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Abstract. We study Muldowney’s extension of the classical Bendixson-
Dulac criterion for excluding periodic orbits to higher dimensions for
polynomial vector fields. Using the formulation of Muldowney’s sufficient
criteria for excluding periodic orbits of the parameterized vector field on
a convex set as a quantifier elimination problem over the ordered field
of the reals we provide case studies of some systems arising in the life
sciences. We discuss the use of simple conservation constraints and the
use of parametric constraints for describing simple convex polytopes on
which periodic orbits can be excluded by Muldowney’s criteria.

1 Introduction and Preliminaries

In the study of ordinary differential equations the analysis of periodic trajectories
is seen as an important goal in addition to describing the dynamics around fixed
points. However, already for two-dimensional polynomial systems this question
is related to Hilbert’s 16th problem, which is still unsolved [1].

For the two-dimensional case the Bendixson-Dulac criterion gives a sufficient
condition for the non-existence of periodic orbits. This criterion is parameterized
by a Dulac function, and various techniques have been proposed to construct
Dulac functions, which range form algebraic constructions for special systems to
techniques involving the solution of certain partial differential equations [2–6].

For the higher-dimensional case there are extensions of the criterion of
Bendixson-Dulac that also allow the use of Dulac functions [7]. However, lit-
tle work seems to have been done to construct Dulac functions in the higher
dimensional cases—except for addressing it as a problem [8, 9].

Moreover, the common case of algebraic constraints in the simple form of con-
servation constraints have been used in ad hoc form by many authors—mainly to
reduce 3D systems to 2D systems to be able to use the classical Bendixson-Dulac
criterion—but have not been discussed in a more general setting.



In case studies of some systems arising in the life sciences we discuss the use
of simple conservation constraints in a first line of investigation.

On the example of classical SIRS epidemiological model we show that even
in this rather simple case different algorithmic strategies to use conservation
constraints might lead to non-conclusive results for some, whereas others lead to
conclusive results. Thus the fact that Muldowney’s criteria are not coordinate
independent pose an algorithmic problem.

In a second line of investigation we discuss the use of parametric constraints
for describing simple convex polytopes on which periodic orbits can be excluded
by Muldowney’s criteria. We will show that for a 3-dimensional model of viral
dynamics [10], for which Muldwowney’s criteria cannot exclude the existence
of periodic orbits on the entire positive real octant, there is a cuboid on which
periodic orbits can be excluded.

1.1 The Bendixson-Dulac criterion for 2-dimensional vector fields

Consider an autonomous planar vector field

dx

dt
= F (x, y),

dy

dt
= G(x, y), (x, y) ∈ R2.

Bendixson in 1901 [11] was the first to give a criterion yielding sufficient
conditions for excluding oscillations. Dulac in 1937 [12] was able to generalize
the result of Bendixson as follows:

Theorem 1 (Bendixson-Dulac criterion). Let B(x, y) be a scalar continu-
ously differentiable function defined on a simply connected region D ⊂ R2 with

no holes in it. If ∂(BF )
∂x + ∂(BG)

∂y is not identically zero and does not change sign
in D, then there are no periodic orbits lying entirely in D.

For a modern proof we refer to [13, Theorem 1.8.2].
A common class of Dulac functions uses B(x, y) = e(U(x,y)), see e.g.

[3]. By the chain rule the exponential function can be factored out yielding

eU
(

∂U
∂x F + ∂U

∂y G+ ∂F
∂x + ∂G

∂y

)
. Hence, if F,G, ∂U

∂x , and ∂U
∂y are rational func-

tions, the Bendixson-Dulac criterion remains in the realm of the ordered field of
the reals.

1.2 Muldowney’s Extensions of the Bendixson-Dulac Criterion to
Higher Dimensions

The algorithmic criteria discussed in the following can be seen as generalizations
of the Bendixson-Dulac criterion for 2-dimensional vector fields to arbitrary di-
mensions.

The following theorem was proved by Muldowney [7, Theorem 4.1]: Suppose
that one of the inequalities

µ

(
∂f [2]

∂x

)
< 0, µ

(
−∂f

[2]

∂x

)
< 0 (1)



holds for all x ∈ Rn. Then the autonomous system with vector field f : Rn −→
Rn has no nonconstant periodic solutions. Here µ is some Lozinskĭı norm and
f [2] is one of the “compound matrices” of the Jacobian of the vector field f
defined in [7]. As is also shown in [7] the criterion given in [7, Theorem 4.1] also
holds when x ∈ C, where C ⊆ Rn is open and convex.

Remark. When n = 2, ∂f [2]/∂x = Trace ∂f/∂x = divf , so that [7, Theo-
rem 4.1] basically yield the results of Bendixson, i.e. the criterion of Muldowney
can be seen as a generalization of the criterion of Bendixson from the planar
case to arbitrary dimensions.

According to [7, (2.2)], the following expressions may be used as µ
(
∂f [2]/∂x

)
in

[7, Theorem 4.1], if the underlying norms for µ are the 1-norm, ∞-norm, and
2-norm respectively:

max

{
∂fr
∂xr

+
∂fs
∂xs

+
∑
q 6=r,s

∣∣∣∣ ∂fq∂xr

∣∣∣∣+

∣∣∣∣∂fq∂xs

∣∣∣∣ : r, s = 1, . . . , n, r 6= s

}
, (2)

max

{
∂fr
∂xr

+
∂fs
∂xs

+
∑
q 6=r,s

∣∣∣∣ ∂fr∂xq

∣∣∣∣+

∣∣∣∣ ∂fs∂xq

∣∣∣∣ : r, s = 1, . . . , n, r 6= s

}
. (3)

λ1 + λ2, (4)

where λ1, λ2 are the two largest eigenvalues of (∂f∗/∂x+ ∂f/∂x) /2.
Thus for a formula Γ over the reals defining an open convex subset C of Rn

and an autonomous polynomial vector field f : Rn → Rn a first-order formula
ϕ over the ordered field of the reals defines a sufficient condition such that the
vector field defined by f has no non-constant periodic solution on C. As usual
with real quantifier elimination we use the language of ordered rings. In addition,
we admit function symbols for the maximum and for the absolute values, which
are both definable.

Specifically, for the criterion involving the 1-norm we obtain

ϕ1 ≡ ∀x1∀x2 · · · ∀xn
(
Γ =⇒ (5)

max

{
∂fr
∂xr

+
∂fs
∂xs

+
∑
q 6=r,s

∣∣∣∣ ∂fq∂xr

∣∣∣∣+

∣∣∣∣∂fq∂xs

∣∣∣∣ : r, s = 1, . . . , n, r 6= s

}
< 0

)
,

and for the criterion involving the ∞-norm we obtain

ϕ∞ ≡ ∀x1∀x2 · · · ∀xn
(
Γ =⇒ (6)

max

{
∂fr
∂xr

+
∂fs
∂xs

+
∑
q 6=r,s

∣∣∣∣ ∂fr∂xq

∣∣∣∣+

∣∣∣∣ ∂fs∂xq

∣∣∣∣ : r, s = 1, . . . , n, r 6= s

}
< 0

)
.

In [8] the problem of efficient automatic resolution of maxima and absolute
values is addressed and computation examples are given. If all variables and



parameters are known to be positive, the technique of positive quantifier elimi-
nation [14, 15] can be used, which was first used to solve semi-algebraic criteria
for the existence of Hopf bifurcation fixed points [16, 17] arising in the context
of chemistry and algebraic biology [18–21].

Extending Muldowney’s criteria with Dulac functions. Although a sim-
ple generalization of the Dulac criterion to higher dimensions does not seem to
hold in the general setting [7], for positive functions 0 < r ∈ C1(Rn −→ R) one
can replace f by rf in [7, Theorem 4.1], cf. (1). The rather simple proof is given
in [7, Remark (d)].

If B = eU is used as a Dulac test function then by the chain rule the exponen-
tial function can be factored out also for Muldowney’s criteria and the criterion
remains in the realm of the ordered field of the reals, if all partial derivatives of
U are rational functions.

Using conservation constraints. Any algebraic constraints on the vector field
can be transferred into the first-order formula over the ordered field of the reals
expressing Muldowney’s criteria. Simple conservation constraints stating that
the sum of certain state variables is constant—conditions that are commonly
found in chemical reaction systems or in epidemiological models—will not induce
a failure of the degree limited virtual substitution methods [22] for quantifier
elimination, if these were successful on the unconstrained system.

Nevertheless, an elimination of a variable by the others in a conservation con-
strained will reduce the dimension of the system and thus change Muldowney’s
criteria instead of adding another equality to Muldowney’s criteria on the origi-
nal system. We will report on the results of some systematic tests on the simple
SIRS system in Sect. 2.1.

Parametric specification of a convex subset. The first-order formula γ
specifying the convex subset on which a proof for the non-existence of periodic
orbits is sought by Muldowney’s criteria can very well contain parameters, too.
The quantifier elimination procedure automatically yields conditions on the pa-
rameters that are exact with respect to Muldowney’s criteria—potentially not
mentioning input parameters if no constraint on any of them is necessary.

In Sect. 2.3 we will use this technique using simple parametric cuboids in a
case, for which the Muldowney criteria do not give a conclusive answer on the
entire positive real octant, but the specification of a 3-dimensional parametric
cuboid shows that only a parametric restriction on one variable is necessary.

2 Case Studies

2.1 The SIRS epidemiological model

We consider the widely used SIRS epidemiological model, a parameterized for-
mally 3-dimensional system of ordinary differential equations, cf. (7–9). The



systems is widely used and well studied [23–27]. So we will not provide new in-
sights into the structure of the system, but it is well suited as a test object for
our algorithmic methods.

To account for the lost of immunity, the classical susceptible (S), infected (I)
and recovered (R) model is adjusted by allowing a fraction of the recovered indi-
viduals R to move back into the susceptible pool S at a rate γ. This susceptible,
infected, recovered and susceptible (SIRS) model is expressed as

d

dt
S (t) = µ (S (t) + I (t) +R (t))− µS (t)− β S (t) I (t) + γ R (t) (7)

d

dt
I (t) = β S (t) I (t)− (µ + ν ) I (t) (8)

d

dt
R (t) = ν I (t)− (µ + γ )R (t) (9)

where ν is the rate of loss of infectiousness and the total population size N
remains constant (i.e. S + I +R = N is constant). The parameter µ represents
both, the birth and mortality rates. Assuming that birth and mortality rates are
equal is justified on the grounds that the annual infection rate is considerably
higher than the population growth. The parameter β is the transmission rate of
the infection.

Using ad-hoc reductions to 2D-models In the literature, reductions to 2D
models using S + I + R = N and replacing a suitable variable are commonly
used. However, the question, which variable to choose is never addressed. In the
following we give results for all possibilities showing that even for this simple
example the results strongly differ. In all cases we use the scaling N = 1.

Eliminating R by R = 1− (I+S). In this case the criterion using the Dulac test
function 1 returned the non-conclusive true as answer for ¬ϕ. However, using
the Dulac function 1

I(t) the conclusive false as answer for ¬ϕ was found within

some milliseconds of computation time by redlog.

Eliminating I by I = 1 − (S + R). Also in this case the criterion using the
Dulac test function 1 returned the non-conclusive true as answer for ¬ϕ. We also
obtained the the non-conclusive true as answer for ¬ϕ when using the following
Dulac test functions:

1
R(t)S(t)
1

S(t)
1

R(t)

R(t)
S(t)

Moreover, the computations using redlog did not come up with answers within
60 sec of computation time for several other Dulac test functions.

So using this elimination we did not come up with a conclusive answer by
the Muldowney criteria.



Eliminating S by S = 1 − (I + R). In this case the criterion using the Dulac
function 1 returned β − γ − 2µ − ν > 0 as answer for ¬ϕ. Using the Dulac
function 1

I(t) returned the conclusive false, as was the case for the Dulac function
1

I(t)R(t) ; for the Dulac function 1
R(t) the criterion returned β−µ− ν > 0. As the

conclusive false was found for some Dulac function, we thus have proved that
the SIRS system does not have periodic orbits on the positive real octant.

2.2 Computations on the 3D model

Unconstrained model. For the 3D-SIRS model not using any conservation con-
straint the criterion using the Dulac test function 1 returned the non-conclusive
true as answer for ¬ϕ. For all other Dulac tests functions we used we either
obtained the non-conclusive true as answer for ¬ϕ, or redlog could not come
up with a result within 60 sec of computation time.

Using the constraint S+ I+R = 1. When adding the equation S+ I+R = 1 to
the input formula for the Muldowney criterion, we obtained for the Dulac test
function the following formula as result for ¬ϕ:

2.3 A model of viral dynamics

The following example is discussed in more depth in [8]. It consists of a simple
mathematical model for the population dynamics of the human immunodeffi-
ciency type 1 virus (HIV-1) investigated in [10]. There a three-component model
is described involving uninfected CD4 + T-cells, infected such cells and free
viruses, whose densities at time t are denoted by x(t), y(t), v(t), respectively.

d

dt
x (t) = s− µx (t)− kx (t) y (t)

d

dt
y (t) = kx (t) y (t)− αy (t)

d

dt
x (t) = s− µx (t)− β x (t) v (t)

d

dt
y (t) = β x (t) v (t)− αy (t)

d

dt
v (t) = cy (t)− γ v (t)

Fig. 1. The 2D- and 3D-Tuckwell-Wan examples

In [10] a simplified two-component model employed by Bonhoeffer et al. [28]
is investigated analytically. In [10] using the general Bendixson-Dulac criteria
for 2D-vector fields with an ad hoc Dulac function B(x, y) = 1/y it is shown
that there are no periodic solutions for the system for positive parameter values
and positive values of the state variables, i.e. the biologically relevant ones.

Remark. By “ad hoc” Dulac function we mean that the authors provide this
function only and show that it is a Dulac function, but no other functions. No
explanations or hints are given to the reader how this function was obtained.



In Table 1 the results for various low-degree rational and polynomial Dulac
test functions are summarized. Notice that computation times for generating the
formulas are negligible for these examples. Note that for ¬ϕ the answer false
gives the conclusive proof on the non-existence of periodic orbits on the positive
cone.

As can be seen from the computation times given in Table 1 the quantifier
elimination problems are not too hard. When performing tests with Qepcad b
[29] we could also solve all of these quantifier elimination problems in less than
one second of computation time.

Table 1. Computation Results for the 2D-Tuckwall-Wan example (cf. Fig. 1) on the
full positive octant

The computation times are the ones for the positive quantifier elimination in redlog.

Tuckwell-Wan Used Dulac test function
2D model 1 1

x
1
y

1
xy

1
x+y

x y xy

Comp. Time [sec] 0.07 0.07 0.02 0.02 0.07 0.09 0.07 0.07
Result (¬ϕ) pc pc false false pc pc pc pc

Here pc is the positivity condition on the parameters.

For the 3D-Tuckwell-Wan Model we tried several Dulac test functions but
could not exclude the existence of a periodic orbit on R+3

for any of them. When
specifying the parametric cube (0, ux)×(0, uy)×(0, uv) by adding the conditions
x(t) < ux, y(t) < uy, and v(t) < uv for new parameters ux > 0, uy > 0, and
uv > 0—cf. Sect. 1.2—and using the trivial Dulac function 1—we obtain the
following first-order formula for ¬ϕ using Muldowney’s criterion for the 1-norm
(displayed in slightly hand edited form for better readability):

∃v1∃v2∃v3 : 0 < v1 ∧ 0 < v2 ∧ 0 < v3 ∧ 0 < uv ∧ 0 < ux ∧ 0 < uy ∧
0 < c ∧ 0 < µ ∧ 0 < s ∧ 0 < α ∧ 0 < β ∧ 0 < γ ∧

v1 < uv ∧ v2 < ux ∧ v3 < uy ∧
0 ≤ max(−γ − α+ |βv2|,−µ− βv1 − α+ |c|,−γ − µ− βv1 + |βv2|+ |βv1|)

This quantifier elimination problem can also be solved “by hand” rather eas-
ily, and accordingly in less than 0.1 sec of computation time we obtain by the
positive quantifier elimination procedure of redlog the following quantifier-free
equivalent for ϕ:

min

(
α+ γ

β
,
µ+ γ

β

)
≥ ux ∧ α+ µ ≥ c (10)

For better readability we have provided in (10) a slightly hand-edited version of
the result formula.



Notice that there is no dependency on uy and uv, i. e. we have given a proof
that the parametric 3D-Tuckwall-Wan does not have periodic orbits on

(0, ux)× (0,∞)× (0,∞)

provided ux (and α, µ, γ, β) fulfills the condition given in (10).
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