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Abstract

In this master thesis, we �rst present Bessel functions as solutions of a certain second-

order linear homogeneous di�erential equation, called � Bessel's equation � .

Secondly, we show that some families of second-order di�erential equations can be solved by

means of Bessel functions, this throught speci�c transformations such as

- the change of variables,

- the exp-product and

- the Gauge transformation.

We complete the work by providing explicit examples for each transformation.

Master Thesis MOUAFO WOUODJIE Merlin UYI 2013



Résumé

Dans cette thèse de master, nous présentons prémièrement les fonctions de Bessel comme

solutions d'une certaine équation di�érentielle linéaire homogène du second ordre, appelée

équation de Bessel.

Deuxièmement, nous montrons que certaines familles d'équations di�érentielles du second

ordre peuvent être résolues à l'aide des fonctions de Bessel, ceci à travers des transformations

spéci�ques telles que

- le changement de variables,

- le produit exponentiel et

- la transformation de Gauge.

Nous complétons le travail en donnant des exemples explicites pour chaque transformation.
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Introduction

Ordinary di�erential equations have always been of interest since they occur in many

applications. Although there is no general algorithm to solve every equation, there are many

methods, such as integrating factors, symmetry method.

A special class of ordinary di�erential equations is the class of linear homogeneous dif-

ferential equations Ly = 0, where L is a linear di�erential operator

L =
n∑
i=0

ai∂
i,

with coe�cients ai in some di�erential �eld K, e.g. K = Q(x) or K = C(x) and ∂ = d
dx
.

Information on the solutions of the di�erential equation L(y) = 0, can be obtained by

studying algebraic properties of the operator L, e.g. in [7].

For reducible operators, Beke's algorithm and the algorithm in [7] can factor L into

irreducible factors. After factoring, if we have a right factor of �rst order, then we have a

solution which is a Liouvillian solution.

But not all operators have liouvillian solutions. For example, the Bessel operator

LB1 = x2∂2 + x∂ + (x2 − ν2)

is irreducible in C(x)[∂] and has no Liouvillian solution when ν 6∈ 1
2

+ Z. Although some

irreducible operators have no Liouvillian solutions, their solutions may correspond to special

functions. For example, the solutions of the Bessel operator are Bessel functions. Because of

the availability of various studies relative to special functions, it is useful to �nd solutions

of second-order di�erential equations in terms of special functions, along side with algebraic

operations and exponential integrals.

The approach we develop in this thesis will be restricted to Bessel functions. The Bessel

functions were �rst used by Fredrich Bessel in 1824 to describe three body motion, with

the Bessel functions appearing in the series expansion on planetary perturbation. They are

solutions of an equation which appears frequently in applications and solutions to physical

situations. A linear di�erential equation with rational function coe�cients has a Bessel type

solution when it is solvable in terms of the Bessel functions. The idea for algorithm to solve

linear di�erential equations in terms of Bessel functions is by Mark van Hoeij, and was

developed in collaboration with Ruben Debeerst in 2006.
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Introduction 2

We only consider irreducible operators with order two, because if the second order-ope

rator is reducible, then it has Liouvillian solutions. So we can solve it by Kovacic's algorithm

[4]. If the order is higher than two, one looks for Eulerian solution, that is, a solution which

can be expressed as products of second-order operators (using sums, products, �eld opera-

tions, algebraic extensions, integrals, di�erentiations, exponential, logarithm and change of

variables).

Singer [6] showed that solving such operator L can be reduced to solving second-order

operators through factoring operators, or reducing operators to tensor products of lower

order operators. An algorithm and implementation for such reduction (order three to order

two) is given in [9]. Such reduction to order two is valuable, if we can actually solve such

second-order equations. That is why we focus on second-order operators.

The main problem here is to decide whether an irreducible operator of order two can be

obtained from the Bessel operator by certain transformations. To have solution, �rst we will

give some preliminaries about di�erential operators, they singularities, and an overview over

Bessel functions. Chapter two will deal with formal solutions and generalized exponents,

then will describe the transformations that we use and show how they are obtained in

the case K = C(x). Those transformations associated with parameters are: (i) change of

variables x→ f(x), (ii) an exp-product y → exp(
∫
r dx)y, and (iii) a gauge transformation

y → r0y + r1y
′, where y′ is dy

dx
. We will also handle the constant parameter ν of the Bessel

function. In the last chapter we will apply the resolution algorithm developed case by case

with explicit examples.
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Chapter One

Preliminaries

We �rst introduce some facts about di�erential operators, their solution spaces and cor-

responding di�erential equations. After that, we give an overview over the operator singu-

larities and the solutions around those singularities. Finally we give some basic properties of

Bessel functions and their corresponding di�erential operator. For the proofs of some of the

statements given here, we will refer to speci�c literatures.

1.1 Di�erential Operators and Singularities

1.1.1 Di�erential Operators

De�nition 1.1.1. Let K be a �eld. A derivation on K is a linear map D : K→ K satisfying

the product rule

D(ab) = aD(b) + bD(a), ∀a, b ∈ K.

A �eld K with a derivation D is called di�erential �eld.

Theorem 1.1.1. Let K be a di�erential �eld with derivation D, then CK := {a ∈ K | D(a) =

0} is also a �eld. It is called the constant �eld of K.

Proof: The proof is trivial and can be found in [7]. �

Example 1.1.1. Let us assume that CK is an extension �eld of Q, and D = ∂ := d
dx
, then

- CK(x) is a di�erential �eld called the �eld of rational functions over CK;

- CK((x)) is a di�erential �eld called the �eld of formal Laurent series over CK.

In our context we will consider functions in terms of variable x with the � usual � deriva-

tion ∂:= d
dx
.

De�nition 1.1.2. Let K be a di�erential �eld with derivation ∂, then

L =
n∑
i=0

ai∂
i, ai ∈ K
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1.1 Di�erential Operators and Singularities 4

is called di�erential operator. When the coe�cient an 6= 0, then n is the degree of L denoted

by deg(L). In case L = 0 we de�ne the degree to be −∞. The leading coe�cient of L refers

to the coe�cient an.

The ring of di�erential operators with coe�cients in K, denoted by K[∂], is an Euclidean

ring since for L1,L2 ∈ K[∂] with L1 6= 0, there are unique di�erential operators Q,R ∈ K[∂]

such that L2 = QL1+R and degR < degL1. The addition is canonical, i.e. a∂
i+b∂i = (a+b)∂i,

and the multiplication is completely determined by the prescribed rule ∂a = a∂ + a′ where

∂(a) = a′. In general, since there exists an element a ∈ K with a′ 6= 0 the ring K[∂] is not

commutative. For example ∂x = x∂ + 1

Every di�erential operator L corresponds to a homogeneous di�erential equation

Ly = 0 and vice versa. Hence, when talking about di�erential equations, the term order is

commonly used for the degree of the corresponding operator. We will always assume that

L 6= 0.

De�nition 1.1.3. By the solutions of a di�erential operator L we mean the solutions of

the homogeneous linear di�erential equation Ly = 0. The vector space of solutions, which is

denoted as V(L), is called the solution space of L.

Remark 1.1.1. The set V(L) is a vector space of dimension at most deg(L) and a set of

deg(L) linearly independent solutions of L is called fundamental system of L.

Note that a linear di�erential equation is commonly solved by transforming it into a

matrix equation of order one.

Let k be a �eld and k̃ an extension �eld of k. Let us consider, for a ∈ k̃, the homomorphism

ϕa : k[X] −→ k̃

P 7−→ P (a)

and Kerϕa = {P ∈ k[X]|ϕa(P ) = 0} where k[X] is the ring of polynomials with unknown

variable X and coe�cients in k.

De�nition 1.1.4. We say that a is algebraic over k if Kerϕa 6= {0}.

The set of algebraic elements of k̃ over k is a sub-�eld of k̃ containing k. We call it the

algebraic closure of k, denoted by k.

Theorem 1.1.2. Let k be a sub-�eld of C, then

k((x)) =
⋃
n∈N∗

k((x1/n))

Proof: The proof can be found in [7]. �
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1.1 Di�erential Operators and Singularities 5

1.1.2 Singular Points

Let y(x) be a function with values in C.

De�nition 1.1.5. A function y(x) is called

(i) regular at p ∈ C if there exists a neighborhood O of p such that y(x) is continuous on

O,

(ii) regular at ∞ if y
(

1
x

)
is regular at 0,

(iii) holomorphic at p ∈ C if y(x) is di�erentiable in a open set around p,

(iv) analytic at p ∈ C if y(x) can be represented as a power series

y(x) =
+∞∑
i=0

ai(x− p)i, ai ∈ C.

De�nition 1.1.6. Let K be a di�erential �eld, CK it constant �eld and CK the algebraic

closure of CK. We call a point p ∈ CK a singularity of the di�erential operator L ∈ K[∂], if

p is a zero of the leading coe�cient of L or p is a pole of one of the other coe�cients. All

other points are called regular.

Remark 1.1.2. - ∞ is also a singular point of L; to understand it, one can always use

the change of variables x→ 1
x
and deal with 0.

- At all regular points of L we can �nd a fundamental system of power series solutions.

If p is a singularity of a solution of L, then p must be a singularity of L. But the converse

is not true (see apparent singularity in the de�nition after this following de�nition).

De�nition 1.1.7. If p ∈ CK ∪ {∞}, we de�ne the local parameter tp as

tp =

{
x− p if p 6=∞

1
x

if p =∞ .

De�nition 1.1.8. Let L =
n∑
i=0

ai∂
i ∈ K[∂] with an = 1. A singularity p of L is called

(i) apparent singularity if all solutions of L are regular at p,

(ii) regular singular (p 6=∞) if tp
ian−i is regular at p for 1 ≤ i ≤ n,

(iii) regular singular (p =∞) if an−i

ti∞
is regular at ∞ for 1 ≤ i ≤ n, and

(iv) irregular singular otherwise.
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Theorem 1.1.3. Let L = ∂2 + P (x)∂ + Q(x) ∈ K[∂] and let p ∈ C be a point with local

parameter tp = x− p.

(i) If L is regular or apparent singular at p, then all solutions are analytic at x = p. Hence,

they can be written as convergent power series. Therefore there exists a unique solution

y(x) =
+∞∑
j=0

ajtp
j of L satisfying the initial conditions y(p) = c0 and y′(p) = c1, where

c0 and c1 are given arbitrary constants.

(ii) If L is regular singular at p, then there exists the two linearly independent solutions

y1(x) =tp
e1

+∞∑
j=0

ajtp
j, a0 6= 0

and y2(x) =tp
e2

+∞∑
j=0

bjtp
j + cy1(x) ln(tp), when b0 and c are not both zero ,

with e1, e2, aj, bj, c ∈ CK are constants and c = 0 if e1 − e2 6∈ Z.

(iii) If L is irregular singular at p, two linearly independent solutions are

y1(x) = exp

(∫
e1

tp
dtp

) +∞∑
j=0

ajtp
j
m , a0 6= 0

and y2(x) = exp

(∫
e2

tp
dtp

) +∞∑
j=0

bjtp
j
m + cy1(x) ln(tp), b0 and c are not both zero ,

with ai, bi, c ∈ CK, e1, e2 ∈ CK[t
−1
m
p ], c = 0 if e1 − e2 6∈ Z and m is 1 or 2 (because the

order of L is two).

Proof: The proof can be found in [10]. �

De�nition 1.1.9. In the previous theorem, if c = 0, then the solutions of L do not contain

logarithmic terms. If c 6= 0, then we say that L has logarithmic solutions at x = p.

Remark 1.1.3. - Note that L can only have logarithm solutions at x = p if e1− e2 ∈ Z.

- In the regular singular case, the constants e1 and e2 can be found by solving the indicial

equation

λ(λ− 1) + p0λ+ q0 = 0

where p0 resp. q0 is the constant coe�cient of the power series expansion of (z−z0)P (x)

resp. (z − z0)2Q(x) at z = z0:

p0 = lim
x→p

tpP (x), q0 = lim
x→p

t2pQ(x).

- In both cases, regular singularity and irregular singularity, e1 and e2 are generalized

exponents, which will be explained in the next chapter.
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1.2 Bessel Functions

1.2.1 Bessel's Di�erential Equation

In the Sturm-Liouville Boundary value problem, there is an important special case called

Bessel's Di�erential Equation which arises in numerous problem, especially in polar and

cylindral coordinates.

One of the most important of all variable-coe�cient di�erential equations is

t2
d2y

dt2
+ t

dy

dt
+
(
λ2t2 − ν2

)
y = 0, (1.1)

which is known as Bessel's ordinary equation of order ν with parameter λ, where ν, λ ∈ C.
By doing a change of variables from t to x using the substitution x = λt we get:

x2 d
2y

dx2
+ x

dy

dx
+
(
x2 − ν2

)
y = 0, (1.2)

which is known as Bessel's di�erential equation of order ν. ν is called the Bessel's parame-

ter. The solutions of this equation are called Bessel function of order ν. This equation has

singularities at 0 and ∞.

Bessel Functions of the �rst and second kind

Let us be in the vicinity of x = 0 with ν ∈ C. Since the equation (1.2) has a regular

singular point at x = 0, we can assume a solution of the form

y = xc
+∞∑
i=0

aix
i =

+∞∑
i=0

aix
i+c (1.3)

with a0 6= 0 by theorem 1.1.3, and apply Frobenius method using this series. The substitution

of (1.3) in (1.2) gives

+∞∑
i=0

[(i+ c)2 − ν2]aix
i+c +

+∞∑
i=0

aix
i+c+2 = 0.

A schift in index, replacing i with i− 2 in the second term, gives

+∞∑
i=0

[(i+ c)2 − ν2] aix
i+c +

+∞∑
i=2

ai−2x
i+c = 0.

The equations for determining the parameter c and the coe�cients ai are:
i = 0 : (c2 − ν2) a0 = 0,

i = 1 : [(1 + c)2 − ν2] a1 = 0,

i ≥ 2 : [(i+ c)2 − ν2] ai + ai−2 = 0.

(1.4)

The indicial equation is then given by
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c2 − ν2 = 0,

and it's roots are c1 = ν and c2 = −ν.
Since a0 6= 0, then c = ±ν

case 1: c = ν

Substituting c = ν into equations (1.4) we get

0.a0 = 0,

(1 + 2ν).a1 = 0,

i(i+ 2ν)ai + ai−2 = 0, i ≥ 2

The last equation gives us the recurrence relation

ai = − 1

i(i+ 2ν)
ai−2, i ≥ 2 and ν 6∈ −1

2
(N\{0, 1}) . (1.5)

1- If a1 6= 0, then ν = −1
2
and the recurrence relation (1.5) give us:

for i = 2k, where k = 1, 2, ...

a2k = − 1

2k(2k − 1)
a2k−2

=
(−1)k

[2k(2k − 1)] [2(k − 1)(2k − 3)] ... [2.1.1]
a0

=
(−1)k

2kk!
∏k

j=1(2j − 1)
a0

=
(−1)k∏k

j=1(2j)
∏k

j=1(2j − 1)
a0

(
using the identity 2kk! =

k∏
j=1

(2j)

)

=
(−1)k

(2k)!
a0.

Similarly, for i = 2k + 1, where k = 1, 2, ...

a2k+1 = − 1

2k(2k + 1)
a2k−1

=
(−1)k

[2k(2k + 1)] [2(k − 1)(2k − 1)] ... [2.1.3]
a1

=
(−1)k

2kk!
∏k

j=0(2j + 1)
a1

=
(−1)k∏k

j=1(2j)
∏k

j=0(2j + 1)
a1

(
using the identity 2kk! =

k∏
j=1

(2j)

)

=
(−1)k

(2k + 1)!
a1.
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Plugging back into (1.3) give us

y = x−
1
2

+∞∑
i=0

aix
i

= x−
1
2

[
+∞∑
k=0

a2kx
2k +

+∞∑
k=0

a2k+1x
2k+1

]

= x−
1
2

[
a0

+∞∑
k=0

(−1)k

(2k)!
x2k + a1

+∞∑
k=0

(−1)k

(2k + 1)!
x2k+1

]
= x−

1
2 (a0 cosx+ a1 sinx) .

2- If a1 = 0, then all terms with odd subscript will be zero.

∗ For ν = −1
2
we have (k = 1, 2, ...)

a2k =
(−1)k

(2k)!
a0 and a2k+1 = 0.

Therefore

y = x−
1
2a0 cosx.

∗ For ν = 1
2
we have (k = 1, 2, ...)

a2k = − 1

2k(2k + 1)
a2k−2

=
(−1)k

[2k(2k + 1)] [2(k − 1)(2k − 1)] ... [2.1.3]
a0

=
(−1)k

2kk!
∏k

j=0(2j + 1)
a0

=
(−1)k∏k

j=1(2j)
∏k

j=0(2j + 1)
a0

(
using the identity 2kk! =

k∏
j=1

(2j)

)

=
(−1)k

(2k + 1)!
a0.

Plugging back into (1.3) send us

y = x
1
2

+∞∑
i=0

aix
i = x

1
2

[
+∞∑
k=0

a2kx
2k

]
= x

1
2a0

+∞∑
k=0

(−1)k

(2k + 1)!
x2k

= x−
1
2

+∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 = x−

1
2a0 sinx.
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∗ For | ν |6= 1
2
we have:

a2 = − 1

2(2 + 2ν)
a0

a4 = − 1

4(4 + 2ν)
a2

a6 = − 1

6(6 + 2ν)
a4

−−−−−

a2k = − 1

2k(2k + 2ν)
a2k−2.

Multiplying these equations together and simplifying we get

a2k =
(−1)k

2.4.6....(2k) [(2 + 2ν)(4 + 2ν)(6 + 2ν)...(2k + 2ν)]
a0

or

a2k =
(−1)k

22kk!(ν + 1)(ν + 2)(ν + 3)....(ν + k)
a0.

This represents the expression for the coe�cients.

Let us make some modi�cations for purposes of simpli�cation. Let Γ(x) de-

notes the Gamma function

Γ(x) :=

∫ +∞

0

tx−1 exp(−t)dt, Re(x) > 0

and multiply both numerator and denominator of a2k by Γ(ν+ 1). This gives

a2k =
(−1)kΓ(ν + 1)

22kk!Γ(ν + 1)(ν + 1) [(ν + 2)(ν + 3)....(ν + k)]
a0.

Since Γ(ν + 1) [(ν + 2)(ν + 3)....(ν + k)] = Γ(ν + k + 1) we have

a2k =
(−1)kΓ(ν + 1)

22kk!Γ(ν + k + 1)
a0.

Let us now multiply the numerator and denominator by 2ν , we obtain

a2k =
(−1)k2νΓ(ν + 1)

22k+νk!Γ(ν + k + 1)
a0.

Hence the solution can then be written as

y = 2νa0Γ(ν + 1)
+∞∑
k=0

(−1)k

k!Γ(ν + k + 1)

(x
2

)ν+2k

.

case 2: c = −ν
Substituting c = −ν into equations (1.4) we get

0.a0 = 0

(1− 2ν).a1 = 0

i(i− 2ν)ai + ai−2 = 0 i ≥ 2
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The last equation gives us the recurrence relation

ai = − 1

i(i− 2ν)
ai−2 i ≥ 2 and ν 6∈ 1

2
(N\{0, 1}) . (1.6)

1- If a1 6= 0, then ν = 1
2
and the recurrence relation (1.6) give us (k = 1, 2, ...)

a2k =
(−1)k

(2k)!
a0 and a2k+1 =

(−1)k

(2k + 1)!
a1.

Therefore

y = x−
1
2 (a0 cosx+ a1 sinx) .

2- If a1 = 0, then all terms with odd subscript will be zero.

∗ For ν = 1
2
we have (k = 1, 2, ...)

a2k =
(−1)k

(2k)!
a0 and a2k+1 = 0.

Therefore

y = x−
1
2a0 cosx

∗ For ν = −1
2
we have (k = 1, 2, ...)

a2k = − 1

2k(2k + 1)
a2k−2

=
(−1)k

[2k(2k + 1)] [2(k − 1)(2k − 1)] ... [2.1.3]
a0

=
(−1)k

2kk!
∏k

j=0(2j + 1)
a0

=
(−1)k∏k

j=1(2j)
∏k

j=0(2j + 1)
a0 using the identity 2kk! =

k∏
j=1

(2j)

=
(−1)k

(2k + 1)!
a0.

Plugging back into (1.3) send us to

y = x
1
2

+∞∑
i=0

aix
i = x

1
2

[
+∞∑
k=0

a2kx
2k

]
= x

1
2a0

+∞∑
k=0

(−1)k

(2k + 1)!
x2k

= x−
1
2

+∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 = x−

1
2a0 sinx.

Master Thesis MOUAFO WOUODJIE Merlin UYI 2013



1.2 Bessel Functions 12

∗ For | ν |6= 1
2
we have:

a2 = − 1

2(2− 2ν)
a0

a4 = − 1

4(4− 2ν)
a2

a6 = − 1

6(6− 2ν)
a4

−−−−−

a2k = − 1

2k(2k − 2ν)
a2k−2.

Multiplying these equations together and simplifying we get

a2k =
(−1)k

2.4.6....(2k) [(2− 2ν)(4− 2ν)(6− 2ν)...(2k − 2ν)]
a0

or

a2k =
(−1)k

22kk!(1− ν)(2− ν)(3− ν)....(k − ν)
a0.

Let us multiply both numerator and denominator of a2k by Γ(1 − ν): this

gives

a2k =
(−1)kΓ(1− ν)

22kk!Γ(1− ν)(1− ν) [(2− ν)(3− ν)....(k − ν)]
a0.

Since Γ(1− ν)(1− ν) [(2− ν)(c+ 3)....(k − ν)] = Γ(k − ν + 1) we have

a2k =
(−1)kΓ(1− ν)

22kk!Γ(k − ν + 1)
a0.

Let us now multiply the numerator and denominator by 2−ν , we obtain

a2k =
(−1)k2−νΓ(1− ν)

22k−νk!Γ(k − ν + 1)
a0.

Hence the solution can then be written as

y = 2−νa0Γ(1− ν)
+∞∑
k=0

(−1)k

k!Γ(k − ν + 1)

(x
2

)−ν+2k

.

The constant a0 is arbitrary and since we are only looking for a particular solution let us

assign a0 the value

a0 =
1

2νΓ(ν + 1)
when c = ν ,

and a0 =
1

2−νΓ(−ν + 1)
when c = −ν .

Hence, we obtain as solution, in the case c = ν, the function

Jν(x) =


∑+∞

k=0
(−1)k

k!Γ(ν+k+1)

(
x
2

)ν+2k
for | ν |6= 1

2√
2
πx

cos(x) for ν = −1
2√

2
πx

sin(x) for ν = 1
2
.

(1.7)
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which is called the Bessel function of the �rst kind of order ν. Since the Bessel's equation

has no �nite singular points except the origin, the series

+∞∑
k=0

(−1)k

k!Γ(ν + k + 1)

(x
2

)ν+2k

,

converge for all x 6= 0. By the D'Alembert criteria we have the convergence for all x if ν ≥ 0.

We can relate Jm(x) and J−m(x) (when m is an integer). Let k = k′ +m by writing

J−m(x) =
+∞∑
k=0

(−1)k

k!Γ(−m+ k + 1)

(x
2

)−m+2k

=
+∞∑

k′+m=0

(−1)k
′+m

k′!Γ(m+ k′ + 1)

(x
2

)m+2k′

with k = k′ +m

=
−1∑

k′=−m

(−1)k
′+m

k′!Γ(m+ k′ + 1)

(x
2

)m+2k′

+
+∞∑
k′=0

(−1)k
′+m

k′!Γ(m+ k′ + 1)

(x
2

)m+2k′

.

But k′! := ∞ for k′ = −m, ...,−1, so the denominator is in�nite and the terms on the left

are zero. We therefore have

J−m(x) =
+∞∑
k′=0

(−1)k
′+m

k′!Γ(m+ k′ + 1)

(x
2

)m+2k′

= (−1)mJm(x). (1.8)

Note that the Bessel di�erential equation is second-order, so there must be two linearly

independent solutions.

The wronkian of Jν and J−ν is

w = J ′−νJν − J ′νJ−ν =
2 sin νπ

π
,

hence

- for ν ∈ Z we have sin νπ = 0 and then Jν and J−ν are linearly dependent (as we have

seen before);

- for ν 6∈ Z we have sin νπ 6= 0 and then Jν and J−ν are linearly independent.

Our problem now is to �nd a second solution which is linearly independent with Jν in

both cases (when ν is an integer and when it is not).

Let us de�ne the function

Yν(x) =
Jν(x) cos(πν)− J−ν(x)

sin(πν)
;
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it is clear that if ν is not an integer Yν(x) must be a solution of (1.2) but if not it will be like

an inde�ned form since cos(πν) = (−1)ν and sin(πν) = 0. Let m ∈ Z, by the application of

Hospital rule:

Ym(x) = lim
ν→m

−π sin πνJν(x) + cos(πν)Jν(x)′ − J−ν(x)′

π cos(πν)

=
1

π

[
lim
ν→m

Jν(x)′
]
− (−1)m

1

π

[
lim
ν→m

J−ν(x)′
]
. (1.9)

dJν(x)

dν
=

d

dν

[(x
2

)ν +∞∑
k=0

(−1)k

k!Γ(ν + k + 1)

(x
2

)2k
]

=
d

dν

[
exp

(
ν ln

(x
2

)) +∞∑
k=0

(−1)k

k!Γ(ν + k + 1)

(x
2

)2k
]

= ln
(x

2

)
exp

(
ν ln

(x
2

)) +∞∑
k=0

(−1)k

k!Γ(ν + k + 1)

(x
2

)2k

−
(x

2

)ν +∞∑
k=0

(−1)kΓ′(ν + k + 1)

k!Γ2(ν + k + 1)

(x
2

)2k

= ln
(x

2

)
Jν(x)−

+∞∑
k=0

(−1)k

k!Γ(ν + k + 1)

Γ′(ν + k + 1)

Γ(ν + k + 1)

(x
2

)2k+ν

.

When the value of ν tends towardsm, the logarithmic derivative of Γ is the digamma function

ψ:

Γ′(ν + k + 1)

Γ(ν + k + 1)
= ψ(ν + k + 1) ;

hence

lim
ν→m

dJν(x)

dν
= ln

(x
2

)
Jm(x)−

+∞∑
k=0

(−1)k

k!(m+ k)!
ψ(m+ k + 1)

(x
2

)2k+m

. (1.10)

For J−ν(x) we use the complements formula:

Γ(x)Γ(1− x) =
π

sin πx

which give us

Γ(1− ν + k) =
π

Γ(ν − k) sinπ(ν − k)
=

π

(−1)kΓ(ν − k) sinπν
(1.11)
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hence if m is the integer greater that ν and nearest to it

dJ−ν(x)

dν
=

d

dν

[(x
2

)−ν m−1∑
k=0

(−1)k

k!Γ(−ν + k + 1)

(x
2

)2k

+
(x

2

)−ν +∞∑
k=m

(−1)k

k!Γ(−ν + k + 1)

(x
2

)2k
]

=
d

dν

[(x
2

)−ν m−1∑
k=0

Γ(ν − k)

k!

sin πν

π

(x
2

)2k

+
(x

2

)−ν +∞∑
k=m

(−1)k

k!Γ(−ν + k + 1)

(x
2

)2k
]

using (1.11)

= −J−ν(x) log
(x

2

)
+

m−1∑
k=0

1

k!

(
Γ′(ν − k)

sin πν

π
+ Γ(ν − k) cosπν

)(x
2

)−ν+2k

−
+∞∑
k=m

(−1)kΓ′(−ν + k + 1)

k!Γ2(−ν + k + 1)

(x
2

)−ν+2k

,

so
dJ−ν(x)

dν
= −J−ν(x) log

(x
2

)
+

m−1∑
k=0

1

k!

(
Γ′(ν − k)

sin πν

π
+ Γ(ν − k) cosπν

)(x
2

)−ν+2k

−
+∞∑
k=m

(−1)k

k!Γ(−ν + k + 1)
ψ(−ν + k + 1)

(x
2

)−ν+2k

.

When we make the value of ν tend towards m,

lim
ν→m

dJ−ν(x)

dν
= −J−m(x) log

(x
2

)
+ (−1)m

m−1∑
k=0

Γ(m− k)

k!

(x
2

)−m+2k

−
+∞∑
k=m

(−1)k

k!Γ(−m+ k + 1)
ψ(−m+ k + 1)

(x
2

)−m+2k

.

If we use (1.8) and the relation between Γ and factorial function we get by replacing k −m
with k in the last term

lim
ν→m

dJ−ν(x)

dν
= −(−1)mJm(x) log

(x
2

)
+ (−1)m

m−1∑
k=0

Γ(m− k)

k!

(x
2

)−m+2k

− (−1)m
+∞∑
k=0

(−1)k

(k +m)!k!
ψ(k + 1)

(x
2

)m+2k

. (1.12)
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Now, when we replace (1.10) and (1.12) in (1.9) we get:

Ym(x) =
2

π
Jm(x) log

(x
2

)
− 1

π

m−1∑
k=0

(m− k − 1)!

k!

(x
2

)2k−m

− 1

π

+∞∑
k=0

(−1)k

(k +m)!k!
[ψ(m+ k + 1)− ψ(k + 1)]

(x
2

)2k+m

. (1.13)

So our functions Jν(x) and Yν(x) for all ν ∈ R are two linear independent solutions of

the equation (1.2). The function Yν is what we call the Bessel function of the second kind

(Neumann function or Weber function). The general (real) solution is then of the form:

zν ≡ c1Jν(x) + c2Yν(x)

where c1 and c2 are constants.

The Bessel function Jν(x) can be expressing in term of hypergeometric function.

De�nition 1.2.1. A generalized hypergeometric series pFq is de�ned by

pFq

(
α1, α2, ..., αp

β1, β2, ..., βq

∣∣∣∣∣x
)

=
+∞∑
k=0

(α1)k.(α2)k...(αP )k
(β1)k.(β2)k...(βq)k.k!

xk ,

where (λ)k denotes the Pochhammer symbol

(λ)k :=

{
1 if k = 0

λ.(λ+ 1)...(λ+ k − 1) if k > 0 .

They satisfy the di�erential equation:

Theorem 1.2.1. The generalized hypergeometric series pFq in the previous de�nition satis-

�es the di�erential equation

δ(δ + β1 − 1)...(δ + βq − 1)y(x) = x(δ + α1)...(δ + αp)y(x)

where δ = x d
dx
.

Remarks 1.2.1. 1. For p ≤ q the series pFq is convergent for all x. For p > q + 1 the

radius of convergence is zero, and for p = q + 1 the series converges for | x |< 1.

2. For p ≤ q+1 the series and its analytic continuation is called hypergeometric function.

Jν(x) =
(x

2

)ν +∞∑
k=0

(−1)k

k!Γ(ν + k + 1)

(x
2

)2k

=
(x

2

)ν 1

Γ(1 + ν)

+∞∑
k=0

Γ(1 + ν)

k!Γ(ν + k + 1)

(
−x2

4

)k
=
(x

2

)ν 1

Γ(1 + ν)

+∞∑
k=0

1

k!(1 + ν)k

(
−x2

4

)k
.
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1.2 Bessel Functions 17

which is getting by using the Pochhammer symbol

Γ(ν + 1 + k) = (ν + 1)kΓ(ν + 1).

So in terms of a con�uent hypergeometric function of the �rst kind, the Bessel function is

written

Jν(x) =
(x

2

)ν 1

Γ(ν + 1)
0F1

(
−

ν + 1

∣∣∣∣∣−1

4
x2

)
.

Hankel's Bessel functions of the third kind

We can de�ne two new linearly independent functions

H(1)
ν (x) =Jν(x) + iYν(x) (1.14)

H(2)
ν (x) =Jν(x)− iYν(x) (1.15)

which are obviously solutions of the Bessl's equation and therefore the general solution can

be written as

y = aH(1)
ν (x) + bH(2)

ν (x)

where a and b are arbitrary constants. The functions H
(1)
ν (x) and H

(2)
ν (x) are called Hankel's

Bessel functions of the third kind.

We can remark that if Jν(x) and Yν(x) are taking as cosine and sine functions respectively,

H
(1)
ν (x) and H

(2)
ν (x) can be seen as exponential functions.

Using the expression of Yν(x) in terms of Jν(x) and J−ν(x) we have

H(1)
ν (x) =Jν(x) + i

(
cos(πν)Jν(x)− J−ν(x)

sin(πν)

)
=i
Jν(x) exp(−iπν)− J−ν(x)

sin(πν)

H(2)
ν (x) =Jν(x)− i

(
cos(πν)Jν(x)− J−ν(x)

sin(πν)

)
=− iJν(x) exp(iπν)− J−ν(x)

sin(πν)
.

The expressions of Jν(x) and Yν(x) in terms of Hankel's Bessel functions of the third

kind are:

Jν(x) =
1

2

[
H(1)
ν (x) +H(2)

ν (x)
]

Yν(x) =
1

2i

[
H(1)
ν (x)−H(2)

ν (x)
]
.
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1.2 Bessel Functions 18

Modi�ed Bessel Functions of the �rst and second kind

De�nition 1.2.2. The modi�ed Bessel equation of order ν ∈ C is the di�erential equation:

x2y′′ + xy′ − (x2 + ν2) y = 0

obtained by replacing x by ix (where i2 = −1) in the Bessel equation of order ν.

By the same computations as in the Bessel's di�erential equation, we get two linearly

independent solutions

Iν(x) =
+∞∑
k=0

1

k!Γ(ν + k + 1)

(x
2

)ν+2k

and Kν(x) =
π (I−ν(x)− Iν(x))

2 sin(νπ)

which are called modi�ed Bessel functions of �rst and second kind respectively. Hence the

general solution to this equation is of the form:

y ≡ aIν(x) + bKν(x)

where a and b are arbitrary constants. These solutions are connected to the solutions of the

Bessel functions by the following relations:

Lemma 1.1. Let ν ∈ C and i2 = −1, we have:

(i) Iν(x) = i−νJν(ix),

(ii) Kν(x) =
π

2
iν+1 [Jν(ix) + iYν(ix)]

Proof:

(i) By the de�nition

Jν(ix) =
+∞∑
k=0

(−1)k

k!Γ(ν + k + 1)

(
ix

2

)ν+2k

=
+∞∑
k=0

(−1)kiν+2k

k!Γ(ν + k + 1)

(x
2

)ν+2k

= iνIν(x)

so Iν(x) = i−νJν(ix). (1.16)
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1.2 Bessel Functions 19

(ii) By the de�nition

Kν(x) =
π (I−ν(x)− Iν(x))

2 sin(νπ)

=
π (iνJ−ν(ix)− i−νJν(ix))

2 sin(νπ)
using the proof of (i)

=
π

2
iν+1

[
−iJ−ν(ix) + i−2ν+1Jν(ix)

sin(νπ)

]

=
π

2
iν+1

−iJ−ν(ix) + exp(
−2ν + 1

2
πi)Jν(ix)

sin(νπ)

 ;

i.e. Kν(x) =
π

2
iν+1

−iJ−ν(ix) + exp
((
−νπ +

π

2

)
i
)
Jν(ix)

sin(νπ)


=
π

2
iν+1

−iJ−ν(ix) +
(

cos
(
−νπ +

π

2

)
+ i sin

(
−νπ +

π

2

))
Jν(ix)

sin(νπ)


=
π

2
iν+1

[
−iJ−ν(ix) + (sin(νπ) + i cos(νπ)) Jν(ix)

sin(νπ)

]
=
π

2
iν+1

[
Jν(ix) sin(νπ) + i (Jν(ix) cos(νπ)− J−ν(ix))

sin(νπ)

]
=
π

2
iν+1

[
Jν(ix) + i

(
Jν(ix) cos(νπ)− J−ν(ix)

sin(νπ)

)]
so

Kν(x) =
π

2
iν+1 [Jν(ix) + iYν(ix)] . (1.17)

�
By the fact that Iν(x) = i−νJν(ix), if ν 6∈ Z then Iν(x) and I−ν(x) are also two linearly

independent solutions of the modi�ed Bessel's equation.

Recurrence Relations

There are various recurrence equations and relationships for the Bessel function of the

�rst kind and its derivative.

Lemma 1.2. Let ν, u ∈ C. The Bessel functions of the �rst kind satisfy

(i)
d

du
[uνJν(u)] = uνJν−1(u),

(ii)
d

du

[
u−νJν(u)

]
= −u−νJν+1(u),
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1.2 Bessel Functions 20

(iii) uJ ′ν(u) = uJν−1(u)− νJν(u),

(iv) uJ ′ν(u) = νJν(u)− uJν+1(u),

(v) 2J ′ν(u) = Jν−1(u)− Jν+1(u),

(vi) 2νJν(u) = u(Jν+1(u) + Jν−1(u)).

Proof: The proof can be found in [1] (we use the D'Alembert criteria to prove that Jν(u)

is analytic over C, and the rest is just the computations). �

By the de�nition of Yν(u) in terms of Bessel functions of �rst kind, similar equations are

satisfying by Yν(u). Since Hankel functions are linear combinations of Jν(u) and Yν(u), they

satisfy the same recurrence relationships.

Lemma 1.3. Let ν, u ∈ C. The modi�ed Bessel functions of the �rst kind satisfy

(i)
d

du
[uνIν(u)] = uνIν−1(u),

(ii)
d

du

[
u−νIν(u)

]
= u−νIν+1(u),

(iii) uI ′ν(u) = uIν−1(u)− νIν(u),

(iv) uI ′ν(u) = νIν(u) + uIν+1(u),

(v) 2I ′ν(u) = Iν−1(u) + Iν+1(u),

(vi) 2νIν(u) = −u(Iν+1(u)− Iν−1(u)).

Proof: Use the fact that Iν(u) = i−νJν(iu) and lemma 1.2. �
By the de�nition of Kν(u) in terms of modi�ed Bessel functions of �rst kind, (−1)νKν(u)

satis�es the same equations as Iν(x).

Zeroes of Bessel Functions

The zeroes of Bessel functions are of great importance in many applications. Bessel

functions of the �rst and second kind have an in�nite number of zeroes as the values of x

goes to ∞.
The modi�ed Bessel functions of the �rst kind (Iν(x)) have only one zero at the point

x = 0, and the modi�ed Bessel equations of the second kind (Kν(x)) functions do not have

zeroes.

Notation: Bν refers to any element of {Jν , Yν , Iν , Kν}. For example, the following lemma

hold for all four elements:

Lemma 1.4. Consider S := C(x)Bν +C(x)B′ν , where B
′
ν = d

dx
Bν. The space S is invariant

under the substitutions ν → ν + 1 and ν → −ν.

Proof: It follows from the two last lemmas (See [2] Corollary 1.23 for more details). �
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1.2.2 Bessel Operator

De�nition 1.2.3. Let ν ∈ C and ∂ :=
d

dx
.

(i) The Bessel's di�erential equation of order ν corresponds to the operator

L = x2∂2 + x∂ + (x2 − ν2)

which is called the Bessel operator and denoted by LB1 .

(ii) The modi�ed Bessel's di�erential equation of order ν corresponds to the operator

L = x2∂2 + x∂ − (x2 + ν2)

which is called the modi�ed Bessel operator and denoted by LB2 .

Lemma 1.5. The Bessel functions with parameter ν ∈ 1
2

+Z are hyperexponential functions

and in that case LB1 and LB2 are reducible.

Proof: Let i2 = −1. For x 6= 2kπ, k ∈ Z we have

J 1
2
(x)′

J 1
2
(x)

= −
1

2x

√
2
πx

sin(x)−
√

2
πx

cos(x)√
2
πx

sin(x)
= −

(
1

2x
− coth(x)

)
∈ C(x).

Similarly for x 6= π
2

+ 2kπ, k ∈ Z we have

J− 1
2
(x)′

J− 1
2
(x)

= −
(

1

2x
+ tan(x)

)
∈ C(x).

Hence, J 1
2
(x) and J− 1

2
(x) are hyperexponential functions.

If ν ∈
{

1
2
,−1

2

}
then the Bessel operator and the modi�ed Bessel operator can be factored:

LB1 = x2

(
∂ − 1 +

1

2x

)(
∂ + 1 +

1

2x

)
LB2 = x2

(
∂ + i+

1

2x

)(
∂ − i+

1

2x

)
;

so LB1 and LB2 are reducible.

Using the invariance of C(x)Jν(x) + C(x)Jν(x)′ under ν → 1 + ν and ν → −ν, we can

say that for all integers m, J 1
2

+m(x) and J− 1
2

+m(x) are hyperexponential functions and for

ν ∈
{

1
2

+m,−1
2

+m
}

LB1 and LB2 are reducible.

By the expressions of Yν(x), Iν(x) and Kν(x) in terms of Jν(x) we can also say that

Y 1
2

+m(x), Y− 1
2

+m(x), I 1
2

+m(x), I− 1
2

+m(x),K 1
2

+m(x) andK− 1
2

+m(x) are hyperexponential func-

tions. �

Since we only consider irreducible operators, we will exclude the case ν ∈ 1
2

+Z from this

thesis.
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Lemma 1.6. Let ν 6∈ 1
2

+ Z. The change of variables x → ix where i2 = −1 sends V(LB2)

to V(LB1) and vice versa.

Proof: Let y(x) be a solution of LB2 and consider g(x) = y(ix), then

g′(x) = i
d

dt
y(t)

∣∣∣∣
t=ix

and g′′(x) = − d2

dt2
y(t)

∣∣∣∣
t=ix

=
1

(ix)2

(
ix

d

dt
y(t)

∣∣∣∣
t=ix

−
(
(ix)2 + ν2

)
y(ix)

)
.

By using the expression of y′′(x) in the equation satis�ed by y:

x2y′′(x) + xy′(x)− (x2 + ν2) y(x) = 0.

A general di�erential operator for g(x) is L = ∂2 +a1∂+a0. Using the equation of g′ and

g′′ we can transform Lg = 0 into(
1

ix
+ ia1

)
d

dt
y(t)

∣∣∣∣
t=ix

+

(
−1

x2

(
x2 − ν2

)
+ a0

)
y(ix) = 0.

Since LB2 is an irreducible operator, if we equate coe�cients we obtain a1 = 1/x and a0 =

(x2 − ν2) /x2. Then L = 1/x2LB1 and g(x) ∈ V(L) = V(LB1). So g(x) is a solution of LB1 .

The reverse work in a similar way. �

Remarks 1.2.2.

1. LB1 and LB2 have only two singularities, 0 and ∞.

2. The generalized exponents of LB1 are ±ν at 0 and ± i
t∞

+ 1
2
at ∞ where t∞ = 1

x
.

3. The generalized exponents of LB2 are ±ν at 0 and ± 1
t∞

+ 1
2
at ∞ where t∞ = 1

x
.

4. For LB1 and LB2 at p =∞, the two generalized exponents belong to di�erent submodules

and there are no logarithmic solutions.

5. For LB1 and LB2 at p = 0, there can be logarithmic solutions only if ν = −ν modulo Z.

6. For Bessel functions and modi�ed Bessel functions, the generalized exponents are un-

rami�ed (i.e. the rami�cation index is always 1).

Note that the modi�ed Bessel operator is easier to handle since the generalized exponents

do not create new algebraic extensions.

Lemma 1.7. The change of variables y(x)→ y(
√
x) reduces LB2 to

LB̌ = x2∂2 + x∂ − 1

4
(x+ ν2) which is still in Q(x)[∂], when ν 6∈ 1

2
+ Z.
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Proof: Let y(x) be a solution of LB2 and consider g(x) = y(
√
x), then

g′(x) =
1

2
√
x

d

dt
y(t)

∣∣∣∣
t=
√
x

and g′′(x) = − 1

4x
√
x

d

dt
y(t)

∣∣∣∣
t=
√
x

+
1

4x

d2

dt2
y(t)

∣∣∣∣
t=
√
x

= − 1

2x
√
x

d

dt
y(t)

∣∣∣∣
t=
√
x

+
1

4x2
(x+ ν2)y

(√
x
)

by using the expression of y′′(x) in the equation satis�es by y:

x2y′′(x) + xy′(x)− (x2 + ν2)y(x) = 0.

A general di�erential operator for g(x) is L = ∂2 + a1∂ + a0. Using the equation of g′ and g′′

we can transform Lg = 0 into

1

2
√
x

(
a1 −

1

x

)
d

dt
y(t)

∣∣∣∣
t=
√
x

+

(
a0 +

1

4x2

(
x+ ν2

))
y
(√

x
)

= 0.

Since LB2 is an irreducible operator, if we equate coe�cients we obtain a1 = 1/x and a0 =

− 1

4x2

(
x+ ν2

)
. Then L = 1/x2LB̌ which is equivalent to LB̌. �

Let CV (L, f) denote the operator obtained from L by change of variables x→ f.

Lemma 1.8. CV (LB2 , f) can be written as CV (LB̌, f
2).

Proof: Obvious. �

Lemma 1.9. Let k be a �eld extension of Q and K = k(x). Let f , ν be elements of a

di�erential �eld extension of K, and ν be constant. Then

CV (LB2 , f) ∈ K[∂]⇐⇒ f 2 ∈ K and ν2 ∈ k.

Proof:

⇒) Let ν be a constant and M := monic(CV (LB2 , f)) = ∂2 + a1∂ + a0. We have to prove

a0, a1 ∈ K =⇒ f 2, ν2 ∈ K

and so we assume a0, a1 ∈ K. The previous lemma give us

M = monic(CV (LB̌, f
2)) = ∂2 + a1∂ + a0

with a0 = −

[
(f ′(x))2 +

(
f ′(x)ν

f(x)

)2
]
, a1 =

f ′(x)

f(x)
− f ′′(x)

f ′(x)
.
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let a2 =
(a′0 + 2a0a1)′

a′0 + 2a0a1

+ 3a1, a3 = −4
a0

a2
2

and a4 = a3

(
2a1 +

a′0
a0

)
where ′ means d

dx
. We have a2, a3, a4 ∈ K since a0, a1 ∈ K. Direct substitution shows

that:

a2 = 2
f ′

f
, a3 = f 2 + ν2 and a4 = 2ff ′.

Hence, f 2 = a4/a2 ∈ K and ν2 = a3 − f 2 ∈ K.

(⇐ If f 2 ∈ K and ν2 ∈ k then CV (LB̌, f
2) ∈ K[∂]. By the previous lemma we have

CV (LB2 , f) ∈ K[∂].

�
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Chapter two

Solving Differential Equations in

Terms of Bessel Functions

In this chapter, we apply theory developed in chapter one to solve some second order

di�erential equations in terms of Bessel functions.

The question of solving an equating in term of Bessel functions is equivalent to the

question whether two di�erential operators can be transformed into each other by certain

transformations.

2.1 Formal Solutions and Generalized Exponents

In this section, we introduce the idea of generalized exponents. Generally, the general-

ized exponents give us the asymptotic local information about solutions. In this section we

consider operators in C((x))[∂]. Since we work with solutions of di�erential operators we

have to be sure that we can have all of them; that is why we have to construct the universal

Picard-Vessiot ring of C((x)) that contains a fundamental system of solution of di�erential

operators. Before that, let us give the general de�nition of the universal extension U (uni-

versal Picard-Vessiot ring) of a di�erential �eld:

Let K be a di�erential �eld, with CK as it �eld of constants

De�nition 2.1.1. A universal extension U of K, is a minimal (simple) di�erential ring in

which every operator L ∈ K[∂] has precisely deg(L) CK-linear independent solutions (CK the

algebraic closure of CK). It exists if K has an algebraically closed �eld CK of constants of

characteristic zero.

Hence the universal extension U of C((x)) exists and for every nonzero operator L ∈
C((x))[∂], we de�ne the solution space of L, which has dimension deg(L), as follow

V(L) = {y ∈ U |L(y) = 0}.

From now, we will take K = C((x)), i.e. CK = C.
At the point x = 0 we have the following construction of a universal extension U of

C((x)):
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First we denote Ω =
⋃
m∈N∗ x

−1/mC[[x−1/m]], M ⊂ C such that M ⊕Q= C, and C((x)) the

algebraic closure of C((x)) given by C((x)) =
⋃
n∈N∗ C((x1/n)).

Theorem 2.1.1. 1- De�ne the ring R = C((x)) [{Xa}a∈M , {E(q)}q∈Ω, l] as the polyno-

mial ring over C((x)) in the in�nite collection of variables {Xa}a∈M
⋃
{E(q)}q∈Ω

⋃
{l}.

2- De�ne the di�erentiation δ on R by: δ is x d
dx

on C((x)), δXa = aXa, δE(q) = qE(q),

and δl = 1. This turns R into a di�erential ring.

3- Let I ⊂ R denote the ideal generated by the elements

X0 − 1, Xa+b −XaXb, E(0)− 1, E(q1 + q2)− E(q1)E(q2).

Hence, I is a di�erential ideal and I 6= R.

4- Put U := R/I;

then U is a universal extension of C((x)) which means:

∗ the constant �eld of U is C;

∗ if L has order n, then V(L) := ker(L : U −→ U) is a C-vector space of dimension n.

Proof: The proof and other details of universal extension can be found in [7]. �

We can think of E(q), Xa and l as

E(q) = exp

(∫
q

x
dx

)
, Xa = exp (a ln(x)) and l = ln(x)

because x d
dx

acts:

- on E(q) as multiplication by q,

- on Xa as multiplication by a, and

- on l as the solution of the equation x dy
dx

= 1.

Hence, at x = 0 we have:

Theorem 2.1.2. The universal extension U of K is unique and has the form

U = K
[
{xa}a∈M , {e(q)}q∈Ω , l

]
,

where M ⊂ C is such that M ⊕ Q= C, Ω =
⋃
m≥1 x

−1/mC[[x−1/m]], l the solution of the

equation x dy
dx

= 1, and the following rules hold:

(i) The only relations between the symbols are x0 = 1, xa+b = xaxb, e(0) = 1 and e(q1 +

q2) = e(q1)e(q2).
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(ii) The di�erentiation in U is given by δxa = axa, δe(q) = qe(q) and δl = 1 where δ = x d
dx
.

Proof: To give a complete proof we would have to introduce to many details about

di�erential ring. This is why we refer to [7] where we the proof. �
A solution whose formal representation in the universal extension U involves l = ln(x) is

called logarithmic solution.

A more detailed structure of the universal extension is given by the following lemma.

Lemma 2.1. The universal extension U of C((x)) is a C((x))[∂]-module which can be written

as a direct sum of C((x))[∂]-module:

U =
⊕
q∈Ω

e(q)C((x))[{xa}a∈C/Q, l]

=
⊕
q∈Ω

⊕
a∈C/( 1

rq
Z)

e(q)xaC((x1/rq))[l],

where Ω =
⋃
m∈N∗ x

−1/mC[[x−1/m]] and, in the latter equation, rq is the rami�cation index of

q, i.e. the smallest number such that q ∈ C[[x−1/rq ]].

Proof: The �rst equation is proven in [[7], chapter 3.2] and for the second we refer to

[[8], chapter 2.8]. �

Let Rq := C((x))[{xa}a∈C/Q, l]e(q), then U =
⊕

q∈Ω Rq. Put V(L)q = V(L) ∩ Rq; since

the action of L on U leaves each Rq invariant, one has V(L) =
⊕

q∈Ω V(L)q.

y ∈ V(L)q =⇒ y = e(q)xbS, S ∈ C((x1/rq))[ln(x)] and b ∈ C

=⇒ y = exp

(∫
q + b

x
dx

)
S;

e := q + b ∈ C[[x−1/rq ]] is what we will call generalized exponent of L in the next de�nition

(at x = 0).

Note that this construction of U at the point x = 0 can also be performed at other points

x = p by replacing x with the local parameter tp which is tp = x− p for a point p ∈ C and

tp = 1
x
for p =∞.

De�nition 2.1.2. Let L ∈ C(x)[∂] and let p be a point with local parameter tp. An element

e ∈ C[[tp
−1/re ]], re ∈ N∗ is called a generalized exponent of L at the point p if there exists a

formal solution of L of the form

y(x) = exp

(∫
e

tp
dtp

)
S, S ∈ C((tp

1/re))[ln(tp)], (2.1)

where the constant term of the Puiseux series S is non-zero. For a given solution this repre-

sentation is unique and re ∈ N is called the rami�cation index of e.
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The set of generalized exponent at a point p is denoted by gexp(L, p).

Similarly, we call e a generalized exponent of the solution y at the point p if y = y(x)

has the representation (2.1) for some S ∈ C((tp
1/r))[ln(tp)].

For a given generalized exponent there is a unique solution of the form (2.1) if we require

the constant term of the series to be one.

If e ∈ C we just get a solution xeS, in this case e is called an exponent. If r = 1, then e

is unrami�ed, otherwise it is rami�ed.

Remark 2.1.1. Since our main work in this thesis is based on second order di�erential

operators, re in the de�nition can be only 1 or 2 because V(L) =
⊕

q∈Ω V(L)q and the

dimension of V(L)q is rq (the rami�cation index of q)

Theorem 2.1.3. Let L ∈ K[∂], n = deg(L), r ∈ N∗ and let p be a point with local parameter

tp.. Suppose that the rami�cation indices of the generalized exponents at p divide r. Then

there exists a basis y1, ..., yn of V(L) which satis�es the condition: ∀i ∈ {1, ..., n}

yi = exp

(∫
ei
tp
dx

)
Si for some Si ∈ C((t1/rp ))[ln(x)]

where e1, ..., en ∈ C[[t
−1/r
p ]] are generalized exponents and the constant term of Si is non-zero.

Proof: We just use the de�nition of the universal extension and the fact that, for

i = 1, ..., n

rei | r =⇒

{
ei ∈ C[[tp

−1/r]]

Si ∈ C((tp
1/r))[ln(tp)] .

The details can be found in [[8], Chapter 4.3.3, theorem 5]. � For every regular point p of

L the generalized exponents are 0, 1, ..., n− 1, where n is the degree of L.

Remarks 2.1.1. By using the de�nition 1.1.8, theorem 1.1.3 and the de�nition of generalized

exponent we can �nally summarize what we learn from this section for operators of degree

two:

* At every point p there are two generalized exponents e1 and e2 such that the solution

space is generated by two solutions of the form (2.1).

* If e1 and e2 are both non-negative integers, then the local solutions are power series

and p is either a regular point or an apparent singularity.

* If p is a non-apparent singularity and e1,e2 ∈ C are both constants, p is regular singular.

If e1, e2 6∈ C, p is irregular singular.

* Each generalized exponent e ∈ (e1, e2) is unique modulo 1
re
Z, where re is the rami�cation

index of the generalized exponent e, and by the last theorem the set of generalized

exponent at a point p is unique modulo 1
r
Z.
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* If e1 6= e2 modulo 1
re1

Z, the generalized exponents belong to di�erent submodules of the

universal extension and there are no logarithmic local solutions at the point p.

* If e1 = e2 modulo 1
re1

Z, there can be logarithmic solutions.

This remark is restricted to second order di�erential equations.

2.2 Transformations

Here, we will discuss the transformations that preserve second-order di�erential opera-

tors. Then we can clarify the method of solving di�erential equations in terms of solutions of

another equation (in this master thesis, the Bessel equation). We will also discuss the invari-

ance under the transformations, which we use to connect the Bessel operator to the operator

we want to solve. In this section, we also assume the order of the di�erential operators is

two and the operators are irreducible.

2.2.1 Types of transformations

De�nition 2.2.1. A transformation between two di�erential operators L1,L2 ∈ C(x)[∂] is a

map from the solution space V(L1) onto the solution space V(L2).

The transformation is invertible if there also exists a map from V(L2) onto V(L1). There

are three known types of transformations that preserve the di�erential �eld and preserve

order two. They are:

De�nition 2.2.2. Let L1 ∈ C(x)[∂] be a di�erential operator of degree two. For

y = y(x) ∈ V(L1) we have:

(i) change of variables: y(x)→ y(f(x)), f 2 ∈ C(x)\C,

(ii) exp-product: y → exp
(∫

r dx
)
y, r ∈ C(x), and

(iii) gauge transformation: y → r0y + r1y
′, r0, r1 ∈ C(x).

They are denoted by −→C , −→E, −→G respectively and for the resulting operator L2 ∈
C(x)[∂] we write L1

f−→C L2, L1
r−→E L2, L1

r0,r1−→G L2, respectively. Furthermore, we write

L1 −→ L2 if there exists a sequence of those transformations that sends L1 to L2.

The rational functions f , r, r0 and r1 will be called parameters of the transformation, and

in case (ii) the function exp
(∫

r dx
)
is a hyperexponential function.

Remark 2.2.1. We can consider −→C, −→E and −→G as binary relations on C(x)[∂].

Hence, −→E and −→G are equivalence relations, but −→C is not: the symmetry of −→C

would require algebraic functions as parameter. For example, to cancel the operation x 7→ x2,

we would need x 7→
√
x.
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An important question when searching for transformations between two operators L1 and

L2 is whether we can restrict our search to a speci�c order of transformations −→C ,−→E

and −→G .

Lemma 2.2. Let L1,L2,L3 ∈ C(x)[∂] be three di�erential operators of degree two such

that L1 −→G L2 −→E L3. Then there exists a di�erential operator M ∈ C(x)[∂] such that

L1 −→E M −→G L3.

Similarly, if L1 −→E L2 −→G L3 we �nd M ∈ C(x)[∂] such that L1 −→G M −→E L3.

Proof: See [2] Lemma 2.7 . �
We write −→EG for any sequence of those transformations. Since they are equivalence

relations, −→EG is also.

De�nition 2.2.3. We say L1 ∈ C(x)[∂] is gauge equivalent to L2 if and only if L1 −→G L2.

And L1 ∈ C(x)[∂] is projectively equivalent to L2 if and only if L1 −→EG L2.

Lemma 2.3. Let L1,L2,L3 ∈ C(x)[∂] be three di�erential operators of degree two . The

following holds:

(i) L1 −→E L2 −→C L3 =⇒ ∃M ∈ C(x)[∂]: L1 −→C M −→E L3

(ii) L1 −→G L2 −→C L3 =⇒ ∃M ∈ C(x)[∂]: L1 −→C M −→G L3

Proof: See [2] Theorem 2.10 . �
Note that the converse of (i) and (ii) is not generally true since −→C is not symmetric.

By those two lemmas above, we can then have the following statement:

Lemma 2.4. Let L1,L2 ∈ C(x)[∂] be two di�erential operators of degree two such that

L1 −→ L2. Then there exists an operator M ∈ C(x)[∂] such that L1 −→C M −→EG L2.

Proof: We use the two lemmas above and the rest follow immediately. �

2.2.2 The Exponent Di�erence

De�nition 2.2.4. Let L ∈ C(x)[∂] be a di�erential operator, let p be any point, and let

e1 and e2 be two generalized exponents of L at p. Then the di�erence e1 − e2 is called an

exponent di�erence of L at p.

If deg(L) = 2 there exists just two generalized exponents at each point and we de�ne

∆(L, p) := ±(e1 − e2).

We de�ne ∆ modulo a factor −1 to make it well-de�ned because we have no ordering in the

generalized exponents we compute.

By the two following lemmas, we will see how exponent behave in exp-product and gauge

transformations.
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Lemma 2.5. Let L,M ∈ C(x)[∂] be two di�erential operators such that M
r−→E L and let

e be an exponent of M at the point p with the rami�cation index n ∈ N∗. Furthermore, let r

have the series representation

r =
+∞∑
i=m

rit
i
n
p , m ∈ Z and m ≤ −1, ri ∈ C.

Then e+
−1∑
i=m

rit
i
n

+1
p is an exponent of L at p.

Proof: See [2] Lemma 2.12 . �

Lemma 2.6. Let L,M ∈ C(x)[∂] be two di�erential operators such that M −→G L and let

e be an generalized exponent of M at the point p. The operator L has at p a generalized

exponent e such that e = e mod 1
n
Z, where n ∈ N∗ is the rami�cation index of e.

Proof: See [2] Lemma 2.14 . �
Hence, the exponent di�erence ∆ has the following property:

Corollary 2.2.1. Let L ∈ C(x)[∂] of order two and p be a point. The exponent di�erence

∆(L, p) mod 1
m
Z is invariant under projective equivalence (−→EG), where m ∈ Z∗ is the

rami�cation index. Here m = 1 if the generalized exponents are unrami�ed, and m = 2 if

they are rami�ed.

Proof: Use theorem 2.1.3 and the two previous lemmas. �

2.2.3 The meaning of our problem

With what we have learnt in this section, we can state what we mean by solving equations

in terms of Bessel functions.

De�nition 2.2.5. Assume y is a solution of a di�erential operator L0, we say we can solve

di�erential operator L in terms of y when we can �nd the transformations

L0
f−→C M −→EG L

where M is an operator.

To solve di�erential equations L(y) = 0 in terms of the Bessel functions means to �nd

a transformation from the Bessel operator LB1 to the operator L. Since we only focus on

second-order di�erential operators, we only need to �nd combinations of −→C , −→E, and

−→G which send LB1 to L:

LB1

f−→C M −→EG L.

M should be projectively equivalent to L. So for computing f , the only information retrieved

from L that we can use is information on invariance under projective equivalence. The

invariant we use is the di�erence of the generalized exponents of L.
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2.3 Resolution

The main problem we consider here is the following: for a given operator L ∈ C(x)[∂] of

degree two, how to �nd transformations that send the Bessel or modi�ed Bessel operator to

L if they exist. Note that we also need to �nd the parameter of the Bessel functions involved.

Since LB1 and LB2 are closely connected we just need to consider one of the two. We take

LB2 because it is easier to handle. From now on, LB will refer to the modi�ed Bessel operator

LB2 . Using the results of the previous section we just have to consider the transformations

LB −→C M −→EG L. (2.2)

So this section will be concentred to the determination of the parameters of this sequence of

transformations.

There are two steps to �nd Bessel type solutions of L. The �rst step is to �nd the middle

operator M (i.e. the change of variables f). If M (or equivalently f) is known, then the next

step is to �nd the map from M to L, which is projective equivalence: this step has been called

the equivalence of di�erential operators. We will only discuss the �rst step because Barka-

tou, P�ugel, Van Der Put and Singer have studied and given algorithms to �nd projective

equivalence, this is not the case for −→C .

In the following, we will take a closed look at the part LB −→C M. Once we found the

Bessel parameter ν and the parameter f we can obtain M from LB. For �xed M ∈ C(x)[∂]

we can already solve the question of equivalence between M and L.We can then �nally solve

(2.2).

Since we work with the modi�ed Bessel operator, all generalized exponents should be

unrami�ed.

2.3.1 The Parameter of the change of variables is in C(x)

Let M ∈ C(x)[∂] be given. We want to know whether there exists f = f(x) ∈ C(x) and

ν ∈ C such that

LB
f−→C M

holds.

Let us assume that Bν(x) is a solution of LB. Then Bν(f(x)) is a solution of M. Since

Bν(x) has singularities at 0 and ∞ it is obvious that the singularities of Bν(f(x)) are at

those points p where f(p) = 0 or f(p) = ∞, i.e. at the zeros and poles of f(x). Hence, the

zeros and poles of f(x) must be singularities of M.

We don't consider apparent singularities of M because there might exists an operator M̃

which has degree two with V(M) ⊂ V(M̃) and which has no singularities at those points. So

the others singularities of M are exactly the zeros and poles of f .
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If exp-product and gauge transformations are involved we cannot �nd all zeros of f by

only looking at the singularities of L which are not apparent singularities. But we will soon

see that we can use a similar approach by developing a property which is invariant under

exp-products and gauge transformations, which can then be used to �nd f. This property is

the exponent di�erence modulo 1
m
Z, where m is as in corollary 2.2.1.

The Exponent Di�erence

We will analyze ∆(M, p) because using the invariance of the exponent di�erence modulo

Z under −→EG we can then apply results not only to LB
f−→C M but also to

LB
f−→C M −→EG L.

Theorem 2.3.1. Let M ∈ C(x)[∂] such that LB
f−→C M

(i) If p is a zero of f with multiplicity mp ∈ N, then p is a regular singularity of M and

∆(M, p) = ±2mpν.

(ii) If p is a pole of f with multiplicity mp ∈ N such that

f =
+∞∑

i=−mp

fit
i
p,

then p is an irregular singularity of M and

∆(M, p) = ±2
−1∑

i=−mp

ifit
i
p.

Proof: Let t be the local parameter tp.

(i) Let p be a zero of f with multiplicity mp > 0, then f has the representation

f = tmp

+∞∑
i=0

fit
i with fi ∈ C and f0 6= 0. Furthermore, let y ∈ V(LB) be a local solution

at x = 0 of the form

y = xν
+∞∑
i=0

aix
i, ai ∈ C, a0 6= 0.

If we now replace x by f , we get

z = f ν
+∞∑
i=0

aif
i
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which is a local solution of M at p. To compute the generalized exponent at p we

rewrite z such that

z = exp

(∫
e

t
dt

) +∞∑
i=0

bit
i, bi ∈ C, b0 6= 0, e ∈ C[[t−1]].

The fact that f i = tmpif̄ , where the constant coe�cient of f̄ ∈ C[[t]] is non zero, simply

yields e1 = mpν.

Similarly, for the second independent local solution of LB at x = 0, which has exponent

−ν, we obtain the generalized exponent e2 = −mpν. Hence, the singularity p is regular

and ∆(M, p) = ± (e1 − e2) = ±2mpν.

If ν ∈ Z the second independent solution contains a logarithmic ln(x). However, we

can still do the same computation. The solution z would then involve ln(t) and the

result for the exponent is still true.

(ii) A similar approach work in second case. Let p be a pole of f with multiplicity mp ∈ N.

Then, f can also be written as f = t−mp

∞∑
i=0

fi−mpt
i with fi ∈ C, f−mp 6= 0.

We start with the local solution y of LB at x = ∞ corresponding to the exponent

e :=
1

t∞
+

1

2
. There exists a series S ∈ C[[t∞]] such that

y = exp

(∫
e

t∞
dt∞

)
S

= exp

(∫ (
1

t2∞
+

1

2t∞

)
dt∞

)
S

so

y = exp

(
− 1

t∞

)
t1/2∞ S (2.3)

is a solution of LB. In order to get a solution z of M we have to replace x by f , i.e.

t∞ =
1

x
by

1

f
. Hence, we do the following substitutions:



t∞ −→ 1

f
= tmp

+∞∑
i=0

f̃it
i, f̃i ∈ C, f̃0 6= 0

1

t∞
−→ f,

and t1/2∞ −→ 1

f 1/2
= tmp/2

+∞∑
i=0

f̄it
i, f̄i ∈ C, f̄0 6= 0.

(2.4)

We apply these substitutions to (2.3) and get a local solution z of M at x = p :

z = exp(−f)tmp/2S̃, S̃ ∈ C[[t]],
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where S̃ combines all the new series that we obtain from (2.4). In order to determine

the exponent at p we have to rewrite this expression into the form (2.1). We have to

handle the positive and negative power of t in f separately. For the power series part

f+ =
+∞∑
i=0

fit
i we get

exp
(
−f+

)
= exp

(
−

+∞∑
i=0

fit
i

)
.

With exp(x) =
+∞∑
i=0

xi

i!
we can rewrite this as a power series in t:

exp
(
−f+

)
=

+∞∑
j=0

1

j!

(
−

+∞∑
i=0

fit
i

)j

=
∞∑
i=0

ait
i with ai ∈ C, a0 = 1 .

The negative powers of t remain in the exponential part, which then becomes

exp

− −1∑
i=−mp

fit
i

 tmp/2 = exp

− −1∑
i=−mp

fit
i +

mp

2
ln(t)


= exp

∫  −1∑
i=−mp

(−i)fiti−1 +
mp

2t

 dt


= exp

∫ 1

t

 −1∑
i=−mp

(−i)fiti +
mp

2

 dt

 .

Combining the two results we get

z = exp

∫ 1

t

 −1∑
i=−mp

(−i)fiti +
mp

2

 dt

S,

where S ∈ k((t
1
n ))[ln(t)] has a non-zero constant term. Thus, z has the generalized

exponent −

 −1∑
i=−mp

ifit
i

+
mp

2
.
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If we start with the second independent solution with generalized exponent − 1

t∞
+

1

2

we similarly get

 −1∑
i=−mp

ifit
i

+
mp

2
. Hence, p is an irregular singularity of M and

∆(L, p) = ±2
−1∑

i=−mp

ifit
i.

�

By this theorem, we will now distinguish between two more separated cases which will

correspond to zeros and poles of f.

De�nition 2.3.1. A point p of L ∈ C(x)[∂] for which ∆(L, p) ∈ Z and L is not logarithmic

at p is called an exp-apparent point. If p is not exp- apparent, p is called

(i) exp-regular ⇐⇒ ∆(L, p) ∈ C\Z or L is logarithmic at p,

(ii) exp-irregular ⇐⇒ ∆(L, p) ∈ C[1/tp]\C .

We denote the set of singularities that are exp-regular by Sreg and those that are exp-

irregular by Sirr.

Remarks 2.3.1. For an operator L ∈ C(x)[∂] of order two

1. Regular points are also exp-apparent, and singular points which are exp-apparent are

called exp-apparent singularities. Hence, every point which is not exp-apparent must be

a singularity.

2. If L is such that LB
f−→C M −→EG L

a- exp-irregular singularities of L are irregular singularities of M and correspond

exactly to the poles of f.

b- Since we will look at the exponent di�erence modulo Z we might lose some infor-

mation about the zeros of f. Depending on ν and the multiplicity of the zero, their

exponent di�erence can be an integer. Hence, the zeros of f can become either

exp-regular or exp-apparent singularities of L. So regular singularities points of

M which are exactly zeros of f become by exp-product and gauge transformation

exp-regular or exp-apparent singularities of L. Those hold when ν ∈ Q. If ν 6∈ Q,
the zeros of f are exactly exp-regular points of L.

We combine these important results in the following corollary

Corollary 2.3.1. If LB
f−→C M −→EG L, the following holds:
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(i) for L, p ∈ Sirr ⇐⇒ p is a pole of f.

(ii) for L, p ∈ Sreg =⇒ p is a zero of f.

Proof: Obvious (we just use theorem 2.3.1 and the de�nition of Sreg and Sirr). �

By the equivalence in (i) and theorem 2.3.1 we can compute every polar parts of f using

Sirr and �nd candidates for the parameter f up to a constant by summing all those polar

parts. The polar part of f at a point p is the negative power part of the series representation

of f at p. It is non-zero if and only if p is a pole of f . So if f =
+∞∑
i=−m

fit
i
p, m ∈ Z, the polar

part of f at p is
−1∑

i=−m

fit
i
p. Theorem 2.3.1 show how to compute those polar parts from the

exponent di�erence ∆(L, p) at the exp-irregular points. Since the ∆(L, p) are de�ned up to

± signs, we obtain each polar part up to a sign as well. We denoted by F the set of those

candidates of f up to a constant.

We will now summarize this in the following algorithm:

Algorithm 1:

Input: A di�erential operator L ∈ C(x)[∂]

Output: A list F for which the following holds: If LB
f−→C M −→EG L for some

ν ∈ C, f ∈ C(x) and M ∈ C(x)[∂], there exists a constant c ∈ C such that

f − c ∈ F.

1 compute singularities S of L and extract Sirr
2 foreach s ∈ Sirr
3 ds := ∆(L, s)

4 let ds =
−1∑

i=−m
ait

i
s

5 ps := 1
2

−1∑
i=−m

ai
i
tis

6 F =

{ ∑
s∈Sirr

±ps
}

7 return F

Since we have no equivalence in (ii) we might not see all zeros of f. If Sreg 6= ∅, one use
elements of Sreg to compute the constant c for each candidate of f and reduce the set F. But

if Sreg = ∅, then we will need an additional method that is also giving in this subsection.

The Bessel Parameter ν

Let consider LB
f−→C M −→EG L. Since ν ∈ C, we have many cases for ν : ν ∈ Z or

ν ∈ Q\Z or ν 6∈ Q\Z. It follows from that:
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1- The Bessel parameter is an integer if and only if there exists an exp-regular singularity

p of L such that L is logarithmic at p. Hence, if there is one exp-regular point p at

which L is logarithmic, then L is logarithmic at every exp-regular point; So, if ν ∈ Z
the zeros of f are exactly the singularities Sreg.

2- A regular singular point of M can become an exp-apparent point of L only if ν ∈ Q\Z.
Hence, if ν ∈ Q\Z, Then for all s 6∈ Sirr we have :

∆(L, s) ∈ Z⇐⇒ Sreg = ∅.

3- For ν 6∈ Q\Z, the zeros of f are exactly the singularities Sreg.

The exponent di�erence is also associated with the Bessel parameter and we can still

distinguish between di�erent cases for ν.

Theorem 2.3.2. Consider LB
f−→C M −→EG L

(i) Integer case: if Sreg = ∅ then ν ∈ Q\Z.
The following hold for any p ∈ Sreg:

(ii) Logarithmic case: L logarithmic at p if and only if ν ∈ Z,

(iii) Rational case: if ∆(L, p) ∈ Q\Z then ν ∈ Q\Z,

(iv) Base �eld case: ∆(L, p) ∈ C\Q if and only if ν ∈ C\Q.

Proof: Obvious. �

The following de�nition will be very important in order to �nd the Bessel parameter.

De�nition 2.3.2. Consider LB
f−→C M −→EG L and let s ∈ Sreg be a zero of f. Let ms be

the multiplicity of s and m ∈ N∗. We de�ne

Ns =

{
∆(L, s) + i

2ms

∣∣∣∣ 0 ≤ i ≤ 2ms − 1

}
,

N = {±ν mod Z| ∀s ∈ Sreg, ∃zs ∈ Z : ν + zs ∈ Ns or − ν + zs ∈ Ns} ,

and N (m) =

{
i

2m
, i = 1, ..., 2m− 1

}
.

Both set Ns and N are �nite in the case Sreg 6= ∅. In the integer case we have an in�nitely

large set N = C.
If s is a zero of f with multiplicity ms and ∆(L, s) ∈ Z, then N (ms) = Ns modulo Z.

Remarks 2.3.2.

1. If Sreg 6= ∅
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∗ for every s ∈ Sreg, the Bessel parameter ν appears in Ns modulo some integer.

∗ the set N can be regarded as the intersection of all Ns modulo Z, s ∈ Sreg.

∗ by the invariance of C(x)Bν(x) + C(x)Bν(x)′ under ν −→ ν + 1 and ν −→ −ν,
we only need to �nd ν modulo an integer. Hence, we can regarde N as a set of

candidates for ν.

2. If Sreg = ∅

∗ there exists p, l ∈ Z such that p | n and ν + l ∈ N (p) where n is the degree of the

numerator of f .

∗ similarly by the invariance of C(x)Bν(x) + C(x)Bν(x)′ under ν −→ ν + 1 and

ν −→ −ν, we can regarde the set {
⋃
N (p) | p divides n} as a set (large) of

candidates for ν.

The Algorithm

The input of our algorithm is a di�erential operator L and we want to know whether the

solutions can be expressed in terms of Bessel functions. We assume that LB −→ L for some

transformations. If we �nd a solution to that problem, then we also �nd the solution space

of L. If we do not succeed, we know that the solutions of L can not be expressed with Bessel

functions.

Let L be a di�erential operator of degree two with coe�cients in C(x) and let's summarize

the steps of the algorithm that we know from previous results:

A (Singularities) We can compute the singularities S of L by factoring the leading

coe�cient of L and the denominators of the other coe�cients into linear factors.

B (Generalized exponents) For each s ∈ S we compute ds = ∆(L, s), isolate exp-

apparent points with ds ∈ Z, and di�er between exp-regular singularities Sreg with

ds ∈ C and exp-irregular singularities Sirr with ds ∈ C[t−1
s ]\C.

C (Polar parts)We can use the exponent di�erences ds for s ∈ Sirr to compute candi-

dates F for the parameter f up to a constant c ∈ C.

D (Constant term of f)In all cases but the integer case we know at least one zero of

f by picking some s0 ∈ Sreg. So we can also compute the missing constant c for each

f̃ ∈ F.

E (The set N ) The set N is the set of candidates for ν. When not being in the integer

case, this set is �nite. But the set might depend on the candidates f ∈ F.

F (Compute M) For each pair (ν, f) in N × F we can compute an operator

M = M(ν,f) ∈ C(x)[∂] such that LB
f−→C M.
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G (Exp-product and gauge transformation) For each M we can decide whether

M −→EG L, and if so, we compute the transformations.

Steps D and E have to be done by cases di�erentiation. If we call �findBesselνf � the

algorithm which treats Steps D and E then the basic procedure will look like this:

Algorithm 2:

Input: An operator L ∈ C(x)[∂].

Output: V(L) when it can be represented in terms of Bessel functions and FAIL

otherwise.

1 compute singularities S of L and Sreg, Sirr
2 use algorithm 1 to get F

3 P = { }
4 for each f ∈ F

5 P = P ∪ �ndBesselν f(f, Sreg)

6 for each (ν, f) ∈ P
7 M = changeOfVar(LB, f)

8 if ∃r0, r1, r2 ∈ C(x) : M
r0−→E M̃

r1,r2−→G L for some M̃ ∈ C(x)[∂] then

9 return V(L)

10 return FAIL

The only case in which this algorithm does not yet work is when Sreg = ∅, which we will

study in the next part.

Note that one can also use the cases separation of theorem 2.3.2 to reduce the number

of candidates that we obtain from steps D and E and this will be the next part.

The Cases Separation

For each case we extend the algorithm �findBesselνf � which will take candidates f ∈ F

and the exp-regular points Sreg, and will return a set of pairs (ν, f).

Logarithmic Case

Since ν ∈ Z the zeros of f are exactly the singularities Sreg.

Sreg 6= ∅, there exists at least one s0 ∈ Sreg which must be a zero of f . We can use it to

compute the constant part c of each candidate in F. With the other points in Sreg we verify

the constant or exclude some candidates.

In general, we assume ν = 0. By lemma 1.4 taking ν = 0 when ν 6= 0 can generate

gauge transformations which may not be needed and the result will not be much simpler

than the result obtained by taking ν 6= 0 which is computed much faster. If there is no gauge
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transformations needed to transform LB into L, we compute ν as follow: take the average of

exponent di�erences each divided by the corresponding multiplicity.

Algorithm 3:
1 pick one s0 ∈ Sreg
2 c := solve (f |x=s + c = 0, c)

3 if f |x=s + c = 0 for all s ∈ Sreg then
4 return {(0, f + c)}
5 else

6 return { }

Integer Case

Here all zeros of f are exp-apparent singularities of L.

Let p, l ∈ Z be as in remarks 2.3.2. Since ν + l ∈ N (p), p cannot be one, otherwise ν ∈ 1
2

modulo Z and the operator LB is reducible.

We denoted by deg(numer(f)) the degree of the numerator of f and deg(denom(f)) the

degree of the denominator of f .

For each f̃ ∈ F and n = deg(numer(f)) we take a divisor p ∈ N\ {0, 1} of n and check

whether for certain constants c the monic part of the numerator of f become a p− th power.

Hence, we get a �nite set Cp of possible values for c. We denoted by N and C the union of

the sets N (p) and Cp respectively. So if the pair (ν, c) exists, it must be in the set N × C.

The problem now is how to �nd the degree n of the numerator of f without knowing the

constant part c.

Lemma 2.7. Consider LB
f−→C M −→EG L. Let us be in the integer case and ν = ν1

2p
for

some ν1 ∈ Z, p ∈ N\ {0, 1} and gcd(ν1, p) = 1.

(i) If ∞ ∈ Sirr, then deg(numer(f)) = deg(numer(f + c)) for all c ∈ C.

(ii) If ∞ 6∈ Sirr, then p | deg(numer(f))⇐⇒ p | deg(denom(f)).

Proof: After using the exp-irregular points Sirr to �nd the polar parts, f has the form

f =
f1

f2

+ c+ f3, (2.5)

where f1, f2, f3 ∈ C[x] and deg(f1) < deg(f2) or f1 = 0. The polar parts for s ∈ Sirr\ {∞}
are combined in

f1

f2

. The polynomial f3 is the polar part of ∞ ∈ Sirr.

(i) In this case∞ ∈ Sirr and hence f3 6= 0. So c does not e�ect the degree of the numerator

of f .
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(ii) Since ∞ 6∈ Sirr, f3 = 0 in equation (2.5) and f =
f1

f2

+ c with deg(f1) < deg(f2).

- If c 6= 0, then deg(numer(f)) = deg(denom(f)) and nothing remains to be proven.

- If c = 0, ∞ is a zero of f . The multiplicity m must be a multiple of p. Otherwise

∆(L,∞) 6∈ Z since ∆(L,∞) = 2mν + z for some z ∈ Z and 2ν =
ν1

p
. Hence,

m = kp for some k ∈ N.
This multiplicity of the point ∞ is m = deg(denom(f)) − deg(numer(f)). This

can be seen if f( 1
x
) is written as power series at the points 0. In total we get

deg(numer(f)) = deg(denom(f))− kp for some k ∈ N and this proves (ii).

�

Algorithm 4:

1 P:= { }
2 if ∞ ∈ Sirr then
3 n := deg(numer(f))

4 else

5 n := deg(denom(f))

6 for each p | n
7 g := ispower(numer(f + c), x, p) (here c is a variable)

8 C := solve (numer(f + c)− gp = 0, c) (�nd solution c ∈ C)
9 for each c ∈ C

10 P := P ∪ {(ν, f + c) | ν ∈ N (p)}
11 return P

Rational Case

In this case a zero of f can also be an exp-apparent point of L because ν ∈ Q\Z.
Since Sreg 6= ∅, we de�ne the set N =

⋂
s∈Sreg

Ns mod Z which is the set of possible

candidates for ν.

With each candidate of f in F we do the sames computations and veri�cations using Sreg
as in the logarithmic case. For each s ∈ Sreg we can compute the multiplicity ms.

Let g = numer(f)/
∏

s∈Sreg
(x − s)ms , be a polynomial function. If deg(g) > 0 then all

zero of g are exactly exp-apparent zeros of f and similar arguments as in the integer case

are used.

For all zeros s of g, we have ∆(L, s) = 2msν + z ∈ Z for some z ∈ Z. So ms must be a

multiple of p = denom(2ν). Hence, the monic part of g must be a p− th power.

Algorithm 5:

1 P := { }
2 c := solve (f |x=s + c = 0, c)
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3 if f |x=s + c = 0 for all s ∈ Sreg then
4 g := numer(f + c)

5 for each s ∈ Sreg
6 g := g/(x− s)ms

7 N :=
⋂
s∈Sreg

Ns mod Z
8 for each ν ∈ N
9 p := denom(2ν)

10 if g = hp for some h ∈ C[x] then

11 P := P ∪ {(ν, f + c)}
12 return P

Base Field Case

In this case all the zeros of f are exactly exp-regular points of L since ν 6∈ Q.
We de�ne the set of possible candidates of ν as in the rational case.

With each candidate in F we do the sames computations and veri�cations using Sreg as

in the logarithmic case.

Now we will see by the following lemma that each candidate in F must satisfy another

property which is satisfying by f and if not we will exclude it.

Lemma 2.8. Consider LB
f−→C M −→EG L. Let ν ∈ C\Q, Sreg = {s1, ..., sn} and

di = ∆(L, si), i = 1, ..., n. Then we can do the following steps:

1. Compute ri, ti ∈ Q such that di = rid1 + ti.

2. Let ai, bi ∈ Z be such that ri =
ai
bi

and gcd(ai, bi) = 1.

3. Let l = lcm(bi, 1 ≤ i ≤ n).

Then the monic part of the numerator of f is a power of h ∈ C[x] where

h =
n∏
i=1

(x− si)lri . (2.6)

Proof: Let mi be the multiplicity of si as a zero of f . Since a gauge transformation can

change the exponent di�erence by an integer we know

di = 2miν + zi for some zi ∈ Z. (2.7)

This equation yields for i = 1 the equation

ν =
d1 − z1

2m1

.
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Plugging this into (2.7) we get

di =
mi

m1

d1 + zi −
miz1

m1

.

So the numbers

ri =
mi

m1

and ti = zi −
miz1

m1

(2.8)

satisfy the equation in step 1. Since di 6∈ Q the rational factor ri is unique.

Now Let ai, bi ∈ Z be such that ri =
ai
bi

and gcd(ai, bi) = 1. Then mi =
ai
bi
m1. Since

mi ∈ Z and bi - ai we obtain bi|m1. Then also l := lcm(bi, 1 ≤ i ≤ n)|m1.We use mi = rim1

and �nally get lri|mi. So the exponents in (2.6) each divide the multiplicity in the numerator

of f .

Let pi ∈ N be such that lripi = mi. To prove (2.6) we have to see that all pi are equal.

Using the equation for ri in (2.8) yields lpi = m1. So p = pi =
m1

l
is independent of i and

the numerator of f must be a scalar multiple of a p− th power of h. �

Algorithm 6:

1 P := { }
2 let Sreg = {s1, ..., sn}
3 for i = 1, ..., n

4 di := ∆(L, si)

5 compute ri, ti, such that di = rid1 + ti
6 l := lcm (denom(ri), i = 1, ..., n)

7 h :=
n∏
i=1

(x− si)lri

8 pick one a ∈ Sreg
9 c := solve (f |x=a + c = 0, c)

10 if f |x=s + c = 0 for all s ∈ Sreg
11 and numer(f + c) = hp for some p ∈ N then

12 N :=
⋂
s∈Sreg

Ns mod Z
13 for each ν ∈ N
14 P := P ∪ {(ν, f)}
15 return P

2.3.2 The Parameter of the change of variables is not in C(x)

Note that LB̌
g−→C M is the same as LB

f−→C M, where f 2 = g ∈ C(x). In order to use

the same notation as in the case f ∈ C(x), we will use the second form, i.e LB̌
g−→C M.

Since we now work with the operator LB̌, we will take m = 2.

The main problem in the case f 6∈ C(x) is to construct a �nite set of candidates for (f, ν)

from ∆(L, p).
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The Exponent Di�erence

We also de�ne:

De�nition 2.3.3. A singularity p of L ∈ C(x)[∂] is called:

(i) apparent singularity if and only if ∆(L, p) ∈ Z and L is not logarithmic at p.

(ii) regular singularity if and only if ∆(L, p) ∈ C\Z or L is logarithmic at p.

(iii) irregular singularity if and only if ∆(L, p) ∈ C[t
− 1

2
p ]\C.

We also denote the set of regular singularities and irregular singularities by Sreg and

Sirr respectively. As in the case f ∈ C(x), the sets of those three kind of singularities are

separated.

Theorem 2.3.3. Let LB
f−→C M −→EG L, where f 2 ∈ C(x).

(i) if p is a zero of f with multiplicity mp ∈ 1
2
Z+, then p is an apparent singularity or

p ∈ Sreg, and ∆(M, p) = 2mpν.

(ii) p is a pole of f with pole order mp ∈ 1
2
Z+ such that f =

∑∞
i=−mp

fit
i
p, if and only if

p ∈ Sirr and ∆(M, p) = 2
∑−1

i=−mp
ifit

i
p.

Proof: We can use the same proof as in the case f ∈ C(x). �

Remarks 2.3.3.

1. if p ∈ Sreg, then ∆(L, p) ≡ ∆(M, p) mod Z which means that we can compute 2mpν mod

Z.

2. If p ∈ Sirr, then ∆(L, p) ≡ ∆(M, p) mod Z. Then
∑−1

i=−mp
fit

i
p can be computed from

∆(L, p) by dividing coe�cients by 2i (the congruence only a�ects the t0p- term of ∆ ,

but that term is not used when p ∈ Sirr).

De�nition 2.3.4. Let f =
∑∞

i=N fit
i
p, N ∈ Z, fN 6= 0. We say that we have a k-term

truncated power series for f when the coe�cients of tN , ..., tN+k−1 are known.

Remark 2.3.1. If a k-term truncated series for f is known, then we can compute a k-term

truncated series for f 2.

According to theorem 2.3.3 (ii), from ∆(M, p), we can get a [mp] term truncated series of

f at p. Since we have to compute g = f 2 ∈ C(x), we square it to obtain a truncated series of

g which also have [mp] terms (see the previous remark). So we have the following corollary:

Corollary 2.3.2. If LB
f−→C M −→EG L and g = f 2 then we have:

(i) if p ∈ Sreg then p is a zero of g.

(ii) p ∈ Sirr if and only if p is a pole of g. We can also get a [mp]-term truncated series of

g from ∆(L, p), where mp is the pole order of f .
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The Bessel Parameter ν and The Parameter g = f 2

We assume LB
f−→C M −→EG L, we want to get information about f from L and the

Bessel parameter ν. Since f might not in C(x), but g = f 2 is in, we can assume g = A
B
,

A,B ∈ C[x], B is monic and gcd(A,B) = 1.

Now, we want to get information about A, B and ν from L.

The Bessel Parameter ν

All things that we have said about the Bessel parameter in the case f ∈ C(x) hold here,

but with small extension that we will give.

We will divide into three cases by di�erent situations in theorem 2.3.2. We call (ii)

logarithmic case, (i) and (iii) rational case, and (iv) base �eld case. We have to introduce

another case when the number of linear equations for coe�cients of A is greater than deg(A).

This case is called the � easy case �.

For the rational case we have:

Remark 2.3.2. Since C(x)Bν(x)+C(x)B′ν(x) is invariant under ν → ν+1 and ν → −ν, for
ν ∈ Q, we can just focus on ν ∈ [0, 1

2
]. Also since when ν = 1

2
the operator will be reducible,

it is easy to solve the operator by factoring. So we just consider ν ∈ [0, 1
2
)

If we �x f , then we have:

Lemma 2.9. Let p be a zero of f with multiplicity mp and let

N ′p :=

{
∆(L, p) + i

2mp

∣∣∣∣ 0 ≤ i ≤ 2mp − 1, i ∈ Z
}
.

We can make the rational part of each element in N ′p belong to [0, 1
2
]. Let the new set be Np.

Then ν ∈ N :=
⋂
p∈Sreg

Np.

Proof: The lemma follows from the fact that we know the number ∆(L, p) ≡ 2mpν mod Z,
and the fact that C(x)Bν(x) + C(x)B′ν(x) is invariant under ν → ν + 1 and ν → −ν. �

The Parameter g = f 2

The following lemma help us about B:

Lemma 2.10. We can retrieve B from Sirr.

Proof: According to theorem 2.3.3, if p ∈ Sirr then p is a pole of f . Let mp ∈ 1
2
Z be pole

order of ∆(M, p). g has a pole order 2mp at p. The theorem implies B =
∏

p∈Sirr\{∞}(x−p)
2mp .

�

The following lemma help us about the degree of A:

Master Thesis MOUAFO WOUODJIE Merlin UYI 2013



2.3 Resolution 47

Lemma 2.11. Let

dA =

{
deg(B) + 2m∞ if ∞ ∈ Sirr
deg(B) otherwise

(i) If ∞ ∈ Sreg then deg(A) < dA;

(ii) If ∞ ∈ Sirr then deg(A) = dA;

(iii) otherwise deg(A) ≤ dA.

In all cases, we can write A =
∑dA

i=0 aix
i, so we have dA + 1 unknowns.

Proof:

(i) According to corollary 2.3.2 (i), if ∞ ∈ Sreg then ∞ is a zero of g. So we have

deg(A) < deg(B). Hence, deg(A) < dA.

(ii) According to corollary 2.3.2 (ii), if ∞ ∈ Sirr with pole order m∞ then ∞ is a pole of

g with pole order 2m∞. So deg(A) = deg(B) + 2m∞. Hence, deg(A) = dA.

(iii) If ∞ 6∈ Sirr then f does not have a pole at ∞ , so that deg(A) ≤ deg(B). Hence,

deg(A) ≤ dA.

�

Once we have an idea about degree of A, we will now focus about the coe�cients of A.

A- Easy, Logarithmic and Base Field Cases

Lemma 2.12. If p ∈ Sreg, we will get one linear equation for the coe�cients of A. If p ∈ Sirr
with mp as pole order of ∆(L, p), we will get [mp]- linear equations.

Proof: According to corollary 2.3.2 (ii), if p ∈ Sreg, p is a zero of A. Then we will get a

linear equation of {ai}i=0,...,dA
by setting rem(A, x− p) = 0.

For each p ∈ Sirr with pole order mp, by corollary 2.3.2 (ii) we will have a [mp]-term

truncated series of g at p. Then we can get the truncated series of A = gB. On the other

hand, we can rewrite A =
∑dA

i=0 aix
i as a truncated series at p (by Taylor or Laurent series).

Since the terms in a Taylor series or Laurent series depend linearly on the coe�cients of A,

by comparing the coe�cients, each term will give a linear equation of ai. �

Remarks 2.3.4.

- In the easy case, since the number of linear equations for coe�cients of A is greater

than deg(A), then we can solve them and �nd A.
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- In both logarithmic and base �eld case, we know all zeros of A. In the base �eld case

we know their multiplicities as well, but in the logarithmic case, we have to do a com-

binatorial search: try all possible combinations of multiplicities of zeros of A. So in

both logarithmic and base �eld case, there is only one unknown coe�cient, the leading

coe�cient of A. To get this coe�cient, we only need one equation. But we have 1
2
dA

linear equations, enough to get A.

B- Rational Case

Let p be a root of A, i.e a zero of f with multiplicity mp ∈ Z. Since ν ∈ Q\Z, there exists a,
d ∈ Z with gcd(a, d) = 1 such that ν =

a

d
. We will have d > 2 because ν 6∈ Z and if ν ∈ 1

2
Z

then LB will be reducible. By remark 2.3.2, if we �x d, we get a set of candidates for ν :{ a
d

∣∣∣ gcd(a, d) = 1, 1 ≤ a ≤ 1
2
d
}
.

By theorem 2.3.3 (i), ∆(L, p) = 2mpν mod Z =
2mp

d
a mod Z. If d | 2mp, change of vari-

ables x→ f will send p to an apparent singularity and then p 6∈ Sreg, which means that not

all roots of A are known (not all roots of A are in Sreg). So the multiplicities of all zeros of A

which are apparent singularities must be a multiple of d. Thus, we can rewrite A = CA1A
d
2,

where A1, A2 ∈ C[x] and C ∈ C, A1 is monic and the roots of A1 are the known roots of A

(the elements of Sreg).

Despite we know Sreg, we can not say that A1 is getting because we also have to know

the multiplicity order of each element in Sreg. Hence, the problem in this case is to compute

A1, A2 and d.

The rational case include two cases for Sreg : Sreg = ∅ and Sreg 6= ∅.

For Sreg = ∅ we can let A1 = 1 and �x d by the following lemma:

Lemma 2.13. If Sreg = ∅, then d| dA.

Proof: Since A = CA1A
d
2, if Sreg = ∅, then A1 = 1 and A = CAd2. So d| dA. �

For Sreg 6= ∅, we have:

Lemma 2.14. If Sreg 6= ∅, we can �nd a list of candidate pairs (d,A1) by solving an equation.

Proof: See [5] Lemma 10 . �

Now the only remaind problem is the computation of A2. Here Sreg can not help us be-

cause A2 use apparent singularities.
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Lemma 2.15. Let p ∈ Sirr. We can choose C, such that the d-th root of the coe�cient of

the initial term of the truncated series of A/(CA1) at p is in C.

Proof: From ∆(L, p) we can compute a truncated series for f 2 =
CA1Ad

2

B
. Let C be the

coe�cient of the �rst term of this series which will done the proof
(
note that f 2B/A1 = CAd2

)
.

�

Assume A2 =
∑deg(A2)

i=0 bix
i. Since deg(A2) ≤ 1

d
dA ≤ 1

3
dA, we have:

Lemma 2.16. For the rational case, we only need 1
3
dA + 1 equations to recover A.

Proof: Since deg(A2) ≤ 1
3
dA, if we have only

1
3
dA + 1 equations, we can completely get

A2. Hence we have A. �

Theorem 2.3.4. In the rational case, for A = CA1A
d
2, and A2 =

∑deg(A2)
i=0 bix

i, for p ∈ Sirr
with mp as pole order of exponent di�erence, we will get [mp]-linear equations of {bi} .

Proof: Since the exponent di�erence at p will give a [mp]-truncated series of g = A
B
at

x = p, we can also write B and CA1 as a series at p. Then we can get the [mp]-truncated series

of Ad2 = gB
CA1

. We assume the series is
∑

mp<i≤2mp
cit
−i
p where tp is the local parameter at p.

We can rewrite the series as c2mpt
−2mp
p S, where S is a power series with the initial term 1. Let

S1/d be a power series with �rst term 1 such that Sd1/d = S.Write S1/d = 1 +
∑

i>0 ait
i
p where

a1, ..., a[mp]−1 are computed by Hensel lifting. Let µd =
{
r| r ∈ C, rd = 1

}
. By lemma 2.15

there should be a d − th root of c2mp in C. Let c be such a root. Then for each r ∈ µd, let
Sr = ct

−2mp/d
p rS1/d. Then Sr is a truncated series at p whose d − th power is the truncated

series of gB
CA1

at p. Then we can also rewrite A2 =
∑deg(A2)

i=0 bix
i as a truncated series at p.

By comparing the coe�cients of Sr and A2, we will get [mp]-linear equations. Doing this for

every p ∈ Sirr provides enough linear equations to �nd A.

Note that we have to try all combinations of r ∈ µd at every p ∈ Sirr. �

We can use the results from lemma 2.12 to get equations. So we can always obtain ≥ 1
2
dA

linear equations, while [1
3
dA] + 1 equations are su�cient. So we always get enough linear

equations.

To sum up, for all di�erent cases, we have:

Theorem 2.3.5. From ∆(L, p), we can always get a list of candidates for (f, ν).

Proof: We always have at least #Sreg + 1
2
dA linear equations for the coe�cients of A.

But we may have enough equations (easy case), or only need either 1 (logarithmic case and

base �eld case) or 1
3
dA+1 equations (rational case) to get g. By remark 2.3.2 and lemma 2.9,

we can also get a �nite list of ν . �
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Algorithms

The input of the algorithm is a di�erential operator L of order 2. We want to �nd whether

there exists solutions which can be represented in terms of Bessel functions. If they exist,

then �nd the solutions. Otherwise the algorithm output ∅.

Algorithm 7: Main Algorithm

Input: an irreducible di�erential operator L

Output: solutions represented in terms of Bessel functions if they exist

Find all singularities by factoring the leading coe�cient of L over C
foreach singularity p do

compute the generalized exponents at p, then ;

compute the exponent di�erences and then;

the truncated series of g;
end

Get Sreg and Sirr according to the generalized exponent di�erences;

Compute B, dA (lemma 2.10 and 2.11) and the number of linear equation N

(N ≥ Sreg + 1
2
dA);

if N > dA then
go to easy case;

else if L logarithmic at some p ∈ Sreg then
go to logarithmic case;

else if there is p ∈ Sreg with ∆(L, p) 6∈ Q (i.e ν 6∈ Q) then
go to base �eld case;

else
go to rational case;

end

/* It will give us a list of candidates for (f, ν), where f is the function of the change of

variables, and ν is the parameter of Bessel functions */

foreach (f, ν), in list of candidates do
compute an operator M(f,ν) such that;

LB
f−→C M(f,ν);

if ∃r0, r1, r2 ∈ C(x): M(f,ν)
r0−→E M̃

r1,r2−→G for some M̃ ∈ C(x)[∂] then
Add the solution to solutions list;

end

end

Output the solutions list;

Now we will explain by algorithms the detail how to retrieve f , ν in di�erent cases.

A- (Easy Case)

In this case, we have enough linear equations from lemma 2.12 to recover g. After that,

we can use lemma 2.9 to get ν.
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Algorithm 8:
Input: Sreg, Sirr with truncated series, B, dA
Output: potential list of (f, ν)

Find all linear equations described in lemma 2.12;

Solve linear equations to �nd f ;

if there is no solution then
output ∅

else
Use lemma 2.9 to get a list N of candidates for ν ′s

end

foreach ν ∈ N do
Add (f, ν) to output list

end

B- (Logarithmic Case)

We can let ν = 0. By remarks 2.3.4, we know all the zeroes of g.We do not yet know the

leading coe�cient and the multiplicity of each zero. So we can try all the combinations

of possible multiplicities.

Algorithm 9: Logarithmic Case

Input: Sreg, Sirr with truncated series, B, dA
Output: list of (f, ν)

if not every singularity p ∈ Sreg is logarithmic then
output ∅

else
Let ν = 0, A = a

∏
p∈Sreg\{∞}(x− p)

ap ;

if ∞ ∈ Sreg then
a∞ ≥ 1 is an integer;

else
a∞ = 0;

end

foreach {ap} such that
∑

p∈Sreg
ap = dA − a∞, ap ≥ 1 are integers do

Use linear equations described in lemma 2.12 to solve a;

if the solution exists then
Add (A

B
, 0) to output list

end

end

end

C- (Base Field Case)
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In this case, by remarks 2.3.4 we have all the zeroes with multiplicities of g. The

only unknown part should be the leading coe�cient. But we have at least one linear

equations.

Algorithm 10:
Input: Sreg, Sirr with truncated series, B, dA
Output: list of (f, ν)

Use remarks 2.3.4 to �nd all zeroes and multiplicities;

Use linear equations given by lemma 2.12 to get the leading coe�cient;

Use lemma 2.9 to get a list of candidates for ν ′s;

Add solutions to output list;

D- (Rational Case)

This case is the most complicated case. Let d = denom(ν) and f 2 = g =
CA1Ad

2

B
.

Algorithm 11:
Input: Sreg, Sirr with truncated series, B, dA
Output: list of (f, ν)

if Sreg = ∅ then
Let the list of candidates for d be the set of factors of dA;

Let A1 = 1;
else

Use lemma 2.14 to get a list of candidates for d and A1

end

foreach candidate (d,A1) do
Fix C by lemma 2.15;

Use linear equations given by theorem 2.3.4 to compute A2;

If a solution exists, add

{f} ×
{
a
d
|gcd(a, d) = 1, 1 ≤ a < 1

2
d
}
to output list

end
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Chapter three

Illustrations

3.1 Maple Commands

All of our algorithm are developed with Maple and our examples are illustrated with it

too. So in this section we want to introduce some commands we need in Maple.

In Maple, the DEtools package contains commands that help us to work with di�erential

equations. Every command inside has short version or long version.

- For the version, we always need to tell Maple the variable and the derivation.

- For the short version, one needs to tell Maple the symbol for the variable x and the

derivation D by using the command:

>_Envdiffopdomain:=[D,x]:

This command tell Maple that we use x as variable and D as derivation.

In this Master thesis, we always assume that the DEtools package is loaded and the di�er-

ential domain is de�ned by [D, x].

We use Bessel or Modi�ed Bessel operator as example.

3.1.1 Generalized Exponents

Generalized exponents can be computed in Maple with the command gen_exp, which

belongs to the package DEtools. The input is a operator L, a variable t to express the

generalized exponent and a point at which we want to compute the generalized exponent.

The output is a list of pairs [g, eq] which each represents a generalized exponent at the given

point. In this pair the equation eq describes the variable t which is used to express the

generalized exponent g.

>gen_exp(LB1,t,x=0);
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[[ν, t = x], [−ν, t = x]]

>gen_exp(LB1,t,x=infinity);

[[
RootOf(1 + z2)

t
+

1

2
, t =

1

x

]]
>gen_exp(LB2,t,x=0);

[[ν, t = x], [−ν, t = x]]

>gen_exp(LB2,t,x=infinity);

[[
1

t
+

1

2
, t =

1

x

]
,

[
−1

t
+

1

2
, t =

1

x

]]
The equation t = 1

x
, t = x indicate that t is the local parameter. The algorithm computes

two generalized exponents at each point.

3.1.2 Logarithmic Solution

If we want to know whether the operator L has logarithmic solutions at a point x = p,

we can use the command formal_sol. Let ν ∈ Z

>formal_sol(LB1,'has logarithm?',x=0);

true

>formal_sol(LB2,'has logarithm?',x=0);

true

formal_sol will make sure that enough terms of the Puiseux series are computed such that

we know whether a logarithm appears in the formal solution.

3.1.3 Parameter of Transformations

The commands are called changeOfVars, expProduct and gauge, and take an operator L

and the parameters, respectively, f or r or r0, r1. For example (ν 6∈ 1
2

+ Z)

>L:=changeOfVars(LB2,sqrt(x));

L = x2∂2 + x∂ − 1

4
(x+ ν2)
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3.1.4 Polar Parts of f

First we compute the irregular singularities and their exponent di�erences with the func-

tion irregularSing. It takes the operator L, a variable t and a list of roots that generate the

�eld of constants. The output is a list of elements of the form (p, tp, dp), where each ele-

ment contains a irregular singularity p, the local parameter tp, and the exponent di�erence

dp = ∆(L, p).

>Sirr:=irregularSing(LB2,t,{});

[[
∞, 1

x
,

2

x

]]
The list of polar part of f at each irregular singularity of L can be compute with besselsubst.

>F:=besselsubst(Sirr,t,{}); [
1

x

]
3.1.5 Factorization of Linear Di�erential Operators

For reducible operator, we can use DFactor to favtor it. Let ν = 1
2

>DFactor(LB1); [
x2

(
∂ − 1 +

1

2x

)
,

(
∂ + 1 +

1

2x

)]
>DFactor(LB2); [

x2

(
∂ +
√
−1 +

1

2x

)
,

(
∂ −
√
−1 +

1

2x

)]
3.1.6 Equivalence of Linear Di�erential Operators

We use equiv command to �nd the parameters of exp-product and gauge transformation

between two operator. The input is two operator and the output is r,G where G = r0 + r1∂.

For example

>LB:=x^2*D^2+x*D-(x^2+nu^2):

>L:=gauge(subs(nu=0,LB),0,1):

>r,G:=equiv(L,subs(nu=0,LB));

− 1

x
, 1 + x∂
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3.2 Examples

3.2.1 f ∈ C(x)

We consider the operator L that is obtained from LB with ν = 2
3
and a change of variables

x→ f = (x− 2)2(x− 3)3(x− 5):

>LB:=x^2*D^2+x*D-(x^2+nu^2):

>f:=(x-2)^2*(x-3)^3*(x-5):

>M:=changeOfVars(subs(nu=2/3,LB),f):

>L:=M:

L := (x2 − 7x+ 11)(x− 5)2(x− 2)3(x− 3)3D2 + (x4 − 14x3 + 72x2 − 160x

+ 131)(x− 5)(x− 3)2(x− 2)2D − 4(x− 2)(x− 3)(9x12 − 324x11

+ 5292x10 − 51876x9 + 340038x8 − 1570644x7 + 5243652x6

− 12752316x5 + 22426713x4 − 27820584x3 + 23112216x2 − 11547360x

+ 2624404)(x2 − 7x+ 11)3.

Resolution

The zeros of the leading coe�cient of L are: 2, 3, 5, 7−
√

5
2
, 7+

√
5

2
,∞.

>gen_exp(L,t,x=2);

[[
4

3
, t = x− 2

]
,

[
−4

3
, t = x− 2

]]
>gen_exp(L,t,x=3);

[[−2, 2, t = x− 3]]

>gen_exp(L,t,x=5);

[[
−2

3
, t = x− 5

]
,

[
2

3
, t = x− 5

]]
>gen_exp(L,t,x=RootOf(z^2-7*z+11));

[[
0, 2, t = x−RootOf(Z2 − 7Z + 11)

]]
>gen_exp(L,t,x=infinity);
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[[
6

t6
− 90

t5
+

528

t4
− 1518

t3
+

2142

t2
− 1188

t
+ 3, t =

1

x

]
,

[
− 6

t6
+

90

t5
− 528

t4
+

1518

t3

−2142

t2
+

1188

t
+ 3, t =

1

x

]]
>formal_sol(L,'has logarithm?',x=2);

false

>formal_sol(L,'has logarithm?',x=3);

false

>formal_sol(L,'has logarithm?',x=5);

false

>formal_sol(L,'has logarithm?',x=RootOf(z^2-7*z+11));

false

We have Sreg = {2, 5} and Sirr = {∞}.

>Sirr:=irregularSing(L,t,{});

[[
∞, 1

x
,−12

t6
+

180

t5
− 1056

t4
+

3036

t3
− 4284

t2
+

2376

t

]]
>F:=besselsubst(Sirr,t,{});

[
x6 − 18x5 + 132x4 − 506x3 + 1071x2 − 1188x

]
>eq1:=x^6-18*x^5+132*x^4-506*x^3+1071*x^2-1188*x+a:

>eq2:=x^6-18*x^5+132*x^4-506*x^3+1071*x^2-1188*x+b:

>solve(sub(x=2,eq1),a);

540

>solve(sub(x=5,eq2),b);

540
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>f1:=factor(x^6-18*x^5+132*x^4-506*x^3+1071*x^2-1188*x+540);

f1 = (x− 2)2(x− 3)3(x− 5)

>h:=normal(f1/((x-2)^2*(x-5)));

h := (x− 3)3.

We have: N2 =
{

2
3
, 11

12
, 7

6
, 17

12

}
and N5 =

{
2
3
, 7

6

}
. The intersection is N =

{
2
3
, 7

6

}
which is the

set of candidates for ν. In both cases the denominator of 2ν is 3. Since h = (x− 3)3 we have

two pairs: (2
3
, f1) and (7

6
, f1).

>M :=changeOfVars(subs(nu=2/3,LB),f1);

M := (x2 − 7x+ 11)(x− 5)2(x− 2)3(x− 3)3D2 + (x4 − 14x3 + 72x2 − 160x

+ 131)(x− 5)(x− 3)2(x− 2)2D − 4(x− 2)(x− 3)(9x12 − 324x11

+ 5292x10 − 51876x9 + 340038x8 − 1570644x7 + 5243652x6

− 12752316x5 + 22426713x4 − 27820584x3 + 23112216x2 − 11547360x

+ 2624404)(x2 − 7x+ 11)3

>r,G:=equiv(M,L);

0, 1

Therefore,

V(L) =
{
αI 2

3

(
(x− 2)2(x− 3)3(x− 5)

)
+ βK 2

3

(
(x− 2)2(x− 3)3(x− 5)

)∣∣∣α, β ∈ C
}
.

>M :=changeOfVars(subs(nu=7/6,LB),f1);

M := (x2 − 7x+ 11)(x− 5)2(x− 2)3(x− 3)3D2 + (x4 − 14x3 + 72x2 − 160x

+ 131)(x− 5)(x− 3)2(x− 2)2D − (x− 2)(x− 3)(36x12 − 1296x11

+ 21168x10 − 207504x9 + 1360152x8 − 6282576x7 + 20974608x6

− 51009264x5 + 89706852x4 − 111282336x3 + 92448864x2 − 46189440x

+ 10497649)(x2 − 7x+ 11)3

>r,G:=equiv(M,L);

0.

So for ν = 7
6
the operator M is not equivalent to L.
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3.2.2 f 6∈ C(x)

We consider the operator L that is obtained from LB with ν = 1
3
, a change of variables

x → f = 2
3

√
(x2 − 1)3, exp-product r = − 2x2−1

x(x+1)(x−1)
, and a gauge transformation G =

(2x+ 1)(x+ 1)(x− 1)∂ + x(4x4 + 2x3 − 6x2 + 3):

>M:=changeOfVars(x^2*D^2+x*D-(x^2+1/9),f):

>M1:=expProduct(M,-(2*x^2-1)/(x*(x-1)*(x+1))):

>L:=gauge(M1,x*(4*x^4+2*x^3-6*x^2+3),(1+2*x)*(x+1)*(x-1)):

L := x(x− 1)(x+ 1)(32x9 + 32x8 − 50x7 − 56x6 + 16x5 + 28x4 + 2x3 + 4x+ 1)D2

+ (24x3 − 32x10 + 104x8 + 28x4 − 84x6 − 64x11 − 3 + 192x9 + 40x5 − 8x+ 7x2

− 168x7)D − 2(64x15 − 228x13 + 84x12 + 308x11 − 182x10 − 168x9 + 194x8 + 54x7

− 190x6 + 67x5 + 87x4 − 57x3 − 23x2 + 5x− 3)(x+ 1).

Resolution

The zeros of the leading coe�cient of L are: −1, 0, 1,∞ and the roots of 32x9 + 32x8 −
50x7 − 56x6 + 16x5 + 28x4 + 2x3 + 4x+ 1.

>gen_exp(L,t,x=-1);

[[−1, 0, t = x+ 1]]

>gen_exp(L,t,x=0);

[[−2, 0, t = x]]

>gen_exp(L,t,x=1);

[[−1, 0, t = x− 1]]

>gen_exp(L,t,x=RootOf(1+4*x+28*x^4-56*x^6+2*x^3+32*x^9-50*x^7+16*x^5

+32*x^8));

[[
0, 2, t = x−RootOf(1 + 4Z + 28Z4 − 56Z6 + 2Z3 + 32Z9 − 50Z7 + 16Z5 + 32Z8)

]]
>gen_exp(L,t,x=infinity);

[[
− 2

t3
+

1

t
− 3

2
, t =

1

x

]
,

[
2

t3
− 1

t
+

3

2
, t =

1

x

]]
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>formal_sol(L,`has logarithm?`,x=-1);

false

>formal_sol(L,`has logarithm?`,x=0);

false

>formal_sol(L,`has logarithm?`,x=1);

false

>formal_sol(L,`has logarithm?`,x=RootOf(1+4*x+28*x^4-56*x^6+2*x^3+32*x^9

-50*x^7+16*x^5+32*x^8));

false

We have Sreg = {∅} and Sirr = {∞}. Let g = f 2. Since g ∈ C(x), we assume g = A
B
where

A,B ∈ C[x], B is monic and gcd(A,B) = 1. The truncated series of f at x =∞ is 2
3
x3 − x,

So the truncated series of g at x =∞ is 4
9
x6 − 4

3
x4, dA = 6 and B = 1.

It is the rational case with A = CA1A
d
2. d can only be the factor of dA, so d ∈ {3, 6}. Since

we do not know zeroes for A, let A1 = 1. We can write A = CAd2.

1. If d = 3 then A = CA3
2, A2 = a0 + a1x+ a2x

2. Since B = 1, then the truncated series

of gB is the same as g.

The coe�cient of the term with highest degree is 4
9
. So we can let C = 4

9
. Since ∞ is

the only singularity, so C is the leading coe�cient of A.

The truncated series of A3
2 = gB

C
is x6 +3x4 +O(x3) = x6(1−3x−2 +O(x−3)). Since the

only 3rd root of 1 in C is 1, then the only 3rd root of 1−3x−2+O(x−3) is 1−x−2+O(x−3).

So by comparing coe�cients of x2(1 − x−2 + O(x−3)) and A2 = a0 + a1x + a2x
2, we

can get A2 = x2 − 1 and then g = 4
9
(x2 − 1)3. Let a ∈ N, then{

a
3

∣∣ gcd(a, 3) = 1, 1 ≤ a
3
< 1

2

}
=
{
a
3

∣∣ gcd(a, 3) = 1, 1 ≤ a < 3
2

}
=
{

1
3

}
is the set of can-

didates for ν.

2. We can do this process for d = 6; in this case, there are no solutions.

So we have
(

2
3

√
(x2 − 1)3, 1

3

)
as the only possible candidate for (f, ν).

>M:=changeOfVars(x^2*D^2+x*D-(x^2+1/9),f);

M := x(x− 1)2(x+ 1)2D2 + (x− 1)(x+ 1)(x2 + 1)D − (4x6 − 12x4 + 12x2 − 3)x3
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>r,G:=equiv(M,L);

− 2x2 − 1

x(x+ 1)(x− 1)
, (2x+ 1)(x+ 1)(x− 1)D + x(4x4 + 2x3 − 6x2 + 3)

Therefore, we have the solutions of the form:

α exp

(∫
rdx

)
I 1

3
(f) + β exp

(∫
rdx

)
K 1

3
(f) , α, β ∈ C.
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Conclusion

In this work, we have studied the properties of Bessel functions and show how some

second-order di�erential equations can be solved by means of the Bessel functions. This has

been done basically by searching for appropriate transformations, namely the change of vari-

ables, the exp-product and the gauge transformation which allow the transformation of the

Bessel operators into some speci�c second-order operators.

the next steps of this work would be:

1)- First to relax conditions imposed when searching the transformation parameters and

see if the operator obtained is de�ned over C(x) (in this case, our algorithm is com-

plete).

2)- Apply this formalism to solve di�erence equations with the Bessel functions replaced

by the Meixner, the Charlier functions.
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Appendix

A.1 Transformations

When we apply to an operator L ∈ C(x)[∂] of order two the parameter of the trans-

formations that we use, we can always �nd L̃ ∈ C(x)[∂] with deg(L̃) = 2 that satis�es the

conditions. From this fact, we can derive algorithms that apply a changes of variables, an

exp-product or a gauge transformation to a di�erential operator.

Algorithm 12: ChangeOfVars

Input: operator L ∈ C(x)[∂] of degree two and rational function f .

Output: operator L̃ ∈ C(x)[∂] of degree two such that y(f) ∈ V(L̃) for every

y ∈ V(L).

l := lcoe�(L, ∂)

a0, a1 := coe�s(L, ∂)/l

b0 :=
a0

a2

∣∣∣∣
x=f

(f ′)2

b1 :=
1

f ′

(
a0

a2

∣∣∣∣
x=f

(f ′)2 − f ′′
)

return(collect(numer(∂2 + b1∂ + b0), ∂)).

Algorithm 13: expProduct

Input: operator L ∈ C(x)[∂] of degree two and rational function r.

Output: operator L̃ ∈ C(x)[∂] of degree two such that exp
(∫

rdx
)
y ∈ V(L̃) for every

y ∈ V(L).

1 l := lcoe�(L, ∂)

2 a0, a1 := coe�s(L, ∂)/l

3 b1 := −2r + a1
a2

4 b0 := r2 − r′ − a1
a2
r + a0

a2

5 return(collect(numer(∂2 + b1∂ + b0), ∂)).
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Algorithm 14: gauge

Input: operator L ∈ C(x)[∂] of degree two and two rational functions r0, r1.

Output: operator L̃ ∈ C(x)[∂] of degree two such that r0y + r1y
′ ∈ V(L̃) for every

y ∈ V(L).

1 l := lcoe�(L, ∂)

2 a0, a1 := coe�s(L, ∂)/l

3 c0 :=
(
r′0 − a0

a2
r1

)′
− a0

a2

(
r0 + r′1 − a1

a2
r1

)
4 c1 := r′0 − a0

a2
r1 +

(
r0 + r′1 − a1

a2
r1

)′
− a1

a2

(
r0 + r′1 − a1

a2
r1

)
5 c2 := − r1

r0

(
r′0 − a0

a2
r1

)′
+ r1

r0

a0
a2

(
r0 + r′1 − a1

a2
r1

)
6 c3 := a1

a2
r1 + r1

r0

(
r′0 − a0

a2
r1

)
− r0 − r′1

7 b0 := − 1

r0

[
c0 +

(
r′0 −

a0

a2

r1

)
c1 + c2

c3

]
8 b1 := c1+c2

c3

9 return(collect(numer(∂2 + b1∂ + b0),∂))

A.2 IsPower

In the integer case of the algorithm 11, we had to determine whether a monic polynomial

is a p-th power of another polynomial.

Algorithm 15: ispower

KwIna monic polynomial f ∈ K[x] and p ∈ N. KwOut g ∈ K[x] with the following

property: if yp = f exists, then g is a solution. 1 if p = 1 then return f

2 d := degree(f, x)

3 n := d/p

4 if n 6∈ Z then return FAIL

5 A := xn +
∑n

k=0 akx
k

6 for k = 1...n

7 an−k := solve(coeff(Ap, x, d− k)− coeff(f, x, d− k), an−k)

Return: A

A.3 Program Description

We will give an overview over the important functions implemented in the programme.

We will indicate for some the corresponded Algorithm in the thesis.

besselequiv

Input: An operator L ∈ K[∂], a rational function f ∈ K, and a constant ν ∈ C.
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Output: A sequence M ∈ K[∂], [y1, y2] such that y1 and y2 are the (modi�ed) Bessel function

of the �rst and second kind and M(y) is a solution of L. If such a solution does not exist 0

is returned.

BesselSqrtequiv

Input: An operator L ∈ K[∂], a rational function f ∈ K, and a constant ν ∈ C.
Output: A sequence M ∈ K[∂], [y1, y2] such that y1 and y2 are the (modi�ed) Bessel function

of the �rst and second kind with change of variable x 7→
√
f and M(y) is a solution of L. If

such a solution does not exist 0 is returned.

besselsubst

(implementation of Algorithm 1)

Input: Sirr and their exponent di�erences, local parameter t.

Output: A list [f1, ..., fn] that corresponds to possibilities
∑n

k=1±fk.

changeconstant

Input: A rational function f ∈ K = C(x), a point p.

Output: A rational function g = g(x) ∈ K such that g = f + c for some c ∈ C and g(p) = 0.

If p =∞, g = f is returned.

compare

Input: Two constants a, b ∈ C.
Output: Two rational number r, s ∈ Q such that a = rb+ s.

dsolve_bessel

Input:(i) A di�erential operator L ∈ K[∂] and optionally the domain

(ii)A di�erential equation and the dependent variable.

Output: The solution space if it can be expressed by Bessel funstions.

equiv

Input: Two operators L1,L2 ∈ K[∂] of degree two.

Output: An operator M such that My ∈ V(L2) for every y ∈ V(L1). If a solution M 6= 0 was

found, a sequence r ∈ K, G ∈ K[∂] which satis�es M = exp
(∫

rdx
)

G would be returned.

�ndbesselvf

Input: An integer that indicates the case we are in, Sirr, Sreg, and the variable t for the local

parameter.

Output: A list of pairs (ν, f).

�ndbesselv�n \�ndbesselv�nt \�ndbesselvfrat \�ndbesselvfK
Those are the implementations of di�erent cases of the Bessel square-root and non-square-

root case.

Input: Sreg and Sirr.

Output: A list of pairs (ν, f).
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ispower

(implementation of Algorithm 15)

Input: A monic polynomial f ∈ C[x] and p ∈ N.
Output: g ∈ C[x] with the following property: if a solution for yp = f exists, then g is a

solution.

SimplifyAnswer

Input: h ∈ C(x), L and a list of functions F

Output: A list of function obtained by applying the operator exp
(∫

hdx
)

L to the functions

in F.

singgenexp

Input: L ∈ C(x)[∂], a variable t, and an optional parameter to pass some information about

singularities.

Output: A list of elements of the form [p, t,D, q, n] such that: p is a singularity of L, q is a

polynomial over C with zero p, n = deg(p), and D is the exponent di�erence d = ∆(L, p).

singInfo

Collect information of Singularities.

Input: Di�erential Operator L.

Output:Sreg, Sirr with exponent di�erences, and determine if it is logarithmic, rational or

base �eld.

singSeries

Input: Sreg and Sirr with exponent di�erences.

Output: Sreg and Sirr with truncated power series, denominator of possible change of variable

B, the boundary of degree of numerator dA and a boolean indicate if it is easy case.

sqrtEasy

This is an implementation of Algorithm 8, �nd solutions for easy case.

Input: Sreg, Sirr with truncated series, B, dA.

Output: List of pairs (f, ν).

�ndnueasyIrrat

given f and the condition ν 6∈ Q, �nd all possible ν for easy case.

Input: f , Sreg.

Output: List of pairs (f, ν).

�ndnueasyrat

given f and the condition ν ∈ Q, �nd all possible ν for easy case.

Input: f , Sreg.

Output: List of pairs (f, ν).

�ndnuLog

given f and we have logarithmic solutions, �nd all possible ν for easy case and logarithmic
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case.

Input: f , Sreg.

Output: List of pairs (f, ν).

sqrtLog

This is an implementation of Algorithm 9, �nd solutions for logarithmic case.

Input: Sirr, Sreg with truncated series, B, dA.

Output: List of pairs (f, ν).

searchKnlog

For logarithm case, try all possible multiplicities for zeroes.

Input: Sreg, dA
Output: List of f .

sqrtIrrat

This is an implementation of Algorithm 10, �nd solutions for irrational case.

Input: Sreg, Sirr with truncated series, B, dA.

Output: List of pairs (f, ν).

sqrtRat

This is an implementation of Algorithm 11, �nd solutions for rational case.

Input: Sreg, Sirr with truncated series, B, dA
Output: List of pairs (f, ν).

�ndnuRat

Given f , �nd ν for rational case.

Input: f , up to d disappearing Singularities, Sreg, B.

Output: List of pairs (f, ν).

�ndSqrtf

�nd possible f for rational case.

Input: Sirr, B, up to d disappearing singularities, possible list of A1.

Output: List of f .

testzeros

Input: f ∈ C(x) and a set of points.

Output: True if all points are zeros of f and false otherwise.
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