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Overview

In this tutorial I will deal with the following algorithms:

• the computation of power series representations of

hypergeometric type functions, given by expressions

(like arcsin(x)
x )

• the computation of holonomic differential equations for

functions, given by expressions

• the computation of holonomic recurrence equations for

sequences, given by expressions (like
(
n
k

)
xk

k! )

• the computation of generating functions



Overview

• the computation of antidifferences of hypergeometric

terms (Gosper’s algorithm)

• the computation of holonomic differential and

recurrence equations for hypergeometric series, given

the series summand (like Pn(x) =
n∑

k=0

(
n
k

) (−n−1
k

) (1−x
2

)k
(Zeilberger’s algorithm)

• the computation of hypergeometric term

representations of series (Petkovsek’s algorithm)

• the verification of identities for special functions.



Automatic Computation of Power Series

• Given an expression f(x) in the variable x, one would

like to find the Taylor series

f(x) =
∞∑

k=0

Ak xk ,

i.e., a formula for the coefficient Ak.

• For example, if f(x) = ex, then

f(x) =
∞∑

k=0

1
k!

xk ,

hence Ak = 1
k!.



FPS Algorithm

The main idea behind the FPS algorithm is

• to compute a holonomic differential equation for f(x),
i.e., a homogeneous linear differential equation with

polynomial coefficients,

• to convert the differential equation to a holonomic

recurrence equation for Ak,

• and to solve the recurrence equation for Ak.

The above procedure is successful at least is f(x) is a

hypergeometric power series.



Computation of Holonomic Differential
Equations

• Input: expression f(x).

• Compute c0f(x) + c1f
′(x) + · · ·+ cJf

(J)(x) with still

undetermined coefficients cj.

• Collect w. r. t. linearly independent functions ∈ Q(x)
and determine their coefficients.

• Set these zero, and solve the corresponding linear

system for the unknowns c0, c1, . . . , cJ.

• Output: DE := c0f(x) + c1f
′(x) + · · ·+ cJf

(J)(x) = 0.



Algebra of Holonomic Functions

• We call a function that satisfies a holonomic

differential equation a holonomic function.

• Sum and product of holonomic functions turn out to

be holonomic.

• We call a sequence that satisfies a holonomic

recurrence equation a holonomic sequence.

• Sum and product of holonomic sequences are

holonomic.

• A function is holonomic iff it is the generating function

of a holonomic sequence.



Hypergeometric Functions

• The power series

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣x
)

=
∞∑

k=0

Ak xk =
∞∑

k=0

ak ,

whose coefficients Ak have a rational term ratio

ak+1

ak
=

Ak+1 xk+1

Ak xk
=

(k + a1) · · · (k + ap)
(k + b1) · · · (k + bq)

· x

k + 1
,

is called the generalized hypergeometric function.



Coefficients of the Generalized
Hypergeometric Function

• For the coefficients of the hypergeometric function that

are called hypergeometric terms, one gets the formula

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

=
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
,

where (a)k = a(a + 1) · · · (a + k − 1) is called the

Pochhammer symbol or shifted factorial.



Examples of Hypergeometric Functions

• The simplest hypergeometric function is

ex =
∞∑

k=0

xk

k!
= 0F0

(
−
−

∣∣∣∣∣x
)

.

• Many elementary functions are hypergeometric, e. g.

sinx =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 = x 0F1

(
−
3
2

∣∣∣∣∣−x2

4

)
.

• Further examples: cos(x), arcsin(x), arctan(x),
ln(1 + x), erf(x), Pn(x), . . . , but for example not

tan(x), . . .



Identification of Hypergeometric Functions

• Assume we have

s =
∞∑

k=0

ak .

• How do we find out which pFq(x) this is?

• Example: sinx =
∞∑

k=0

(−1)k

(2k+1)! x
2k+1 .

• The coefficient term ratio yields

ak+1

ak
=

(−1)k+1

(2k + 3)!
(2k + 1)!

(−1)k

x2k+3

x2k+1 =
−1

(2k + 2)(2k + 3)
x2



Identification Algorithm

• Input: ak .

• Compute the term ratio

rk :=
ak+1

ak
,

and check whether rk ∈ C(k) is a rational function.

• Factorize rk.

• Output: read off the upper and lower parameters and

compute an initial value, e. g. a0.



Recurrence Equations for Hypergeometric
Functions

• Given a sequence sn, as hypergeometric sum

sn =
∞∑

k=−∞

F (n, k) .

• How do we find a recurrence equation for the sum sn?



Celine Fasenmyer’s Algorithm

• Input: summand F (n, k).
• Compute for suitable I, J ∈ N

J∑
j=0

I∑
i=0

aij
F (n + j, k + i)

F (n, k)
∈ Q(n, k) .

• Bring this into rational normal form, and set the

numerator coefficient list w.r.t. k zero.

• If successful, linear algebra yields aij ∈ Q(n, k), and

therefore a k-free recurrence equation for F (n, k).
• Output: Sum the resulting recurrence equation for

F (n, k) w.r.t. k.



Drawbacks of Fasenmyer’s Algorithm

In easy cases this algorithm succeeds, but:

• In many cases the algorithm generates a recurrence

equation of too high order.

• From such a recurrence equation a lower order

recurrence equation cannot be easily recovered.

• The algorithm is slow. If, e.g., I = 2 and J = 2, then

already 9 linear equations have to be solved.

• Therefore the algorithm fails in many interesting cases.



The software used was

developed in connection

with my book

Hypergeometric Summa-

tion, Vieweg, 1998,

Braunschweig/Wiesbaden

and can be downloaded

from my home page:

http://www.mathematik.uni-kassel.de/˜koepf



Indefinite Summation

• Given a sequence ak, find a sequence sk which satisfies

ak = sk+1 − sk = ∆sk .

• Having found sk makes definite summation easy since

by telescoping one gets for arbitrary m,n

n∑
k=m

ak = sn+1 − sm .

• Indefinite summation is the inverse of ∆.



Gosper’s Algorithm

• Input: ak, a hypergeometric term.

• Compute pk, qk, rk ∈ Q[k] with

ak+1

ak
=

pk+1

pk

qk+1

rk+1
with gcd(qk, rk+j) = 1 for all j = 0 .

• Find a polynomial solution fk of the recurrence

equation qk+1fk − rk+1fk−1 = pk.

• Output: the hypergeometric term sk = rk
pk

fk−1ak.



Definite Summation: Zeilberger’s
Algorithm

• Zeilberger had the brilliant idea to use a modified

version of Gosper’s algorithm to compute definite

hypergeometric sums

sn =
∞∑

k=−∞

F (n, k) .

• Note however that, whenever sn is itself a

hypergeometric term, then Gosper’s algorithm, applied

to F (n, k), fails!



Zeilberger’s Algorithm

• Input: summand F (n, k).

• For suitable J ∈ N set

ak := F (n, k) + σ1F (n + 1, k) + · · ·+ σJF (n + J, k) .

• Apply the following modified version of Gosper’s

algorithm to ak:

– In the last step, solve at the same time for the

coefficients of fk and the unknowns σj ∈ Q(n).

• Output by summation: The recurrence equation

RE := sn + σ1sn+1 + · · ·+ σJsn+J = 0 .



The output of Zeilberger’s Algorithm

• We apply Zeilbergers algorithm iteratively for

J = 1, 2, . . . until it succeeds.

• If J = 1 is successful, then the resulting recurrence

equation for sn is of first order, hence sn is a

hypergeometric term.

• If J > 1, then the result is a holonomic recurrence

equation for sn.

• One can prove that Zeilberger’s algorithm terminates

for suitable input.

• Zeilberger’s algorithm is much faster than Fasenmyer’s.



Different Representations of Legendre
Polynomials

All the following hypergeometric functions represent the

Legendre Polynomials:

Pn(x) =
n∑

k=0

(
n

k

)(
−n− 1

k

)(
1− x

2

)k

= 2F1

(
−n, n + 1

1

∣∣∣∣∣ 1− x

2

)

=
1
2n

n∑
k=0

(
n

k

)2

(x−1)n−k (x+1)k =
(

1− x

2

)n

2F1

(
−n,−n

1

∣∣∣∣∣ 1 + x

1− x

)

=
1
2n

bn/2c∑
k=0

(−1)k

(
n

k

)(
2n−2k

n

)
xn−2k =

(
2n

n

)(x

2

)n

2F1

(
−n

2 ,−n
2 +1

2

−n + 1/2

∣∣∣∣∣ 1
x2

)



Recurrence Equation of the Legendre
Polynomials

• This shows that special functions typically come in

rather different disguises.

• However, the common recurrence equation of the

different representations shows (after checking enough

initial values) that they represent the same functions.

• This method is generally applicable to identify

holonomic transcendental functions.

• In terms of computer algebra the recurrence equation

forms a normal form for holonomic functions.



Differential Equations for Hypergeometric
Series

• Zeilberger’s algorithm can be adapted to generate

holonomic differential equations for series

s(x) :=
∞∑

k=−∞

F (x, k) .

• For this purpose, the summand F (x, k) must be a

hyperexponential term w.r.t. x, i.e.
F ′(x, k)
F (x, k)

∈ Q(x, k) .

• Similarly as recurrence equations holonomic differential

equations form a normal form for holonomic functions.



Clausen’s Formula

• Clausen’s formula gives the cases when a Clausen 3F2

function is the square of a Gauss 2F1 function:

2F1

(
a, b

a+b+1/2

∣∣∣∣∣x
)2

= 3F2

(
2a, 2b, a + b

a+b+1/2, 2a+2b

∣∣∣∣∣x
)

.

• Clausen’s formula can be proved (using a Cauchy

product) by a recurrence equation from left to right

• or “classically” with the aid of differential equations.



A Generating Function Problem

• Recently Folkmar Bornemann showed me a newly

developed generating function of the Legendre

polynomials and asked me to generate it automatically.

• Here is the question: Write

G(x, z, α) :=
∞∑

n=0

(
α + n− 1

n

)
Pn(x) zn

as a hypergeometric function!



Generating Function as a Double Sum

• We can take any of the four given hypergeometric

representations of the Legendre polynomials that we

saw to write G(x, z, α) as a double sum.

• Then the trick is to change the order of summation

∞∑
n=0

(
α+n−1

k

) ( ∞∑
k=0

pk(n, x)

)
zn

=
∞∑

k=0

∞∑
n=0

(
α+n−1

k

)
pk(n, x) zn .



Combining the Algorithms

• The following example combines some of the

algorithms considered so far.

• We consider

F (x) =
∞∑

k=0

x3k

(3k)!
.

• Zeilberger’s algorithm finds a holonomic differential

equation which can be explicitly solved.

• The FPS algorithm redetects the above representation.



Automatic Computation of Infinite Sums

• Whereas Zeilberger’s algorithm finds

Chu-Vandermonde’s formula for n ∈ N=0

2F1

(
−n, b

c

∣∣∣∣∣ 1
)

=
(c− b)n

(c)n
,

the question arises to detect Gauss’ identity

2F1

(
−n, b

c

∣∣∣∣∣ 1
)

=
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b)

for a, b, c ∈ C in case of convergence.



Solution

• The idea is to detect automatically

2F1

(
a, b

c + m

∣∣∣∣∣ 1
)

=
(c− a)m (c− b)m

(c)m (c− a− b)m
2F1

(
a, b

c

∣∣∣∣∣ 1
)

,

and then to consider the limit as m →∞.

• Using appropriate limits for the Γ function, this and

similar questions can be handled automatically by a

Maple package of Vidunas and Koornwinder.



Petkovsek’s Algorithm

• Petkovsek’s algorithm is an adaption of Gosper’s.

• Given a holonomic recurrence equation, it determines

all hypergeometric term solutions.

• Petkovsek’s algorithm is slow, especially if the leading

and trailing terms have many factors. Maple 9 contains

a much more efficient algorithm due to Mark van Hoeij.



Combining Zeilberger’s and Petkovsek’s
Algorithm

• Zeilberger’s algorithm may not give a recurrence of

first order, even if the sum is a hypergeometric term.

This rarely happens, though.

• Therefore the combination of Zeilberger’s algorithm

with Petkovsek’s guarantees to find out whether a

given sum can be written as a hypergeometric term.

• Exercise 9.3 of my book gives 9 examples for this
situation, all from p. 556 of

– Prudnikov, Brychkov, Marichev: Integrals and Series, Vol. 3:

More Special Functions. Gordon Breach, 1990.





Examples

• As an example, we take

n∑
k=0

(−1)k

(
n

k

)(
ck

n

)
= (−c)n (c = 2, 3, . . .)

• and Exercise 9.3 (a), resp. PBM (7.5.3.32):

4F3

(
−n, a, a + 1

2, b

2a, b−n+1
2 , b−n

2 + 1

∣∣∣∣∣ 1
)

=
(2a− b)n (b− n)
(1− b)n (b + n)

.



Extensions

• To find recurrence and differential equations for

hypergeometric and hyperexponential integrals,

Almkvist and Zeilberger gave a continuous version of

Gosper’s algorithm. It finds hyperexponential

antiderivatives if those exist.

• The resulting adaptations of the discrete versions of

Zeilberger’s algorithm find holonomic recurrence and

differential equations for hypergeometric and

hyperexponential integrals.



Extensions

• Using Cauchy’s integral formula

h(n)(x) =
n!
2πi

∮
h(t)

(t− x)n+1 dt

for the nth derivative makes the integration algorithm

accessible for Rodrigues type expressions

fn(x) = gn(x)
dn

dxn
hn(x) .



Orthogonal Polynomials

• Hence one can easily show that the functions

Pn(x) =
(−1)n

2n n!
dn

dxn
(1− x2)n

are the Legendre polynomials, and

L(α)
n (x) =

ex

n!xα

dn

dxn
e−x xα+n

are the generalized Laguerre polynomials.



Extensions

• If F (z) is the generating function of the sequence

an fn(x), i. e.

F (z) =
∞∑

n=0

an fn(x) zn ,

then by Cauchy’s formula and Taylor’s theorem

fn(x) =
1
an

F (n)(0)
n!

=
1
an

1
2πi

∫
Γ

F (t)
tn+1 dt .



Laguerre Polynomials

• Hence we can easily prove the following generating

function identity

(1− z)−α−1 exp
(

xz

z − 1

)
=

∞∑
n=0

L(α)
n (x) zn

for the generalized Laguerre polynomials.



Extensions

• A further extension concerns the computation of basic

hypergeometric series.

• Instead of considering series whose coefficients Ak have

rational term ratio Ak+1/Ak ∈ Q(k), basic

hypergeometric series are series whose coefficients Ak

have term ratio Ak+1/Ak ∈ Q(qk).

• The algorithms considered can be extended to the

basic case.



Epilogue

• I hope I could give you an idea about the great

algorithmic opportunities for sums.

• Some of the algorithms considered are also

implemented in Macsyma, Mathematica, MuPAD or in

Reduce.

• I wish you much success in using them!

• If you still have questions concerning this topic I ask

you to send me your questions to

koepf@mathematik.uni-kassel.de.

koepf@mathematik.uni-kassel.de

