

Numerical Methods for Partial Differential Equations

Homework 6

Problem 1

Show that the Lax-Wendroff method

$$u_j^{n+1} = u_j^n - \frac{\lambda a}{2} \underbrace{(u_{j+1}^n - u_{j-1}^n)}_{=F_1^{LW}} + \frac{\lambda^2 a^2}{2} \underbrace{(u_{j+1}^n - 2u_j^n + u_{j-1}^n)}_{=F_2^{LW}}$$

with $a > 0$ and $\lambda = \frac{\Delta t}{\Delta x}$ is stable if the CFL condition $a\lambda < 1$ is satisfied. (4 P)

Problem 2

We consider the linear advection equation

$$\partial_t u + a \partial_x u = 0, \quad x \in [0, 25]$$

with initial data

$$u_0(x) = \exp(-20(x-2)^2) + \exp(-(x-5)^2)$$

and $u(0, t) = 0$, $a = 1$. Compute the approximate solution at $t = 17$ with the upwind scheme, the Lax-Wendroff method, as well as the Beam-Warming scheme

$$u_j^{n+1} = u_j^n - \frac{\lambda a}{2} \underbrace{(3u_j^n - 4u_{j-1}^n + u_{j-2}^n)}_{=F_1^{BW}} + \frac{\lambda^2 a^2}{2} \underbrace{(u_j^n - 2u_{j-1}^n + u_{j-2}^n)}_{=F_2^{BW}},$$

and the method of Fromm

$$u_j^{n+1} = u_j^n - \frac{\lambda a}{2} \frac{(F_1^{LW} + F_1^{BW})}{2} + \frac{\lambda^2 a^2}{2} \frac{(F_2^{LW} + F_2^{BW})}{2}.$$

Use the mesh width $\Delta x = 0.05$ and time step size $\Delta t = 0.8\Delta x$. Plot the approximation together with the exact solution in the interval $[15, 25]$. What do you observe? (4 P)

Due on Friday, May 18, 2012.