitable “candidate”
satisfying (2.1). B

Inspecting the residues for this series, we get

00 7z 00 Znt] 00
Z .!Qj_;(n"‘j)!QnH_ Z n+])'Qn+J

j=n+1 j=1

/\

“1ap|oy JybLAdos ayy Aq uoissiwiad uapLm Yym pamojfe Ajuo si asn 1ayjQ “Ajuo asn jeuosiad Inok 1oy ajaiue siy} anquisip pue Adod Aew no, “me| JybuAdos uewiss Aq pajosjoud si ajoipe sy



Irrationality of certain infinite series 11 123

For the latter series we can write

o0 9]

Z 1 B 1 Z n! Qn
M+ D!'Qn+j  NQn< N+ ! Qnyj’

j=1 j=1
Since
|
Qn <1 n < 1

o S M G S D)

for all j and for j > 1 further

n! 1
< -
(n+ ! (+1D!

(see e. g.[1]), we get

—  nlQn — 1 1
Z(n+j)!Qn+j<.Z(n+l)i_ﬁ'

j=1 j=1
Collecting the above inequalities, we deduce for the residues

= 7 1 K
> o
IQj n!Qn n

j=n+1

and therefore

Sh<a<s+

NQn n’

This yields—as usual—the desired result.

Finally, we will discuss hypergeometric series that in many instances are of one of
the types of Examples 3.3-3.4. By

a,...,ap >\ (a)j---(@p)j x
F x|=) —————1 .
p Q( bl,.--,bq ) jZO(bl)J(bq)J J!

we denote as usual the generalized hypergeometric series, where

@j:=a@+D---@+ -1

is the Pochhammer symbol or shifted factorial. Let zF§ := pFq — 1. This series starts
with j = 1 (like the series considered in our article). Obviously a series pFy is irrational
if and only if the corresponding pFq is.

Example 3.5 In this example, we consider hypergeometric series representing irrational
values.
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ol
0 1(m

Example 3.3 with gj := m+ j — 1 and therefore Q; := (m); shows that o F} (m; 1)
and therefore o F1(m; 1) is irrational. The modified Bessel function is of this type.
Analogously g F1(m; %) is irrational for every k € N. Furthermore, a similar argu-

ment shows that o Fg (m; %) is irrational for every m, g, k € N.

1. Let m € N. We consider

=1
1>=Z(m)jj!'

j=1

2. The hyperbolic functions

0 2k _ 00 2kl
coshx = JXZ(;M and sinhx = ;m

are given as power series whose every second Taylor coefficient vanishes. Here
Example 3.4 applies, and the values cosh(%) and sinh(%) are irrational whenever
keN.

References

[1] K. Knopp. Theorie und Anwendung der unendlichen Reihen. Springer, fifth edition,
1964.

[2] W. Koepf. Hypergeometric Summation. Vieweg, 1998.

[3] W. Koepf, D. Schmersau. Irrationality of certain infinite series. Analysis 30, 2010,
27-34,

[4] W. Rautenberg. Elementare Grundlagen der Analysis. Bl Wissenschaftsverlag, 1993.

[5] D. Schmersau, W. Koepf. Diereellen Zahlen als Fundament und Baustein der Anal-
ysis. Oldenbourg, 2000.

[6] J. Sondow. Criteria for irrationality of Euler’s constant. Proc. Amer. Math. Soc. 131,
2003, 3335-3344.

Wolfram Koepf Dieter Schmersau
Department of Mathematics Department of Mathematics
University of Kassel Free University of Berlin
Heinrich-Plett-Str. 40 Arnimallee 2-6

34132 Kassel 14195 Berlin

Germany Germany

koepf@mathematik.uni-kassel.de

“1ap|oy JybLAdos ayy Aq uoissiwiad uapLm Yym pamojfe Ajuo si asn 1ayjQ “Ajuo asn jeuosiad Inok 1oy ajaiue siy} anquisip pue Adod Aew no, “me| JybuAdos uewiss Aq pajosjoud si ajoipe sy


mailto:koepf@mathematik.uni-kassel.de

