
On the de Branges and Weinstein
Functions

Prof. Dr. Wolfram Koepf

University of Kassel

koepf@mathematik.uni-kassel.de

http://www.mathematik.uni-kassel.de/~koepf

Tag der Funktionentheorie

5. Juni 2004

Universität Würzburg

http://www.mathematik.uni-kassel.de/~koepf






Ludwig Bieberbach conjectured |an| 5 n (1916)



Charles Loewner proved |a3| 5 3 (1923)



N. A. Lebedev and I. M. Milin invented the logarithmic

coefficients and deduced the Milin Conjecture (1965)



The de Branges Theorem

• In 1984 Louis de Branges proved the Milin and

therefore the Bieberbach conjecture for all n ∈ N.

• In 1991 Lenard Weinstein gave a completely

independent proof of the Milin conjecture.

• Nevertheless, it turned out that the two proofs share

more than expected.

• Large parts of both proofs can be computerized.



Louis de Branges proved the Milin conjecture (1984)



De Branges’ Proof

• De Branges considered the function

ψ(t) :=
n∑
k=1

τnk (t)
(
k|dk(t)|2 −

4
k

)
dk(t) denoting the logarithmic coefficients of

e−tf(z, t), where f(z, t) is a Loewner chain of f .

• Applying Loewner’s theory he could show that for

suitably chosen functions τnk (t) the relation ψ̇(t) = 0
and therefore ψ(0) = −

∫∞
0 ψ̇(t)dt 5 0 follows.

• Inequality ψ(0) 5 0, however, is Milin’s conjecture.



The de Branges Functions

• The de Branges functions τnk (t), k = 1, . . . , n are

defined by the coupled system of differential equations

τnk (t)− τnk+1(t) = −1
k
τ̇nk (t)− 1

k + 1
τ̇nk+1(t)

with the initial values

τnk (0) = n+ 1− k .



Further Properties of the de Branges
Functions

• By these properties the family τnk (t) is already uniquely

determined. For the success of de Branges’ proof,

however, one needs moreover the properties

lim
t→∞

τnk (t) = 0

as well as

τ̇nk (t) 5 0 (t = 0) .



The Askey-Gasper Inequality

• Whereas the limit lim
t→∞

τnk (t) = 0 can be established

easily, de Branges could not verify the relation

τ̇nk (t) 5 0.

• By a phone call of Walter Gautschi with Dick Askey, de

Branges finally realized that this relation had been

proved by Askey and Gasper not long before, namely in

1976. To find this connection, an explicit

representation of his functions τnk (t) was necessary.



Dick Askey and George Gasper







Hypergeometric Functions

• The power series

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣∣x
)

=
∞∑
k=0

Ak x
k =

∞∑
k=0

ak ,

whose coefficients Ak have a rational term ratio

ak+1

ak
=
Ak+1 x

k+1

Ak xk
=

(k + a1) · · · (k + ap)
(k + b1) · · · (k + bq)

· x

k + 1
,

is called the generalized hypergeometric function.



Coefficients of the Hypergeometric
Function

• For the coefficients of the hypergeometric function that

are called hypergeometric terms, one gets the formula

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣∣ z
)

=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
,

where (a)k = a(a+ 1) · · · (a+ k − 1) is called the

Pochhammer symbol or shifted factorial.



Askey-Gasper Identity

• The Askey-Gasper inequality was proved by detecting

ingeniously the Askey-Gasper identity

(α+ 2)n
n!

· 3F2

(
−n, n+2+α, α+1

2
α+1, α+3

2

∣∣∣∣∣x
)

=
bn/2c∑
j=0

(1
2

)
j

(
α
2 +1

)
n−j

(
α+3

2

)
n−2j (α+ 1)n−2j

j!
(
α+3

2

)
n−j

(
α+1

2

)
n−2j (n− 2j)!

·

3F2

(
2j−n, n−2j+α+1, α+1

2
α+1, α+2

2

∣∣∣∣∣x
)



Computer Algebra Proof of the
Askey-Gasper Identity

• Using Zeilberger’s algorithm which was developed in

1990, computer calculations can prove the

Askey-Gasper identity easily.

• This proof goes from right to left, but there is no way

to detect the right hand side from the left hand side.

This part still needs Askey’s and Gasper’s ingenuity.

• Computer demonstration using Maple



The software used was

developed in connection

with my book

Hypergeometric Summa-

tion, Vieweg, 1998,

Braunschweig/Wiesbaden

and can be downloaded

from my home page:

http://www.mathematik.uni-kassel.de/˜koepf



Clausen’s Identity

• The clue of the Askey-Gasper identity is the fact that

the hypergeometric function occurring in its right hand

summand is a complete square by Clausen’s identity

3F2

(
2a, 2b, a+ b

2a+ 2b, a+ b+ 1/2

∣∣∣∣∣x
)

= 2F1

(
a, b

a+ b+ 1/2

∣∣∣∣∣x
)2

.

• Clausen’s identity can also be proved by Zeilberger’s

algorithm. For this purpose, we write the right hand

side as a Cauchy product.



Weinstein’s Proof

• In 1991 Weinstein published a completely different

proof of the Milin conjecture.

• Whereas de Branges takes fixed n ∈ N, Weinstein

considers the conjecture for all n ∈ N at the same time.

• For his proof Weinstein needs the following Loewner

chain of the Koebe function

K(z) :=
z

(1− z)2 =
1
4

((
1 + z

1− z

)2

− 1

)
=

∞∑
n=0

nzn ,

sometimes called Pick function.



Loewner Chain of the Koebe Function

• This function family W : D × R=0 → D is given by

W (z, t) = K−1
(
e−tK(z)

)
.

• For any particular t > 0 the range of this function is the

unit disk with a radial slit that grows with growing t.

• A computation shows that

W (z, t) =
4e−tz(

1− z +
√

1− 2(1− 2e−t)z + z2
)2 .



The mapping behavior of W (z, t)



Weinstein’s Proof

• Weinstein computes the generating function of the

(negative) Milin expression using the Pick function W :

M(z) :=
∞∑
n=1

(
n∑
k=1

(n+ 1− k)
(

4
k
− k|dk(0)|2

))
zn+1

=
z

(1− z)2

∞∑
k=1

(
4
k
− k|dk(0)|2

)
zk

= −
∞∫

0

etW

(1−W )2

d

dt

( ∞∑
k=1

(
4
k
− k|dk(t)|2

)
W k

)
dt .



Weinstein’s Proof

• Using the Loewner differential equation Weinstein

shows that for the generating function M(z) one

finally gets the equation

M(z) =
∞∑
n=1

(∫ 2π

0
Λn
k(t)Ak(t)dt

)
zn+1

where Ak(t) = 0 (by the Loewner differential equation)

and
etW (z, t)k+1

1−W (z, t)2 =:
∞∑
n=1

Λn
k(t)z

n+1 .



End of Proof

• Hence, Milin’s conjecture follows if the coefficients

Λn
k(t) of the function

Lk(z, t) :=
etW (z, t)k+1

1−W (z, t)2 =
∞∑
n=1

Λn
k(t)z

n+1

satisfy the relation Λn
k(t) = 0.

• Weinstein shows this relation with the aid of the

Addition theorem of the Legendre polynomials (1782).



De Branges versus Weinstein

• The question was posed to identify the Weinstein

functions Λn
k(t).

• Todorov (1992) and Wilf (1994) independently proved

the surprising identity

τ̇nk (t) = −kΛn
k(t) .

• This shows that the t-derivatives of the de Branges

functions and the Weinstein functions essentially agree.

In particular, the essential inequalities are the same.



Another Generating Function

• The strong relation between the de Branges functions

and the Koebe function can be seen by their

generating function w.r.t. n [Koepf, Schmersau 1996]:

Bk(z, t) :=
∞∑
n=k

τnk (t) zn+1 = K(z)W (z, t)k

= K(z)k+1e−kt2F1

(
k, k + 1/2

2k + 1

∣∣∣∣∣−4K(z)e−t
)

=
∞∑
n=k

e−kt
(
n+k+1
2k + 1

)
4F3

(
k+1

2, n+k+2, k, k−n
k + 1, 2k + 1, k + 3

2

∣∣∣∣∣e−t
)
zn+1.



Automatic Computation of Power Series

• Given an expression f(x) in the variable x, one would

like to find the Taylor series

f(x) =
∞∑
k=0

Ak x
k ,

i.e., a formula for the coefficient Ak.

• For example, if f(x) = ex, then

f(x) =
∞∑
k=0

1
k!
xk ,

hence Ak = 1
k!.



FPS Algorithm

The main idea behind the FPS algorithm [Koepf 1992] is

• to compute a holonomic differential equation for f(x),
i.e., a homogeneous linear differential equation with

polynomial coefficients,

• to convert the differential equation to a holonomic

recurrence equation for Ak,

• and to solve the recurrence equation for Ak.

The above procedure is successful at least is f(x) is a

hypergeometric power series.



FPS Algorithm for W (z, t)k
• As an application of the FPS algorithm, we compute

the Taylor series of w(z, y)k = W (z,− ln y)k,
considered as function of the variable y = e−t,

w(z, y)k =
(4yz)k(

1− z +
√

1− 2(1− 2y)z + z2
)2k .

which turns out to be a hypergeometric power series.

• After multiplying by K(z), we apply the FPS

procedure a second time, this time w.r.t. the variable

z, and get the hypergeometric representation of τnk (t).



Further Properties

• The de Branges system of differential equations gives

Snk (t) =
1
2

(
τnk (t) + Λn

k(t)
)

= 0

and
Snk+1(t) =

1
2

(
τnk (t)− Λn

k(t)
)

= 0

hence τnk (t) and Λn
k(t) are the sum and difference of

the same nonnegative 4F3 hypergeometric function.

• One can also prove that τnk (t) increases w.r.t. n and

ekt τnk (t) increases w.r.t. t [Koepf, Schmersau 2004].


