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Overview

In this tutorial | will deal with the following algorithms:

e the computation of power series representations of
hypergeometric type functions, given by expressions

(I|ke arcsin(z) )

X

e the computation of holonomic differential equations for
functions, given by expressions

e the computation of holonomic recurrence equations for
sequences, given by expressions (like (}) %7)

e the computation of generating functions



Overview

e the computation of antidifferences of hypergeometric
terms ( 's algorithm)

e the computation of holonomic differential and
recurrence equations for hypergeometric series, given
n

the series summand (like P,(x) = ) (Z’) (—77];—1) (1_7”7’))]C

( 's algorithm)

e the computation of hypergeometric term
representations of series ( 's algorithm)

e the verification of identities for special functions.



Automatic Computation of Power Series

e Given an expression f(x) in the variable x, one would
like to find the Taylor series

flz)=> Az,
k=0

I.e., a formula for the coefficient A;..

e For example, if f(x) = €”, then

1
k=0

[

hence A; =



FPS Algorithm
The main idea behind the FPS algorithm is

e to compute a holonomic differential equation for f(x),
I.e., a homogeneous linear differential equation with
polynomial coefficients,

e to convert the differential equation to a holonomic
recurrence equation for Ay,

e and to solve the recurrence equation for A;.

The above procedure is successful at least is f(x) is a
hypergeometric power series.



Computation of Holonomic Differential
Equations

e Input: expression f(x).

e Compute cof(z) + ci1f'(x) + -+ + cyfY)(x) with still
undetermined coefficients c;.

e Collect w. r. t. linearly independent functions € Q(x)
and determine their coefficients.

e Set these zero, and solve the corresponding linear
system for the unknowns ¢y, cq,...,cy.

e Output: DE :=cof (z) + cif () + - +cyfY)(x) = 0.



Algebra of Holonomic Functions
e We call a function that satisfies a holonomic
differential equation a holonomic function.

e Sum and product of holonomic functions turn out to
be holonomic.

e We call a sequence that satisfies a holonomic
recurrence equation a holonomic sequence.

e Sum and product of holonomic sequences are
holonomic.

e A function is holonomic iff it is the generating function
of a holonomic sequence.



Hypergeometric Functions

e [ he power series
a a ~ i
Ly+--yUUp L E : k __ E
qu h h | = AkZC — aj ,
Lo e k=0 k=0

whose coefficients A;. have a rational term ratio

apy1 App ™ (k4ar)---(k4a,) @

ay  ApzF (k+b)---(k+b) k41

is called the generalized hypergeometric function.



Coefficients of the Generalized
Hypergeometric Function

e For the coefficients of the hypergeometric function that
are called hypergeometric terms, one gets the formula

aiy ..., Qp — (a1)p - (ay)p 2"
F < — 9
g q(bl,...,bq ) Zk_o (b1) -+ - (b k!
where (a)y =a(a+1)---(a+ k — 1) is called the

Pochhammer symbol or shifted factorial.



Examples of Hypergeometric Functions

e The simplest hypergeometric function is

Ooilik o
6x:ZH:0FO_m .

e Many elementary functions are hypergeometric, e. g.

SiIlCC:i (-1 e = ¢ Fy N _w_2 .
(2k + 1)! S|4

k=0 2
e Further examples: cos(x), arcsin(x), arctan(x),
In(1+ x),erf(x), P,(x), ..., but for example not
tan(z), ...
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Identification of Hypergeometric Functions

e Assume we have

=Y
k=0
e How do we find out which ,F(x) this is?
e Example: sinx = > (é;—i)f),x%“

e [he coefficient term ratio yields

i1 B (_1)k—l—1 (2]€+1) 2k+3

—1 5

o (2k+3)! (—1)F 22 2k 2)(2k+3) "

U
v



Identification Algorithm
e Input: a; .

e Compute the term ratio

Ok
Tk = ’
A

and check whether r;, € C(k) is a rational function.
e Factorize ;..

e QOutput: read off the upper and lower parameters and
compute an initial value, e. g. ay.



Recurrence Equations for Hypergeometric
Functions

e Given a sequence s,, as hypergeometric sum

Sp = Z F(n,k) .

k=—00

e How do we find a recurrence equation for the sum s,,?



Celine Fasenmyer’s Algorithm
e Input: summand F'(n, k).

e Compute for suitable I,J €N

~ Fn+j,k+1)
Ajj EQTZ,]C .
j>OZ>O : (n,k) ( )

e Bring this into rational normal form, and set the
numerator coefficient list w.r.t. k£ zero.

e |f successful, linear algebra yields a;; € Q(n, k), and
therefore a k-free recurrence equation for F'(n, k).

e Output: Sum the resulting recurrence equation for
F(n,k) w.r.t. k.



Drawbacks of Fasenmyer’s Algorithm

In easy cases this algorithm succeeds, but:

e In many cases the algorithm generates a recurrence
equation of too high order.

e From such a recurrence equation a lower order
recurrence equation cannot be easily recovered.

e The algorithm is slow. If, e.g., I =2 and J = 2, then
already 9 linear equations have to be solved.

e Therefore the algorithm fails in many interesting cases.



The software used was Wolfram Koepf
developed In connection

. Hypergeometric
with my book yperg .
Summation
_ An Algorithmic Approach to
Hypergeometric Summa- Summation and
_ _ Special Function Identities

tion, Vieweg, 1998,

Braunschweig/Wiesbaden

and can be downloaded
from my home page Advanced lectures

in Mathematics




Indefinite Summation
e Given a sequence ay, find a sequence s; which satisfies

ap = Sky1 — Sk = Asp, .

e Having found s; makes definite summation easy since
by telescoping one gets for arbitrary m,n

n
k=m

e Indefinite summation is the inverse of A.



Gosper’s Algorithm

e Input: ax, a hypergeometric term.

e Compute pi, qi, 71 € Q|k] with

Ar+1  Pk+1 dk+1
ag Pk Tk+1

with ged(qg, 7445) =1 for all 5 =2 0.

e Find a polynomial solution f; of the recurrence
equation gi1fk — Tk+1fk-1 = Dk

e Output: the hypergeometric term sj, = ;—ka_lak.



Definite Summation: Zeilberger’s
Algorithm

e Zeilberger had the brilliant idea to use a modified
version of Gosper's algorithm to compute definite
hypergeometric sums

O

Sp = Z F(n,k) .

k=—00

e Note however that, whenever s,, is itself a

hypergeometric term, then Gosper's algorithm, applied
to F'(n, k), fails!



Zeilberger’'s Algorithm

e Input: summand F'(n, k).

e For suitable J € N set

arp == F(n, k) + o Fin+ 1L, k)+---+o;F(n+ J k) .

e Apply the following modified version of Gosper’s

algorithm to ay:

— In the last step, solve at the same time for the
coefficients of fi and the unknowns o; € Q(n).

e Output by summation:

he recurrence equation

RE := Sn—|_0_13n+1‘|_”"|‘0-<]5n+<]:0 -



The output of Zeilberger’s Algorithm

e We apply Zeilbergers algorithm iteratively for
J =1,2,... until it succeeds.

o If J =1 is successful, then the resulting recurrence
equation for s,, is of first order, hence s,, is a
hypergeometric term.

e If J > 1, then the result is a holonomic recurrence
equation for s,,.

e One can prove that Zeilberger's algorithm terminates
for suitable input.

e Zeilberger's algorithm is much faster than Fasenmyer's.



Different Representations of Legendre
Polynomials

All the following hypergeometric functions represent the
Legendre Polynomials:

SO0 o1

1 — /n :
k=0

Ln/2J 9 — o T\ _%’ _%+% 1
5> - = (—) 2
n n ) \2 —n+1/2 | x?




Recurrence Equation of the Legendre
Polynomials
e This shows that special functions typically come in
rather different disguises.

e However, the common recurrence equation of the
different representations shows (after checking enough
initial values) that they represent the same functions.

e This method is generally applicable to identify
holonomic transcendental functions.

e In terms of computer algebra the recurrence equation
forms a normal form for holonomic functions.



Differential Equations for Hypergeometric

Series

e /eilberger's algorithm can be adapted to generate
holonomic differential equations for series

s(x) = Y F(x,k) .

k=—o00
e For this purpose, the summand F(x, k) must be a
hyperexponential term w.r.t. x, I.e.
F'(x, k)
cQx, k) .
F(x, k) Q(z, k)
e Similarly as recurrence equations holonomic differential
equations form a normal form for holonomic functions.
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Clausen’s Formula

e Clausen’s formula gives the cases when a Clausen 3F5
function is the square of a Gauss o F7 function:

2
a,b 2a,2b,a + b
r P |
2 1(a+b+1/2 x) 3 2(a+b+1/2,2a+26 x)

e Clausen's formula can be proved (using a Cauchy
product) by a recurrence equation from left to right

e or “classically” with the aid of differential equations.



A Generating Function Problem

e Recently Folkmar Bornemann showed me a newly
developed generating function of the Legendre
polynomials and asked me to generate it automatically.

e Here is the question: Write

Gz, 2, ) = i(o‘+”_1>P( ) 2"

n=0

as a hypergeometric function!



Generating Function as a Double Sum

e \We can take any of the four given hypergeometric

representations of the Legendre polynomials that we
saw to write G(x, z,«) as a double sum.

e Then the trick is to change the order of summation

n=0 k=0
O 0@
=> ) ] pr(n, )z
k=0 n=0
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Combining the Algorithms

e T he following example combines some of the
algorithms considered so far.

e \We consider

00
ngk

Fle)=) (3k)!

k=0

e /eilberger's algorithm finds a holonomic differential
equation which can be explicitly solved.

e The FPS algorithm redetects the above representation.



Automatic Computation of Infinite Sums

e Whereas Zeilberger's algorithm finds
Chu-Vandermonde's formula for n € Nx

—n,b ~ (c—=b),
2F1( . 1) (O,

the question arises to detect Gauss' identity

2F1(n,b 1) _ ['(c)T'(c—a—0)

c ['(c—a)l'(c—b)

for a,b,c € C in case of convergence.



Solution

e The idea is to detect automatically

a,b
F Y]
e

)

(c—a), (c—b)y

(¢)m (¢ = a —=b)m

a
2F1(

and then to consider the limit as m — 0.

,b1)7
C

e Using appropriate limits for the I' function, this and
similar questions can be handled automatically by a
Maple package of Vidunas and Koornwinder.



Petkovsek’s Algorithm

e Petkovsek's algorithm is an adaption of Gosper's.

e Given a holonomic recurrence equation, it determines
all hypergeometric term solutions.

e Petkovsek's algorithm is slow, especially if the leading
and trailing terms have many factors. Maple 9 contains
a much more efficient algorithm due to Mark van Hoelj.



Combining Zeilberger’s and Petkovsek’s
Algorithm

e /eilberger’'s algorithm may not give a recurrence of
first order, even if the sum is a hypergeometric term.
This rarely happens, though.

e Therefore the combination of Zeilberger's algorithm
with Petkovsek's guarantees to find out whether a
given sum can be written as a hypergeometric term.

e Exercise 9.3 of my book gives 9 examples for this
situation, all from p. 556 of

— Prudnikov, Brychkov, Marichev: Integrals and Series, Vol. 3:
More Special Functions. Gordon Breach, 1990.



INTEGRALS

'VOLUME 3: MORE SPECIAL FUNCTIONS

A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev

Translated from the Russian by G.G. Gould

Gordon and Breach Science Publishers

A. P. PRUDNIKOV, Yu. A. BRYCHKOV AND O. 1. MARICHEV

Y ot
=—*(C_fcb),,_])n oF °((a 1)/2_21;_114-?;’-;)/3:;—_11,_1 l)
—ﬁfsfz(cfi,"f;';ii‘ D)
n (T ) e
n, 14+b— (a+c)/2 b+(1+a—c)’2 I-—c—n, 1)

»n
=4

F
X4 8((3 —a—0)/2—n, 14+(@—0)/2—n, 1+2b—¢

o . (=™ & a241, 51 \_(1+a), (1+a)/2—b),
: “(a/z, 14a+n, l+a—b)— @Fo)/2), (T+a=b),’

N

—n, a, aj2+4-1, b; 1
0. ‘F“(a/z, 14a—b, 24+2—n)=
_.fa—2—1), . 2(—n, (@-+1)/2, a—2b+n—l l)

("3

—=26—1), I+a—b, (a—1),2—
31 (@a—2b—1), (—b—1), (a—2b+42n—1)
‘ (I+a—b), (—26—1), @—26—1)
N o) a, a-1/2, b; (2a—-b), (b—n)
3(2,1, (b—n-+1)/2, (p—n)/2+ 1) 0—=b), 6+n)
s(—n a, a1/2, b; . ) (142a—0),
201, (6—n)/2, (b—n--1)/2 (1—=b), °

34 F.[TM a--1/2, b; (14-2a—b), (2a—b—n) (b—
4 3<2a+1 (b—n+1)/2 ®— n)/2+l) (l—b),,(2a—-b+n)(b)-§—n)n)
3. 4Fa(_”’ a, b, —1/2—a—b—n; )_ (2a+1), (264 1), @45+ 1),

—a—n, —b—n, a+4+b1172 @+ 1), ¢+ 1), Qa+26-F1), *
—n, a, b, 1/2—a—b—n; 1)_(2a+1),,(2‘b),,(a+b),, )

36. ,F
3 —a—n, 1—b—n, a+b+1/2

@+ 1)z (0) (2a4-28),
3. , a(—n, a, b 1)2—a—b—n; ) (20) (2b),, (@ b)n
l—a—n, 1—b—n, a+b+1/2 @n B)n 2a+26—(1F1)2), °
38, .p,(—m a, b, 3/2—a—b—n; ) (20), (26)5 (a+b)n (23 26— 1)
\—a—n, 1—b—n, a-b+1/2 @n B)n @a+26—1), (2a+2642n=1) *
30 F,(—" a, b, 3/2—a—b—n;, ) __(2a), @b—1), (a4-b—1),
l—a—n, 2—b—n, a+b—1/2 @y (0—1), 2a+26—2),,°
2. F, (—n, a, b, 52—a—b—n;
2—ag—n, 2—b—n, a+b—l/2
(2a—1), (20— 1), (ab—1), (2a+2b—o)
T (e—1), 6— Dy (2a+26—3), (204 26+ 2n— —3)°

st Fof—™ 1En @ a 1125 1 1 (1 —b), b—2a—1),
F(Te s s ) e b+u[(2a ] -
a2, Fof—™ 2+4n, a, a41/2; 1
c 43 3/2, b, 20—b-2
. 1 (1—5), (b—2a—1),
- 2(n+1) (a—b+1)(1—20)[(2a—b+t";n (0N k H]
—_n, a; 1
4. ‘F’(z b, 14a—b—n
(b—-])(a —b— n)

=Thrna—1n WO+)+yI+a—b)— ¢—)—yp@—b—n)]
556



Examples

e As an example, we take
. k
>0 (1) (0) = or =230

e and Exercise 9.3 (a), resp. PBM (7.5.3.32):

|
_ 1 2a — b), (b —
4F3( n,a,a+5,b 1) :( a—>b), (b n)

2a, 04 on 4] (1 =), (b+n)




Extensions

e To find recurrence and differential equations for
hypergeometric and hyperexponential integrals,
Almkvist and Zeilberger gave a continuous version of
Gosper's algorithm. It finds hyperexponential
antiderivatives if those exist.

e [he resulting adaptations of the discrete versions of
Leilberger's algorithm find holonomic recurrence and
differential equations for hypergeometric and
hyperexponential integrals.



Extensions

e Using Cauchy’s integral formula

B () = T 7{ ( A

2 t — x)ntl

for the nth derivative makes the integration algorithm
accessible for Rodrigues type expressions
dn
fu(@) = gn(x) 5 —hn(x) .

dx™



Orthogonal Polynomials

e Hence one can easily show that the functions

(_1)n d" n
P(@) = S g = %)

are the Legendre polynomials, and

L\ >(az) = T d:z:”e x&t

are the generalized Laguerre polynomials.



Extensions

e If ['(2) is the generating function of the sequence
an fn(x), i. e.

O

F() =3 an fule) 2"

n=>0
then by Cauchy’s formula and Taylor's theorem

1 F™O) 11 /F(t) »

a, n! a,2mi | totl o
T

fn(x) —




Laguerre Polynomials

e Hence we can easily prove the following generating
function identity

(1—2)"Lexp (Z - 1) ZL

for the generalized Laguerre polynomials.




Extensions

e A further extension concerns the computation of basic
hypergeometric series.

e Instead of considering series whose coefficients A; have
rational term ratio Ay.1/A; € Q(k), basic
hypergeometric series are series whose coefficients Ay,
have term ratio A, 1/A; € Q(g").

e [he algorithms considered can be extended to the
basic case.



Epilogue

e | hope | could give you an idea about the great
algorithmic opportunities for sums.

e Some of the algorithms considered are also
implemented in Macsyma, Mathematica, MuPAD or In

Reduce.

e | wish you much success in using them!

e If you still have questions concerning this topic | ask
you to send me your questions to
koepf@mathematik.uni-kassel.de.


koepf@mathematik.uni-kassel.de

