Übungen zur Algebra I — Blatt 14, Wintersemester 04/05

Dr. M. Dettweiler (INF 368, Zi. 513, Tel. 548870) e-mail: michael.dettweiler@iwr.uni-heidelberg.de

Abgabetermin: Dienstags

50. Aufgabe: (4 Punkte) Es sei $n \in \mathbb{N}$ und φ die Eulersche φ -Funktion. Zeigen Sie, daß es in der zyklischen Gruppe Z_n genau $\varphi(n)$ Elemente der Ordnung n gibt und daß Z_n genau $\varphi(n)$ Automorphismen hat.

- **51.** Aufgabe: (4 Punkte) Es sei $q = l^k$ $(k \in \mathbb{N})$ eine Primzahlpotenz und \mathbb{F}_q der Körper mit q Elementen. Es sei ferner $n \in \mathbb{N}$ mit $\operatorname{ggT}(n,q) = 1$ und ζ_n eine primitive n-te Einheitswurzel in einem algebraischen Abschluss $\overline{\mathbb{F}}_q$. Man zeige:
 - (a) Es gibt eine Injektion

$$\psi: \operatorname{Gal}(\mathbb{F}_q(\zeta_n)/\mathbb{F}_q) \to (Z_n)^{\times},$$

welche den relativen Frobenius-Homomorphismus von $\mathbb{F}_q(\zeta_n)/\mathbb{F}_q$ auf die zu q gehörige Restklasse $\bar{q} \in (Z_n)^{\times}$ abbildet.

- (b) Der Grad $[\mathbb{F}_q(\zeta_n):\mathbb{F}_q]$ stimmt mit der Ordnung von \bar{q} überein.
- (c) Das n-te Kreisteilungspolynom Φ_n ist genau dann irreduzibel in $\mathbb{F}_q[x]$, wenn \bar{q} die Gruppe (Z_n) erzeugt.
- **52.** Aufgabe: (4 Punkte) Es sei ζ eine primitive 12-te Einheitswurzel über \mathbb{Q} . Man bestimme die Galoisgruppe $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ und alle Zwischenkörper von $\mathbb{Q}(\zeta)/\mathbb{Q}$.
- **53.** Aufgabe: (4 Punkte) Man bestimme sämtliche Einheitswurzeln, die in den Körpern $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt{2}i)$ bzw. $\mathbb{Q}(\sqrt{3}i)$ enthalten sind.