
Computer Algebra Algorithms for
Orthogonal Polynomials and Special

Functions

Prof. Dr. Wolfram Koepf

Department of Mathematics

University of Kassel

koepf@mathematik.uni-kassel.de

http://www.mathematik.uni-kassel.de/~koepf

Online Demonstrations with
Computer Algebra

• I will use the computer algebra system
Maple to demonstrate and program the
algorithms presented.

• Of course, we could also easily use any
other system like Mathematica or MuPAD.

• We first give a short introduction about the
capabilities of Maple.

Computation of Power Series

• Assume, given an expression f depending
of the variable x, we would like to compute
a formula for the coefficient ak of the
power series

representing f(x).

∑
∞

=
=

0

)(
k

k
k xaxf

Algorithm

• Input: expression f(x)
• Determine a holonomic differential equation DE

(homogeneous and linear with polynomial
coefficients) by computing the derivatives of f(x)
iteratively.

• Convert DE to a holonomic recurrence equation
RE for ak.

• Solve RE for ak.
• Output: ak resp. È ak xk

Computation of Holonomic
Differential Equations

• Input: expression f(x)
• Compute c0f(x) + c1f ´(x) + � + cJf(J)(x) with still

undetermined coefficients cj.

• Sort this w. r. t. linearly independent functions
± ·(x) and determine their coefficients.

• Set these zero, and solve the corresponding linear
system for the unknowns c0, c1, …, cJ.

• Output: DE:=c0f(x) + c1f ´(x) + � + cJf(J)(x) = 0.

Algebra of Holonomic Functions

• We call a function that satisfies a holonomic
differential equation a holonomic function.

• Sum and product of holonomic functions turn out
to be holonomic.

• We call a sequence that satisfies a holonomic
recurrence equation a holonomic sequence.

• Sum and product of holonomic sequences are
holonomic.

• A function is holonomic iff it is the generating
function of a holonomic sequence.

Hypergeometric Functions

• The power series

whose coefficients Ak have rational term
ratio

is called the generalized hypergeometric
function.

,
,,

,,

01

1 ∑
∞

=

=










k

k
k

q

p

qp xAx
bb

aa
F

�

�

1)()(

)()(

1

1
1

1

+
⋅

++
++

=
+

+

k

x

bkbk

akak

xA

xA

q

p

k
k

k
k

�

�

Coefficients of
Hypergeometric Functions

• For the coefficients of the hypergeometric
function we get the formula

where (a)k = a(a+1)�(a+k-1) is called the
Pochhammer symbol (or shifted factorial).

,
!)()(

)()(

,,

,,

0 1

1

1

1 ∑
∞

=

=










k

k

kqk

kpk

q

p

qp k

x

bb

aa
x

bb

aa
F

�

�

�

�

Examples of
Hypergeometric Functions

Further examples: cos(x), arcsin(x),
arctan(x), ln(1+x), erf(x), Ln

(α)(x), ..., but for
example not tan(x), ...

)(00 xFe x =







−

−
⋅=

42/3
sin

2

10

x
Fxx

Identification of
Hypergeometric Functions

• Assume we have

• How do we find out which pFq(x) this is?

∑
∞

=

=
0

.
k

kas

Identification Algorithm

• Input: ak

• Compute

and check whether the term ratio rk is
rational.

• Factorize rk.
• Output: read off the upper and lower

parameters and an initial value.

k

k
k a

a
r 1: +=

Recurrence Equations for
Hypergeometric Functions

• Given a sequence sn, as hypergeometric
sum

how do we find a recurrence equation for
sn?

∑
∞

−∞=

=
k

n knFs),(

Celine Fasenmyer’s Algorithm

• Input: summand F(n,k)
• Compute

• Bring this into rational normal form, and set
the numerator coefficient list w.r.t. k zero.

• Output: Sum the resulting recurrence
equation for F(n,k) w.r.t. k.

∈++= ∑
=
=

Jj
Ii

knF
ikjnF

,...,0
,...,0

),(
),(

:ansatz · (n, k)

Drawbacks of
Fasenmyer’s Algorithm

• In easy cases this algorithm succeeds, but:

– In many cases the algorithm generates a
recurrence equation of too high order.

– The algorithm is slow. If, e.g., I = 2 and
J = 2, then already 9 linear equations
have to be solved.

– Therefore the algorithm might fail.

Indefinite Summation

• Given a sequence ak , find a sequence sk
which satisfies

• Having found sk makes definite summation
easy since by telescoping for arbitrary m, n

• Indefinite summation is the inverse of ∆ .

. 1 kkkk sssa ∆=−= +

∑
=

+ −=
n

mk
mnk ssa . 1

Gosper’s Algorithm

• Input: ak , a hypergeometric term.
• Compute pk, qk, rk ± ·[k] with

• Find a polynomial solution fk of the
recurrence equation qk+1 fk - rk+1 fk-1 = pk .

• Output: the hyperg. term

. 0 allfor 1),gcd(and
1

111 ≥== +
+

+++ jrq
r

q

p

p

a

a
jkk

k

k

k

k

k

k

. 1 kk
k

k
k af

p

r
s −=

Definite Summation:
Zeilberger’s Algorithm

• Zeilberger had the brilliant idea to use a
modified version of Gosper’s algorithm to
compute definite hypergeometric sums

• Note however that, whenever sn is itself a
hypergeometric term, then Gosper’s
algorithm, applied to F(n,k), fails!

.),(∑
∞

−∞=

=
k

n knFs

Zeilberger’s Algorithm

• Input: summand F(n,k)
• For suitable J ± ´ set

ak := F(n,k) + σ1F(n+1,k) + � + σJ F(n+J,k) .
• Apply the following modified version of Gosper’s

algorithm to ak :
– In the last step, solve at the same time for the

coefficients of fk and the unknowns σj ± ·(n).

• Output by summation: The recurrence equation
RE := sn + σ1 sn+1 + � + σJ sn+J = 0 .

The output of
Zeilberger’s Algorithm

• We apply Zeilberger’s algorithm iteratively for
J = 1,2, … until it succeeds.

• If J = 1 is successful, then the resulting recurrence
equation for sn is of first order, hence sn is a
hypergeometric term.

• If J > 1, then the result is a holonomic recurrence
equation for sn.

• One can prove that Zeilberger’s algorithm
terminates for suitable input.

• Zeilberger’s algorithm is much faster than
Fasenmyer’s.

Representations of Legendre
Polynomials






 −+−
=





 −






 −−






= ∑

= 2

1

1

1,

2

11
)(12

0

xnn
F

x

k

n

k

n
xP

kn

k
n

() () 





−
+−−






 −=+−





= −

=
∑ 1

1

1

,

2

1
11

2

1
12

2

0 x

xnn
F

x
xx

k

n n
kkn

n

k
n

()
 







+−

+−−











=




 −






−= −

=
∑ 212

2
2/

0

1

2/1

2/)1(,2/2

2

22
1

2

1

xn

nn
F

n

nx
x

n

kn

k

n n
kn

n

k

k

n







−

−−
=

212

1
1

1

2/)1(,2/

x

nn
Fxn

Dougall’s Identity

• Dougall (1907) found the following identity

















++−−++−+−+−+

−+−−−++
1

1,,1,1,1,
2

,21,,,,
2

1,
67

nanadcbdacaba
a

nndcbadcb
a

a
F

.
)1()1()1()1(

)1()1()1()1(

nnnn

nnnn

dcbadacaba

dcadbacbaa

−−−+−+−+−+
−−+−−+−−++=

Clausen’s Formula

• Clausen’s formula gives the cases when a
Clausen 3F2 function is the square of a
Gauss 2F1 function:

• The right hand side can be detected from
the left hand side by Zeilberger’s algorithm.

.
2

1
,22

,2,2

2

1
,

23

2

12 













+++

+
=















++ x
baba

baba
Fx

ba

ba
F

A Generating Function Problem

• Recently Folkmar Bornemann showed me a
newly developed generating function of the
Legendre polynomials and asked me to
generate it automatically.

• Here is the question:
Write

as a hypergeometric function!

∑
∞

=





 −+
=

0

)(
1

:),,(
n

n
n zxP

n

n
zxG

α
α

Generating Function as a
Double Sum

• We can take any of the four given hyper-
geometric representations of the Legendre
polynomials to write G(x,z,D) as double
sum.

• Then the trick is to change the order of
summation

.),(
1

),(
1

0 00 0

n
k

k nn

n

k
k zxnp

n

n
zxnp

n

n ∑∑∑ ∑
∞

=

∞

=

∞

=

∞

=





 −+
=




 −+ αα

Automatic Computation of
Infinite Sums

• Whereas Zeilberger’s algorithm finds Chu-
Vandermonde’s formula for n ± ´�0

the question arises to detect Gauss’ identity

for a,b,c ± © in case of convergence.

,
)(

)(
1

,
12

n

n

c

bc

c

bn
F

−=




−

)()(

)()(
1

,
12 bcac

bacc

c

ba
F

−Γ−Γ
−−ΓΓ=






Solution

• The idea is to detect automatically

and then to consider the limit as m � �.
• Using appropriate limits for the Γ function,

this and similar questions can be handled
automatically by a Maple package of
Vidunas and Koornwinder.







−−
−−=





+

1
,

)()(

)()(
1

,
1212 c

ba
F

bacc

bcac

mc

ba
F

mm

mm

The WZ Method

• Assume we want to prove an identity

with hypergeometric terms f(n,k) and .

• Dividing by , we may put the identity into
the form

n
k

sknf ~),(=∑
∞

−∞=

. 1),(: == ∑
∞

−∞=k
n knFs

ns~

ns~

Rational Certificate

• If Gosper’s algorithm, applied to F(n+1,k)-F(n,k),
is successful, then it generates a rational multiple
G(n,k) of F(n,k), i.e. G(n,k) = R(n,k) F(n,k), such
that

F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)
• By telescoping, this proves sn+1�sn = 0, hence the

identity.
• Second proof: Dividing by F(n,k), we may prove

a purely rational identity.

,),(
),(

)1,(
)1,(1

),(

),1(
knR

knF

knF
knR

knF

knF −++=−+

Differential Equations

• Zeilberger’s algorithm can easily be adapted
to generate holonomic differential equations
for hyperexponential sums

• For this purpose, the summand F(x,k) must
be a hyperexponential term, i.e.

∈
′

),(

),(

kxF

kxF

.),()(∑
∞

−∞=

=
k

kxFxs

· (x,k).

Petkovsek’s Algorithm

• Petkovsek’s algorithm is an adaption of
Gosper’s.

• Given a holonomic recurrence equation, it
determines all hypergeometric term
solutions.

• Petkovsek’s algorithm is slow, especially if
the leading and trailing terms have many
factors. Maple 9 will contain a much more
efficient algorithm due to Mark van Hoeij.

Combining Zeilberger’s and
Petkovsek’s Algorithm

• Zeilberger’s algorithm may not give a recurrence
of first order, even if the sum is a hypergeometric
term. This rarely happens, though.

• Therefore the combination of Zeilberger’s
algorithm with Petkovsek’s guarantees to find out
whether a given sum can be written as a
hypergeometric term.

• Exercise 9.3 of my book gives 9 examples for this
situation, all from p. 556 of
– Prudnikov, Brychkov, Marichev: Integrals and Series,

Vol. 3: More Special Functions. Gordon Breach, 1990.

Examples

• As an example, we take

• and Exercise 9.3 (a), resp. PBM (7.5.3.32):

,...)3,2(,)()1(
0

=−=











−∑

=

cc
n

ck

k

n n
n

k

k

.
)()1(

)()2(
1

1
2

,
2

1
,2

,
2

1
,,

34 nbb

nbba
nbnb

a

baan
F

n

n

+−
−−=

















+−+−

+−

Indefinite Integration

• To find recurrence and differential
equations for hypergeometric and
hyperexponential integrals, one needs a
continuous version of Gosper’s algorithm.

• Almkvist and Zeilberger gave such an
algorithm. It finds hyperexponential
antiderivatives if those exist.

Recurrence and Differential
Equations for Integrals

• Applying the continuous Gosper algorithm,
one can easily adapt the discrete versions of
Zeilberger’s algorithm to the continuous
case.

• The resulting algorithms find holonomic
recurrence and differential equations for
hypergeometric and hyperexponential
integrals.

Example 1

• As example, we would like to find
holonomic equations for

Resulting recurrence equations:

()∫ −=
1

0

1:),(dtttyxS yx

0)()1(),1()2(=+++++− xSxyxSyx

0)()1()1,()2(=+++++− ySyyxSyx

Example ctd.

• Solving both recurrence equations shows that
S(x,y) must be a multiple of

• Computing the initial value

proves that the above is an identity.

)2(

)1()1(
~),(

++Γ
+Γ+Γ

yx

yx
yxS

1:)0,0(
1

0

== ∫ dtS

Example 2

• The integral

satisfies the differential equation

from which it can be derived that

∫
∞

++
=

0
224

2

)1)((
)(dt

ttx

x
xI

0)(8)()71(
)()1)(1)(1(

34

2

=+′+
+′′++−

xIxxIx
xIxxxx

.
)1(2

)(
2 +

=
x

xI
π

Rodrigues Formulas

• Using Cauchy’s integral formula

for the nth derivative makes the integration
algorithm accessible for Rodrigues type
expressions

() dt
xt

th

i

n
xh

n
n ∫ +−

=
γπ

)(

)(

 2

!
)(

1

.)()()(xh
dx

d
xgxf nn

n

nn =

Orthogonal Polynomials

• Hence we can easily show that the functions

are the Legendre polynomials, and

are the generalized Laguerre polynomials.

n
n

n

n

n

n x
dx

d

n
xP)1(

!2

)1(
)(2−−=

)(
!

)()(nx
n

nx

n xe
dx

d

xn

e
xL +−= α

α
α

Generating Functions

• If F(z) is the generating function of the
sequence an fn(x)

then by Cauchy’s formula and Taylor’s
theorem

,)()(
0

n
n

n
n zxfazF ∑

∞

=
=

.
)(

 2

11

!

)0(1
)(

1

)(

dt
t

tF

ian

F

a
xf

n
n

n

n
n ∫ +==

γπ

Laguerre Polynomials

• Hence we can easily prove the following
generating function identity

for the generalized Laguerre polynomials.

n

n
n

z

xz

zxLez)()1(
0

)(11 ∑
∞

=

−−− =− αα

Basic Hypergeometric Series

• Instead of considering series whose coeffi-
cients Ak have rational term ratio Ak+1/Ak ±

·(k), we can also consider such series
whose coefficients Ak have term ratio
Ak+1/Ak ± ·(qk).

• This leads to the q-hypergeometric series

.;
,,

,,

01

1 ∑
∞

=

=






k

k
k

s

r
sr xAxq

bb

aa

�

�

ϕ

Coefficients of the Basic
Hypergeometric Series

• Here the coefficients are given by

where

denotes the q-Pochhammer symbol.

,)1(
);();();(

);();(
1

2

1

1

rs
k

k

k

k

ksk

krk
k q

qq

x

qbqb

qaqa
A

−+




















−=

�

�

()∏
−

=

−=
1

0

1);(
k

j

j
k aqqa

Further q-Expressions

• q-Pochhammer symbol:

• q-factorial:

• q-Gamma function:

• q-binomial coefficient:

• q-brackets:

n
n

qaqa);(lim);(
∞→∞ =

[]
k

k
q q

qq
k

)1(

);(
!

−
=

z
zq q

qq

qq
z −

∞

∞ −=Γ 1)1(
);(

);(
)(

knk

n

q
qqqq

qq

k

n

−

=







);();(

);(

[] . 1
1

1 1−+++=
−
−= k

k

q qq
q

q
k �

q-Chu-Vandermonde Theorem

• For all classical hypergeometric theorems
corresponding q-versions exist.

• For example, the q- Chu-Vandermonde
theorem states that

and can be proved by a q-version of
Zeilberger’s algorithm.

n

n
nn

qc

qbc

b

cq
q

c

bq

);(

);/(
;

,
12 =









 −

ϕ

q-Hypergeometric Orthogonal
Polynomials

• All classical orthogonal systems have
(several) q-hypergeometric equivalents.

• The Little and the Big q-Legendre
Polynomials, respectively, are given by

, ;
,

)|(
1

12 









=

+−

qxq
q

qq
qxp

nn

n ϕ

. ;
,

,,
);;(

1

23 









=

+−

qq
cqq

xqq
qcxP

nn

n ϕ

Operator Equations

• q-orthogonal polynomials satisfy q-
holonomic recurrence equations with
respect to n and – in the classical Hahn case
– holonomic q-difference equations.

• For the latter one uses Hahn’s q-difference
operator

.
)1(

)()(
)(

xq

qxfxf
xfDq −

−=

Scalar Products

• Given: a scalar product

with non-negative measure µ supported in the
interval [a,b].

• Particular cases:
– absolutely continuous measure dµ(x) = ρ(x)dx,
– discrete measure ρ(x) supported by À,
– discrete measure ρ(x) supported by q

�

.

∫=
b

a

xdxgxfgf)()()(:, µ

Orthogonal Polynomials

• A family Pn(x) of polynomials

is orthogonal w. r. t. the measure µ(x) if

0 ,)(1 ≠+′+= −
n

n
n

n
nn kxkxkxP �

.
 if 0

 if 0
, 2





=≠
≠

=
nmd

nm
PP

n
mn

Classical Families

• The classical orthogonal polynomials can be
alternatively defined as the polynomial
solutions of the differential equation

• Conclusions:
– n = 1 implies τ(x) = d x + e, d ≠ 0
– n = 2 implies σ(x) = a x2 + b x + c
– coefficient of xn implies λn = – n(a(n-1)+d)

. 0)()()()()(=+′+″ xPxPxxPx nnnn λτσ

Classification

• The classical systems can be classified
according to the scheme

• σ(x) = 0 powers xn

• σ(x) = 1 Hermite polynomials

• σ(x) = x Laguerre polynomials

• σ(x) = x2 Bessel polynomials

• σ(x) = x2 – 1 Jacobi polynomials

Weight function

• The weight function ρ(x) corresponding to
the differential equation satisfies Pearson’s
differential equation

• Hence it is given as

())()()()(xxxx
dx

d ρτρσ =

.
)(

)()(

)(
dx

x

x

e
x

C
x

∫= σ
τ

σ
ρ

Classical Discrete Families

• The classical discrete orthogonal poly-
nomials can be defined as the polynomial
solutions of the difference equation

• Conclusions:
– n = 1 implies τ(x) = d x + e, d ≠ 0
– n = 2 implies σ(x) = a x2 + b x + c
– coefficient of xn implies λn = – n(a(n-1)+d)

. 0)()()()()(=+∆+∇∆ xPxPxxPx nnnn λτσ

Classification

• The classical discrete systems can be
classified according to the scheme

• σ(x) = 1 translated Charlier pols.

• σ(x) = x falling factorials

• σ(x) = x Charlier, Meixner,
Krawtchouk pols.

• σ(x) = x (N+α-x) Hahn polynomials

Weight function

• The weight function ρ(x) corresponding to
the difference equation satisfies Pearson’s
difference equation

• Hence it is given as

())()()()(xxxx ρτρσ =∆

.
)1(

)()(

)(

)1(

+
+=+

x

xx

x

x

σ
τσ

ρ
ρ

Classical q-Families

• The q-orthogonal polynomials of the Hahn
class can be defined as the polynomial
solutions of the q-difference equation

• Conclusions:
– n = 1 implies τ(x) = d x + e, d ≠ 0
– n = 2 implies σ(x) = a x2 + b x + c
– coefficient of xn implies

. 0)()()()()(/1 =++ xPxPDxxPDDx nnnqnqq λτσ

[] [] []qqqn ndnna −−−= 1/1λ

Classification

• The classical q-systems can be classified
according to the scheme

• σ(x) = 0 powers and q-Pochhammers

• σ(x) = 1 discrete q-Hermite
polynomials II

• σ(x) = x q-Charlier, q-Laguerre pols.

• σ(x) = (x-a q)(x-b q) Big q- Jacobi pols.

Weight function

• The weight function ρ(x) corresponding to
the q-difference equation satisfies the q-
Pearson differential equation

• Hence it is given as

())()()()(xxxxDq ρτρσ =

.
)(

)()1()(

)(

)(

qx

xxqx

x

qx

σ
τσ

ρ
ρ −+=

Computing Differential Equation
from a Recurrence Equation

• From the differential or (q)-difference
equation one can determine the three-term
recurrence equation for Pn(x) in terms of
the coefficients of σ(x) and τ(x).

• Using this information in the opposite
direction, one can find the corresponding
differential or (q)-difference equation from
a given three-term recurrence equation.

Example 1

• Given the recurrence equation

one finds that for α = ¼ translated Laguerre
polynomials, and for α < ¼, Meixner and
Krawtchouk polynomials are solutions.

0)()1()()1()(2
12 =++−−− ++ xPnxPnxxP nnn α

Example 2

• Given the recurrence equation

one finds that for every α there are q-
orthogonal polynomial solutions.

0)()1()()(1
12 =−+− +

++ xPqqxxPxP n
nn

nn α

Epilogue

• Software development is a time consuming
activity!

• Software developers love when their
software is used.

• But they need your support.
• Hence my suggestion: If you use one of the

packages mentioned for your research,
please cite ist use!

