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Online Demonstrations with
Computer Algebra

| will use the computer algebra system
Maple to demonstrate and program the
algorithms presented.

e Of course, we could also easily use any
other system like Mathematica or MuPAD.

* We first give a short introduction about the
capabilities of Maple.




Computation of Power Series

e Assume, given an expression f depending
of the variable x, we would like to compute

a formula for the coefficient a, of the
power series

f(x):Zakxk

representing f(Xx).



Algorithm

Input: expression f(x)

Determine a holonomic differential equation DE
(homogeneous and linear with polynomial
coefficients) by computing the derivatives of f(x)
iteratively.

Convert DE to a holonomic recurrence equation
RE for a,.

Solve RE for a,.
Output: a, resp. 2 a, XK



Computation of Holonomic
Differential Equations

Input: expression f(x)
Compute cyf(x) + ¢,f "(X) + --- + ¢5fI(x) with still
undetermined coefficients c;.

Sort this w. r. t. linearly independent functions
e Q(x) and determine their coefficients.

Set these zero, and solve the corresponding linear
system for the unknowns c,, c,, ..., C;.

Output: DE:=c4f(x) + ¢,f "(x) + --- + c,f)(x) = 0.



Algebra of Holonomic Functions

e We call a function that satisfies a holonomic
differential equation a holonomic function.

e Sum and product of holonomic functions turn out
to be holonomic.

* We call a sequence that satisfies a holonomic
recurrence equation a holonomic sequence.

e Sum and product of holonomic sequences are
holonomic.

A function is holonomic iff it is the generating
function of a holonomic sequence.



Hypergeometric Functions

e The power series

i EP“...,ap XE: Z’Akxk’

P qul1°“1bq

whose coefficients A, have rational term

ratio  p xt(k+a)-(

<+ap)D X

AX (k+b)-(
IS called the generalized
function.

K+b,) k+1
nypergeometric




Coefficients of
Hypergeometric Functions

* For the coefficients of the hypergeometric
function we get the formula

B8y H & (@) (@) X
qu;bl,...,bq X_] = () -~ (b,), ki’

where (a), = a(a+l)---(at+k-1) is called the
Pochhammer symbol (or shifted factorial).



Examples of
Hypergeometric Functions

e”=,F,(x)
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Further examples: cos(x), arcsin(x),
arctan(x), In(1+x), erf(x), L @ (x), ..., but for
example not tan(x), ...



|dentification of
Hypergeometric Functions

e Assume we have

S:Zak.

* How do we find out which JF (x) this Is?



|dentification Algorithm

Input: a,
Compute _a.,

rk i

and check whether the term ratio r, Is
rational.

Factorize r,.

Output: read off the upper and lower
parameters and an initial value.
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Recurrence Equations for
Hypergeometric Functions

» Glven a sequence s, as hypergeometric
sum

s = iF(n,k)

how do we find a recurrence equation for
S,?



Celine Fasenmyer’s Algorithm

Input: summand F(n,k)

Compute F(n+ j,k+i)
ansatz = ._OZ I E(n K) Q(n, K
i=0...9

Bring this into rational normal form, and set
the numerator coefficient list w.r.t. k zero.

Output: Sum the resulting recurrence
equation for F(n,K) w.r.t. k.



Drawbacks of
Fasenmyer’s Algorithm

 |n easy cases this algorithm succeeds, but:

— In many cases the algorithm generates a
recurrence equation of too high order.

— The algorithm is slow. If, e.g.,, | =2 and
J = 2, then already 9 linear equations
have to be solved.

— Therefore the algorithm might fail.



| ndefinite Summation

» Given asequence a,, find a sequence s,
which satisfies

A =S, "S5 =As.
» Having found s, makes definite summation
easy since by telescoping for arbitrary m, n

n
Z a'k = Sn+1 _Sm "
k=m

e Indefinite summation is the inverse of A.



Gosper’s Algorithm

 Input: a,, a hypergeometric term.
o Compute p,, q,, I', € Q[K] with

ak+1 — pk+1 qk+1
ak pk rk+1

* Find a polynomial solution f, of the
recurrence equation Q.,.,f - r.f.1= Py

« QOutput: the hyperg. term s :Fr)_kfk_lak.

and gcd(q,,r,.;)=1foral|=0.



Definite Summation:
Zellberger’s Algorithm

» Zeilberger had the brilliant idea to use a
modified version of Gosper’s algorithm to
compute definite hypergeometric sums

s = iF(n,k).

* Note however that, whenever s, is itself a
hypergeometric term, then Gosper’s
algorithm, applied to F(n,k), fails!



Zellberger’s Algorithm

Input: summand F(n,K)
For suitable J & N set

a .= F(nk) +o,F(n+1,k) + --- + o;F(n+JkK) .
Apply the following modified version of Gosper’s
algorithm to a, :

— In the last step, solve at the same time for the
coefficients of f, and the unknowns g; € Q(n).

Output by summation: The recurrence equation
RE=8,+0,8,,+ - +0;8,,=0.



The output of
Zellberger’s Algorithm
We apply Zeilberger’s algorithm iteratively for

J=1.2, ... until it succeeds.

If J =1 Is successful, then the resulting recurrence
equation for s, is of first order, hence s, is a
hypergeometric term.

If J>1, then the result i1s a holonomic recurrence
equation for s.

One can prove that Zeilberger’s algorithm
terminates for suitable input.

Zeilberger’s algorithm is much faster than
Fasenmyer’s.



Representations of Legendre
Polynomials

P,(X) = ;E: I ”k—l%l%xngén,lmu—?x%
:%Zﬁg(x—l)”k(x+l)k = HEEDZFE”’"” z_jg

1
n-2k _ n n/2,(—n+1)/2i
_%QEZHEHE -n+1/2 XZE




Dougall’s ldentity

e Dougall (1907) found the following identity

H a,1+3,b,c,d,1+2a—b—c—d+n,—n H
7F6Da 2 10
:5,1+a—b,1+a—c,1+a—d,b+c+d -a—-nl+a+n ﬁ

_(1+a),(a+1-b-c),(a+1-b-d) (a+1l-c—-d),
 (l+a-b) (1+a-c) (1+a-d) (1+a-b-c-d)




Clausen’s Formula

e Clausen’s formula gives the cases when a
Clausen ;F, function is the square of a
Gauss ,F, function:

1 ab j 1 2a,2b,a+b1 1

2F1%+b+—xﬂ:3F2§Qa+2b,a+b+§)(§

* The right hand side can be detected from
the left hand side by Zeilberger’s algorithm.




A Generating Function Problem

e Recently Folkmar Bornemann showed me a
newly developed generating function of the
egendre polynomials and asked me to
generate it automatically.

e Here Is the question:
W“te 00 +n-1
G(x,z,a):zzgj ) EPH(X) Z"

as a hypergeometric function!



Generating Function as a
Double Sum

* \We can take any of the four given hyper-
geometric representations of the Legendre
polynomials to write G(x,z,«) as double
sum.

e Then the trick Is to change the order of
summation

ZE}+:—1EZ p.(n,X)z" = ZZ?+:—1Epk(n’ s



Automatic Computation of
Infinite Sums

* Whereas Zeilberger’s algorithm finds Chu-
Vandermonde’s formula for ne N_,

ZFlgLn,blﬁ_ (c—-b), |
c | P (o),

the question arises to detect Gauss’ identity
F H_ () (c—a-b)
F [(c-a)l (c-b)

for a,b,c € C in case of convergence.




Solution

* The idea Is to detect automatically

2Flgca,b (c—a),_(c—b)_ F 1@
+m (c),(c—a-Db)
and then to consider the limitas m - oo.

« Using appropriate limits for the I function,
this and similar questions can be handled
automatically by a Maple package of
Vidunas and Koornwinder.

b




The WZ Method

e Assume we want to prove an identity
S f(nk) =5
k=—c0

with hypergeometric terms f(n,k) and S,.

* Dividing by S, we may put the identity into
the form -
= F(n k) =1.
S, kz (n,k)



Rational Certificate

 |f Gosper’s algorithm, applied to F(n+1,k)-F(n,k),
IS successful, then it generates a rational multiple
G(n,k) of F(n,k), 1.e. G(n,k) = R(n,k) F(n,k), such
that

F(n+1,k) - F(n,K) = G(n,k+1) - G(n,k)

» By telescoping, this proves s..,—S, =0, hence the
Identity.

 Second proof: Dividing by F(n,k), we may prove
F*LK) o rink+) F KD _pink)

F(n, k) F(n, k)

a purely rational identity.




Differential Equations

o Zeilberger’s algorithm can easily be adapted
to generate holonomic differential equations
for hyperexponential sums

S(X) = Z F(x k).
» For this purpose, the summand F(x,K) must
be a hyperexponential term, i.e.

F'(x k)
F(x.K) 0Q (x,K).




Petkovsek’s Algorithm

» Petkovsek’s algorithm is an adaption of
Gosper’s.
e Given a holonomic recurrence equation, it

determines all hypergeometric term
solutions.

e Petkovsek’s algorithm is slow, especially if
the leading and trailing terms have many
factors. Maple 9 will contain a much more
efficient algorithm due to Mark van Hoelj.



Combining Zellberger’s and
Petkovsek’s Algorithm

« Zeilberger’s algorithm may not give a recurrence
of first order, even if the sum is a hypergeometric
term. This rarely happens, though.

* Therefore the combination of Zeilberger’s
algorithm with Petkovsek’s guarantees to find out
whether a given sum can be written as a
hypergeometric term.

o Exercise 9.3 of my book gives 9 examples for this
situation, all from p. 556 of

— Prudnikov, Brychkov, Marichev: Integrals and Series,
Vol. 3: More Special Functions. Gordon Breach, 1990.
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e As an example, we take

ck
E: (-0)", (c=23..)
n

Examples

e and Exercise 9.3 (a), resp. PBM (7.5.3.32):

JFsl

3 —n,a,a+1,b
2

b-n+1 b—n
a’l ] +
P

1

5

— (2a-b),(b—n)
ﬂ (1=b),(b+n)




Indefinite Integration

* To find recurrence and differential
equations for hypergeometric and
hyperexponential integrals, one needs a
continuous version of Gosper’s algorithm.

o Almkvist and Zeilberger gave such an
algorithm. It finds hyperexponential
antiderivatives If those exist.



Recurrence and Differential
Equations for Integrals

* Applying the continuous Gosper algorithm,
one can easily adapt the discrete versions of

Zellberger’s algorithm to the continuous
case.

e The resulting algorithms find holonomic
recurrence and differential equations for

hypergeometric and hyperexponential
Integrals.



Example 1

* As example, we would like to find
holonomic equations for

S(x,Y) = Itx(l—t)y dt
0
Resulting recurrence equations:
- (X+y+2)S(x+1y)+(x+1)S(x) =0
—(x+y+2)S(x,y+1) +(y+1)S(y) =0



Example ctd.

» Solving both recurrence equations shows that
S(x,y) must be a multiple of

[(X+DI (y+1
S(x y) ~ FXFDL(y+D)

[(X+Yy+2)
o Computing the initial value

S(0,0) ::}dt =1

proves that the above Is an identity.



Example 2

2

e The integral

X

() :J;(x“ +12)(1+t%) .
satisfies the differential equation
X(X=1)(X+1)(X*+D1"(xX) +
(L+7x)1'(X) +8x°I (X) =0

from which it can be derived that

T
(0= 2(x?+1)




Rodrigues Formulas

Using Cauchy’s integral formula

OIV L h(t)
0= 2mI(t v

for the nth derivative makes the integration
algorithm accessible for Rodrigues type
expressions

h,(X).




Orthogonal Polynomials

e Hence we can easily show that the functions
(_1) d (1_ X2)n

2'n dx"

are the Legendre polynomials, and

1=
N X

P (X) =

Caa

are the generalized Laguerre polynomials.



Generating Functions

* If F(2) Isthe generating function of the
sequence a,f (X)

F(z)zianw)z“,

then by Cauchy’s formula and Taylor’s
theorem

f(X)= LFPO_1 1 POy

" n+1
a n a, 2l J t




Laguerre Polynomials

* Hence we can easily prove the following
generating function identity

XZ

(1-2)“"erl = Z L (x) 2"

for the generalized Laguerre polynomials.



Basic Hypergeometric Series

 Instead of considering series whose coeffi-

cients A_have rational term ratio A, /A, €
Q(K), we can also consider such series

whose coefficients A, have term ratio
A /A€ QD).

* This leads to the g-hypergeometric series

m%::j:f; q;x%gw.




Coefficients of the Basic
Hypergeometric Series
* Here the coefficients are given by

(@) (@:0 X F o
A (0 A)sc -+~ (g5 Q)i (q;q)k% &
where

+S—1

N | I

(&), = ﬁ@-aqj)

denotes the g-Pochhammer symbol.



Further g-Expressions

g-Pochhammer symbol: (&;)., =lim(a; q),

g-factorial: [k],'= ((q_(;))k
g-Gamma function:  r ()= (((;4 Q))oo (1-g)*

g-binomial coefficient: @D (q;9),
g-brackets: o (@) (a0)

1-g~ _
[k]q: 1_2 = Qe




g-Chu-Vandermonde Theorem

 For all classical hypergeometric theorems
corresponding g-versions exist.

e For example, the g- Chu-Vandermonde
theorem states that

g P

and can be _proved by a g-version of
Zellberger’s algorithm.

cq” - (c/b;q),
b (c;a),

g,




g-Hypergeometric Orthogonal
Polynomials

 All classical orthogonal systems have
(several) g-hypergeometric equivalents.

e The Little and the Big g-Legendre
Polynomials, respectively, are given by

P, (X[q)=,9,

P (X C q)=;0,

-n N+l
ﬂq g ox
- q

:

—n, n+1,X ]
9 Kgqr
— 4.cq i




Operator Equations

 ¢-orthogonal polynomials satisfy g-
holonomic recurrence equations with
respect to n and — in the classical Hahn case
— holonomic g-difference equations.

 For the latter one uses Hahn’s g-difference

operator
.1 (= [~ F@)

(L-qg)x




Scalar Products

* Given: a scalar product

(f.9)= [ f(90(du(3)

with non-negative measure L supported in the
Interval [a,b].
 Particular cases:

— absolutely continuous measure du(x) = p(x)dx,
— discrete measure p(x) supported by Z,

— discrete measure p(x) supported by gZ.



Orthogonal Polynomials

o A family P,(X) of polynomials
P (X) =k X" +k X"+, Kk #0
IS orthogonal w. r. t. the measure u(x) If

0 if m#n
d:#0  ifm=n

n

(P,P,)=

n?* " m




Classica Families

» The classical orthogonal polynomials can be
alternatively defined as the polynomial
solutions of the dlfferentlal equation

U(X)P (x)+r(x)P (X)+A P (x)=0.

e Conclusions:
- n=1
- n=2
— coefficient of xn

m
Im
Im

pliest(X) =dx+e, d Z0
nlieso(X) =ax2+bx+c

nlies A, = - n(a(n-1)+d)



Classification

The classical systems can be classified
according to the scheme

o(X)=0 powers X"

oXxX)=1 Hermite polynomials
o(X) =X Laguerre polynomials
0(X) = X Bessel polynomials

o(X) = x*—1  Jacobi polynomials



Weight function

e The weight function p(x) corresponding to
the differential equation satisfies Pearson’s
differential equation

d _
- (0¥ p(x)=1(x) p(X)

e Hence it is given as

r(X)

C_ Joe

Pl = e
o(3



Classical Discrete Families

* The classical discrete orthogonal poly-
nomials can be defined as the polynomial
solutions of the difference equation

o (X)ALP, (X) + 1(X)AP,(x) + AP, (x) =0.

e Conclusions:
- n=1 iImpliest(x) =dx+e,d Zz0
- n=2 Implieso(X) =ax?2+bx+c
— coefficient of X implies A, =-n(a(n-1)+d)



Classification

The classical discrete systems can be
classified according to the scheme

oxX)=1 translated Charlier pols.
0(X) = X falling factorials
0(X) = X Charlier, Meixner,

Krawtchouk pols.
o(X) = X (N+a-x) Hahn polynomials



Weight function

* The weight function p(X) corresponding to
the difference equation satisfies Pearson’s
difference equation

Ao (¥)6(x))=1(x)p(x)

 Hence it is given as
p(x+1) _o(x)+1(x)
p(¥)  a(x+])




Classical g-Families

e The g-orthogonal polynomials of the Hahn
class can be defined as the polynomial
solutions of the g-difference equation

0(X)DyDyo R, (X) +1(X)D, B, (X) +A,P,(x) = 0.
e Conclusions:

- n=1 Implies 1(X) =dx+ e d Z0
- n=2 implieso(x) =ax?+bx+c
— coefficient of x»  implies A, =-a|n],,[n-1], - d[n],




Classification

The classical g-systems can be classified
according to the scheme

o(X)=0 powers and g-Pochhammers

oX) =1 discrete g-Hermite
polynomials |1

0(X) = X g-Charlier, g-Laguerre pols.

o(X) = (x-ag)(x-bg) Big g- Jacobi pols.



Weight function

The weight function p(X) corresponding to
the g-difference equation satisfies the g-
Pearson differential equation

D, (0 () 5(x)=1(x) 5(x)

Hence it Is given as
pPAX) _ o(X)+(q-D)xz(x)
P(X) g (ax)




Computing Differential Equation
from a Recurrence Equation

* From the differential or (q)-difference
eguation one can determine the three-term
recurrence equation for P,(X) interms of
the coefficients of a(x) and 1(X).

 Using this information in the opposite
direction, one can find the corresponding
differential or (g)-difference equation from
a glven three-term recurrence equation.



Example 1

* Given the recurrence equation
P2() = (X=N=DP,.,(x) +a(n+1)?*R,(x) =0

one finds that for o = % translated Laguerre
polynomials, and for a < %, Meixner and
Krawtchouk polynomials are solutions.



Example 2

* Given the recurrence equation
s (X) = XPs (¥) +aq" (9" ~1)P,(X) =0

one finds that for every a there are g-
orthogonal polynomial solutions.



Epilogue

Software development is a time consuming
activity!

Software developers love when their
software Is used.

But they need your support.

Hence my suggestion: If you use one of the
packages mentioned for your research,
please cite ist use!



