Universität Kassel 17.06.2015

FB 10, AG Computational Mathematics Prof. Dr. Werner M. Seiler Matthias Seiß

Differentialtopologie

Übungsblatt 5

Aufgabe 1

Sei Z eine Untermannigfaltigkeit von $M \subseteq \mathbb{R}^n$. Das Normalenbündel von Z in M ist die Menge $N(Z;M) := \{(z,v) \mid z \in Z, v \in T_z M \text{ und } v \perp T_z Z\}$. Zeigen Sie, dass N(Z;M) eine Mannigfaltigkeit ist, und dass dim $N(Z;M) = \dim M$ gilt.

Für die nächsten Aufgaben dürfen Sie folgenden Satz ohne Beweis verwenden:

Satz: Seien $f: M \to N$ eine glatte Abbildung zwischen Mannigfaltigkeiten und $Z \subseteq M$ eine Untermannigfaltigkeit. Für jeden Punkt $z \in Z$ sei df_z ein Isomorphismus. Wenn f die Untermannigfaltigkeit Z auf f(Z) diffeomorph abbildet, dann bildet f eine Umgebung von Z ebenfalls diffeomorph auf eine Umgebung von f(Z) ab.

Aufgabe 2

Zeigen Sie, dass es ein Diffoemorphismus zwischen einer offenen Umgebung von Z in N(Z; M) und einer offenen Umgebung von Z in M gibt.

Aufgabe 3

Das Urbild $\sigma^{-1}(z)$ der Abbildung $\sigma: N(Z; M) \to Z$, $\sigma(z, v) = z$, welche eine Submersion ist, wird mit $N_z(Z; M)$ bezeichnet.

Es sei nun codim $_MZ = k$. Das Normalenbündel N(Z; M) heißt trivial, wenn es einen Diffeomorphismus $\Phi: N(Z; M) \to Z \times \mathbb{R}^k$ gibt, dessen Einschränkung $N_z(Z; M) \to \{z\} \times \mathbb{R}^k$ für jeden Punkt $z \in Z$ ein linearer Isomorphismus ist.

Zeigen Sie, dass N(Z; M) lokal trivial ist, d.h. jeder Punkt $z \in Z$ besitzt eine Umgebung V in Z, so dass N(V; M) trivial ist.

Aufgabe 4

Zeigen Sie, dass N(Z; M) genau dann trivial ist, wenn es k unabhängige global definierende Funktionen g_1, \ldots, g_k für Z auf einer Menge U in M gibt, d.h.

$$Z = \{ y \in U \mid g_1(y) = 0, \dots, g_k(y) = 0 \}.$$