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Online Demonstrations with
Computer Algebra

• I will use the computer algebra system 
Maple to demonstrate and program the 
algorithms presented. 

• Of course, we could also easily use any
other system like Mathematica or MuPAD.

• We first give a short introduction about the 
capabilities of Maple.



Computation of Power Series

• Assume, given an expression f depending
of the variable  x, we would like to compute 
a formula for the coefficient  ak of the 
power series

representing  f(x).
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Algorithm

• Input: expression f(x)
• Determine a holonomic differential equation DE 

(homogeneous and linear with polynomial 
coefficients) by computing the derivatives of  f(x) 
iteratively.

• Convert DE to a holonomic recurrence equation
RE for  ak.

• Solve RE for  ak.
• Output: ak resp.  È ak xk



Computation of Holonomic
Differential Equations

• Input: expression  f(x)
• Compute c0f(x) + c1f ´(x) + � + cJf(J)(x)  with still 

undetermined coefficients  cj. 

• Sort this w. r. t. linearly independent functions       
± ·(x) and determine their coefficients.

• Set these zero, and solve the corresponding linear 
system for the unknowns  c0, c1, …, cJ.

• Output:  DE:=c0f(x) + c1f ´(x) + � + cJf(J)(x) = 0.



Algebra of Holonomic Functions

• We call a function that satisfies a holonomic
differential equation a holonomic function.

• Sum and product of holonomic functions turn out 
to be holonomic.

• We call a sequence that satisfies a holonomic
recurrence equation a holonomic sequence.

• Sum and product of holonomic sequences are 
holonomic.

• A function is holonomic iff it is the generating 
function of a holonomic sequence.



Hypergeometric Functions

• The power series

whose coefficients  Ak have rational term 
ratio

is called the generalized hypergeometric
function.
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Coefficients of 
Hypergeometric Functions

• For the coefficients of the hypergeometric 
function we get the formula

where  (a)k = a(a+1)�(a+k-1) is called the
Pochhammer symbol (or shifted factorial).
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Examples of 
Hypergeometric Functions

Further examples:  cos(x), arcsin(x), 
arctan(x), ln(1+x), erf(x), Ln

(α)(x), ..., but for
example not tan(x), ...
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Identification of 
Hypergeometric Functions

• Assume we have

• How do we find out which pFq(x) this is?
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Identification Algorithm

• Input: ak

• Compute

and check whether the term ratio rk is
rational.

• Factorize rk.
• Output: read off the upper and lower 

parameters and an initial value.
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Recurrence Equations for 
Hypergeometric Functions

• Given a sequence  sn, as hypergeometric 
sum

how do we find a recurrence equation for 
sn?
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Celine Fasenmyer’s Algorithm

• Input: summand  F(n,k)
• Compute

• Bring this into rational normal form, and set 
the numerator coefficient list w.r.t.  k zero.

• Output: Sum the resulting recurrence 
equation for F(n,k) w.r.t.  k.
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Drawbacks of 
Fasenmyer’s Algorithm

• In easy cases this algorithm succeeds, but:

– In many cases the algorithm generates a
recurrence equation of too high order.

– The algorithm is slow. If,  e.g., I = 2  and  
J = 2, then already 9 linear equations 
have to be solved.

– Therefore the algorithm might fail.



Indefinite Summation

• Given a sequence  ak , find a sequence  sk
which satisfies

• Having found  sk makes definite summation 
easy since by telescoping for arbitrary m, n

• Indefinite summation is the inverse of   ∆ .
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Gosper’s Algorithm

• Input: ak , a hypergeometric term.
• Compute pk, qk, rk ± ·[k] with

• Find a polynomial solution  fk of the 
recurrence equation  qk+1 fk - rk+1 fk-1 = pk .

• Output: the hyperg. term
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Definite Summation:
Zeilberger’s Algorithm

• Zeilberger had the brilliant idea to use a 
modified version of Gosper’s algorithm to 
compute definite hypergeometric sums

• Note however that, whenever sn is itself a 
hypergeometric term, then Gosper’s 
algorithm, applied to  F(n,k), fails!
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Zeilberger’s Algorithm

• Input: summand  F(n,k)
• For suitable  J ± ´ set  

ak := F(n,k) + σ1F(n+1,k) + � + σJ F(n+J,k) .
• Apply the following modified version of Gosper’s 

algorithm to ak :
– In the last step, solve at the same time for the 

coefficients of fk and the unknowns σj ± ·(n).

• Output by summation: The recurrence equation
RE := sn + σ1 sn+1 + � + σJ sn+J = 0 .



The output of 
Zeilberger’s Algorithm

• We apply Zeilberger’s algorithm iteratively for     
J = 1,2, … until it succeeds.

• If J = 1 is successful, then the resulting recurrence 
equation for  sn is of first order, hence  sn is a 
hypergeometric term.

• If J > 1, then the result is a holonomic recurrence 
equation for  sn.

• One can prove that Zeilberger’s algorithm 
terminates for suitable input.

• Zeilberger’s algorithm is much faster than 
Fasenmyer’s.



Representations of Legendre 
Polynomials
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Dougall’s Identity

• Dougall (1907) found the following identity
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Clausen’s Formula

• Clausen’s formula gives the cases when a 
Clausen  3F2 function is the square of a 
Gauss 2F1 function:

• The right hand side can be detected from 
the left hand side by Zeilberger’s algorithm.
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A Generating Function Problem

• Recently Folkmar Bornemann showed me a 
newly developed generating function of the
Legendre polynomials and asked me to 
generate it automatically.

• Here is the question: 
Write

as a hypergeometric function!
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Generating Function as a 
Double Sum

• We can take any of the four given hyper-
geometric representations of the Legendre 
polynomials to write G(x,z,D)  as double 
sum.

• Then the trick is to change the order of 
summation
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Automatic Computation of 
Infinite Sums

• Whereas Zeilberger’s algorithm finds Chu-
Vandermonde’s formula for n ± ´�0

the question arises to detect Gauss’ identity

for a,b,c ± © in case of convergence.
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Solution

• The idea is to detect automatically

and then to consider the limit as m � �.
• Using appropriate limits for the Γ function, 

this and similar questions can be handled
automatically by a Maple package of 
Vidunas and Koornwinder.
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The WZ Method

• Assume we want to prove an identity 

with hypergeometric terms f(n,k)  and    .

• Dividing by  , we may put the identity into
the form
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Rational Certificate

• If Gosper’s algorithm, applied to F(n+1,k)-F(n,k),
is successful, then it generates a rational multiple 
G(n,k) of F(n,k), i.e.  G(n,k) = R(n,k) F(n,k), such 
that

F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)
• By telescoping, this proves  sn+1�sn = 0, hence the 

identity.
• Second proof: Dividing by F(n,k), we may prove

a purely rational identity.
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Differential Equations

• Zeilberger’s algorithm can easily be adapted 
to generate holonomic differential equations 
for hyperexponential sums

• For this purpose, the summand F(x,k)  must 
be a hyperexponential term, i.e.
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Petkovsek’s Algorithm

• Petkovsek’s algorithm is an adaption of 
Gosper’s.

• Given a holonomic recurrence equation, it 
determines all hypergeometric term 
solutions.

• Petkovsek’s algorithm is slow, especially if 
the leading and trailing terms have many 
factors. Maple 9 will contain a much more 
efficient algorithm due to Mark van Hoeij.



Combining Zeilberger’s and
Petkovsek’s Algorithm

• Zeilberger’s algorithm may not give a recurrence
of first order, even if the sum is a hypergeometric
term. This rarely happens, though.

• Therefore the combination of Zeilberger’s 
algorithm with Petkovsek’s guarantees to find out
whether a given sum can be written as a
hypergeometric term.

• Exercise 9.3 of my book gives 9 examples for this 
situation, all from p. 556 of 
– Prudnikov, Brychkov, Marichev: Integrals and Series, 

Vol. 3: More Special Functions. Gordon Breach, 1990.





Examples

• As an example, we take

• and Exercise 9.3 (a), resp. PBM (7.5.3.32):
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Indefinite Integration

• To find recurrence and differential 
equations for hypergeometric and 
hyperexponential integrals, one needs a 
continuous version of Gosper’s algorithm.

• Almkvist and Zeilberger gave such an 
algorithm. It finds hyperexponential 
antiderivatives if those exist.



Recurrence and Differential 
Equations for Integrals

• Applying the continuous Gosper algorithm, 
one can easily adapt the discrete versions of 
Zeilberger’s algorithm to the continuous 
case.

• The resulting algorithms find holonomic 
recurrence and differential equations for
hypergeometric and hyperexponential 
integrals.



Example 1

• As example, we would like to find 
holonomic equations for

Resulting recurrence equations: 
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Example ctd.

• Solving both recurrence equations shows that 
S(x,y) must be a multiple of

• Computing the initial value

proves that the above is an identity.
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Example 2

• The integral

satisfies the differential equation

from which it can be derived that
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Rodrigues Formulas

• Using Cauchy’s integral formula

for the nth derivative makes the integration 
algorithm accessible for Rodrigues type 
expressions
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Orthogonal Polynomials

• Hence we can easily show that the functions

are the Legendre polynomials, and

are the generalized Laguerre polynomials.
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Generating Functions

• If F(z) is the generating function of the 
sequence an fn(x)

then by Cauchy’s formula and Taylor’s 
theorem
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Laguerre Polynomials

• Hence we can easily prove the following 
generating function identity

for the generalized Laguerre polynomials.
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Basic Hypergeometric Series

• Instead of considering series whose coeffi-
cients Ak have rational term ratio Ak+1/Ak ±

·(k), we can also consider such series 
whose coefficients Ak have term ratio 
Ak+1/Ak ± ·(qk).

• This leads to the q-hypergeometric series
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Coefficients of the Basic 
Hypergeometric Series

• Here the coefficients are given by

where

denotes the q-Pochhammer symbol.
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Further q-Expressions

• q-Pochhammer symbol:

• q-factorial:

• q-Gamma function:

• q-binomial coefficient:

• q-brackets:
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q-Chu-Vandermonde Theorem

• For all classical hypergeometric theorems 
corresponding q-versions exist.

• For example, the q- Chu-Vandermonde
theorem states that

and can be proved by a q-version of 
Zeilberger’s algorithm.
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q-Hypergeometric Orthogonal 
Polynomials

• All classical orthogonal systems have 
(several) q-hypergeometric equivalents. 

• The Little and the Big q-Legendre 
Polynomials, respectively, are given by
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Operator Equations

• q-orthogonal polynomials satisfy q-
holonomic recurrence equations with 
respect to n and – in the classical Hahn case
– holonomic q-difference equations. 

• For the latter one uses Hahn’s q-difference 
operator
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Scalar Products

• Given: a scalar product

with non-negative measure µ supported in the 
interval [a,b].

• Particular cases:
– absolutely continuous measure dµ(x) = ρ(x)dx,
– discrete measure ρ(x)  supported by À,
– discrete measure ρ(x) supported by q

�
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Orthogonal Polynomials

• A family  Pn(x)  of polynomials

is orthogonal w. r. t. the measure µ(x) if
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Classical Families

• The classical orthogonal polynomials can be 
alternatively defined as the polynomial 
solutions of the differential equation

• Conclusions:
– n = 1  implies τ(x) = d x + e, d ≠ 0
– n = 2  implies σ(x) = a x2 + b x + c
– coefficient of xn implies  λn = – n(a(n-1)+d)
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Classification

• The classical systems can be classified 
according to the scheme

• σ(x) = 0 powers  xn

• σ(x) = 1              Hermite polynomials

• σ(x) = x              Laguerre polynomials

• σ(x) = x2                   Bessel polynomials

• σ(x) = x2 – 1      Jacobi polynomials



Weight function

• The weight function  ρ(x)  corresponding to 
the differential equation satisfies Pearson’s
differential equation

• Hence it is given as
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Classical Discrete Families

• The classical discrete orthogonal poly-
nomials can be defined as the polynomial 
solutions of the difference equation

• Conclusions:
– n = 1  implies τ(x) = d x + e, d ≠ 0
– n = 2  implies σ(x) = a x2 + b x + c
– coefficient of xn implies  λn = – n(a(n-1)+d)
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Classification

• The classical discrete systems can be 
classified according to the scheme

• σ(x) = 1              translated Charlier pols.

• σ(x) = x                  falling factorials

• σ(x) = x              Charlier, Meixner,  
Krawtchouk pols.

• σ(x) = x (N+α-x)   Hahn polynomials



Weight function

• The weight function ρ(x) corresponding to 
the difference equation satisfies Pearson’s
difference equation

• Hence it is given as
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Classical q-Families

• The q-orthogonal polynomials of the Hahn 
class can be defined as the polynomial 
solutions of the q-difference equation

• Conclusions:
– n = 1  implies τ(x) = d x + e, d ≠ 0
– n = 2  implies σ(x) = a x2 + b x + c
– coefficient of xn implies 
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Classification

• The classical q-systems can be classified 
according to the scheme

• σ(x) = 0            powers and q-Pochhammers

• σ(x) = 1            discrete q-Hermite   
polynomials II

• σ(x) = x            q-Charlier, q-Laguerre pols.

• σ(x) = (x-a q)(x-b q) Big q- Jacobi pols.



Weight function

• The weight function ρ(x) corresponding to 
the q-difference equation satisfies the q-
Pearson differential equation

• Hence it is given as
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Computing Differential Equation 
from a Recurrence Equation

• From the differential or (q)-difference 
equation one can determine the three-term 
recurrence equation for  Pn(x)  in terms of 
the coefficients of σ(x) and τ(x).

• Using this information in the opposite 
direction, one can find the corresponding 
differential or (q)-difference equation from 
a given three-term recurrence equation.



Example 1

• Given the recurrence equation

one finds that for α = ¼ translated Laguerre 
polynomials, and for α < ¼, Meixner and 
Krawtchouk polynomials are solutions.

0)()1()()1()( 2
12 =++−−− ++ xPnxPnxxP nnn α



Example 2

• Given the recurrence equation

one finds that for every α there are q-
orthogonal polynomial solutions.
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Epilogue

• Software development is a time consuming 
activity!

• Software developers love when their 
software is used.

• But they need your support.
• Hence my suggestion: If you use one of the 

packages mentioned for your research, 
please cite ist use!


