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Abstract. The aim of this paper is to investigate upper bounds for the maximum degree of the ele-

ments of any minimal Janet basis of an ideal generated by a set of homogeneous polynomials. The

presented bounds depend on the number of variables and the maximum degree of the generating

set of the ideal. For this purpose, by giving a deeper analysis of the method due to Dubé [6], we im-

prove (and correct) his bound on the degrees of the elements of a reduced Gröbner basis. By giving

a simple proof, it is shown that this new bound is valid for Pommaret bases, as well. Furthermore,

based on Dubé’s method, and by introducing two new notions of genericity, so-called J-stable po-

sition and prime position, we show that Dubé’s (new) bound holds also for the maximum degree of

polynomials in any minimal Janet basis of a homogeneous ideal in any of these positions. Finally,

we study the introduced generic positions by proposing deterministic algorithms to transform any

given homogeneous ideal into these positions.

1. Introduction

The concept of Gröbner bases along with the first algorithm to compute them were introduced

by Bruno Buchberger in his PhD thesis [3, 4]. Since then many interesting applications of these

bases have been found in Mathematics, science, and engineering. For example, we can point out

their applications in the ideal membership problem, computing the dimension of an ideal, solving

polynomial systems and so on. It is worth noting that establishing upper bounds for the degrees of

the elements of a minimal Gröbner basis is very important for predicting the practical feasibility of

the computations as well as for the complexity analysis of Gröbner bases computations, see [16].

To review the existing literature on degree upper bounds for Gröbner bases, let R be the poly-

nomial ring K[x1, . . . , xn] where K is a field of characteristic zero and let I ⊂ R be an ideal

generated by homogeneous polynomials of degree at most d. The doubly-exponential nature of de-

gree upper bounds for Gröbner bases were established by Bayer, Möller, Mora and Giusti, see [21,

Chapter 38]. Möller and Mora [20] derived the degree upper bound (2d)(2n+2)n+1

for any Gröbner

basis of I. At the same time, Giusti [11] presented the upper bound (2d)2
n−2

for the degree of the

reduced Gröbner basis w.r.t. the degree reverse lexicographic ordering of I provided that I is in

generic position. Using a self-contained and constructive combinatorial argument, Dubé [6] proved

the degree bound 2(d2/2+ d)2
n−1

. Finally, Mayr and Ritscher [18], following the method by Dubé,

improved his bound to the dimension-dependent upper bound 2(1/2(dn−D + d))2
D−1

for every re-

duced Gröbner basis of I where D = dim(I). It should be noted that in [14], dimension and depth

depending upper bounds were exhibited for the Castelnuovo-Mumford regularity and the degrees of

the elements of the reduced Gröbner basis of an ideal in generic position.

Since in this paper, we discuss degree upper bounds for involutive bases, let us step back and

briefly review the literature on these bases. Involutive bases (which may be considered as a particular
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kind of non-reduced Gröbner bases) have their origin in the works by Janet [15] in the analysis of

(linear) partial differential equations. By developing the methods by Pommaret [22], Zharkov and

Blinkov introduced the notion of involutive polynomial bases [25]. Then, Gerdt and Blinkov [10]

introduced the concepts of involutive division and involutive bases for polynomial ideals, and the

theory of involutive bases led to an alternative approach to Buchberger’s algorithm.

In this paper, by giving a deeper analysis of Dubé’s method [6], we improve first Dubé’s bound

to O(1)d2
n−2

for the degrees of the elements of a Gröbner basis. In addition, we point out two

flaws in the proof of his main result [6, Lemma 8.1]. We correct Dubé’s bound into the sharper

bound (d + 1)2
n−2

. Finally, we investigate degree upper bounds for Pommaret and Janet bases by

introducing two new notions of genericity. It should be noted that we discuss these notions in more

details by showing how one can transform a given ideal into these positions.

The structure of the paper is as follows. Section 2 recalls the basic notations and definitions

used throughout this paper. Section 3 reviews the combinatorial approach proposed by Dubé [6] to

provide a degree upper bound for a Gröbner basis. In Section 4, an improvement of Dubé’s bound is

presented. Section 5 is devoted to the study of degree upper bounds for Pommaret bases. In Sections

6 and 7, we introduce new generic positions, and show that any degree upper bound obtained for

a Gröbner basis by applying Dubé’s approach holds for the Janet basis of an ideal in any of these

generic positions. Finally, we discuss how one can transform a given ideal into any of these positions.

2. Preliminaries

In this section, we will briefly explain the basic notations and preliminaries that used in the sub-

sequent sections. Let R = K[X] be the polynomial ring over an infinite field K where X =
{x1, . . . , xn}. Furthermore, let M be the set of all monomials in R (a monomial is a power product

of the elements of X). We consider a finite set of homogeneous polynomials F = {f1, . . . , fk} ⊂ R
and the ideal I = 〈F 〉 generated by F . We denote the degree w.r.t. a variable xi of a polynomial

f ∈ R by degi(f) and the total degree of f by deg(f). The maximum degree of the polynomials

in F is denoted by d. The Krull dimension of the factor ring R/I, denoted by D = dim(I), is the

number of elements of any maximal set S ⊆ X such that I ∩K[S] = {0}. A prime ideal P is called

a minimal prime ideal of I, if I ⊆ P and P is minimal with this property.

A typical example of a monomial ordering that we use in this paper is the degree reverse

lexicographical ordering with xn ≺drl · · · ≺drl x1. More precisely, for two monomials xα and

xβ we write xα ≺drl x
β if either deg(xα) < deg(xβ) or deg(xα) = deg(xβ) and the right-most

non-zero entry of β − α is negative. The leading monomial of a polynomial 0 6= f ∈ R, denoted

by LM(f), is the greatest monomial appearing in f w.r.t. ≺ and its coefficient is called the leading

coefficient of f , denoted by LC(f). The leading term of f is the product LT(f) = LC(f)LM(f).
For F ⊂ R, LM(F ) stands for {LM(f) | f ∈ F}. The leading monomial ideal of I is the monomial

ideal LM(I) = 〈LM(f) | 0 6= f ∈ I〉. A finite set G ⊂ I is called a Gröbner basis for I w.r.t. ≺,

if LM(I) = 〈LM(G)〉. The remainder of division f by a Gröbner basis G w.r.t. ≺, is denoted by

NFG(f). For a Gröbner basis G, we let NI = {NFG(f) | f ∈ R} be the K-vector space generated

by the set of all monomials u with u /∈ 〈LM(G)〉. We refer to [5] for more details on the theory of

Gröbner bases. Now, let us review some definitions and results from the theory of involutive bases,

see [9, 24] for more information.

Definition 2.1. An involutive division L is defined on M, if for any nonempty finite set U ⊂ M
and for any monomial u ∈ U , we can partition the set of variables X into two disjoint subsets

ML(u, U) of multiplicative variables and NML(u, U) of non-multiplicative variables such that for

any u1, v1 ∈ U the following conditions hold:

1. if u1L(u1, U) ∩ v1L(v1, U) 6= ∅ then either u1 ∈ v1L(v1, U) or v1 ∈ uL(u1, U),
2. if v1 ∈ u1L(u1, U) then L(v1, U) ⊆ L(u1, U),
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3. if u1 ∈ V and V ⊆ U then L(u1, U) ⊆ L(u1, V ),

where for any monomial u ∈ U , L(u, U) denotes the subset of M consisting of all monomials in

terms of ML(u, U).

As classical examples of involutive divisions, we recall the definitions of the Janet and Pom-

maret divisions.

Definition 2.2. For a given finite set U ⊂ M of monomials and a given sequence of non-negative

integers d1, . . . , di with 1 ≤ i ≤ n define

[d1, . . . , di] = {u ∈ U | dj = degj(u), 1 ≤ j ≤ i}.
x1 is Janet multiplicative (or shortly J -multiplicative) for u ∈ U , if deg1(u) = max{deg1(v) |
v ∈ U}. For i > 1, xi is J -multiplicative for u ∈ U , if degi(u) = max{degi(v) | v ∈
[deg1(u), . . . , degi−1(u)]}.

Definition 2.3. For u = xd1
1 · · ·xdk

k with dk > 0, the integer k is called the class of u and is denoted

by cls(u). The variables xcls(u), . . . , xn are Pommaret multiplicative (or shortly P-multiplicative)

for u. For u = 1, all the variables are Pommaret multiplicative.

In the next example, the separation of variables is shown for Janet and Pommaret divisions.

Example 2.4. For U = {x1x2, x3} ⊂ K[x1, x2, x3], we have

Monomial MJ NMJ MP NMP

x1x2 x1, x2, x3 x2, x3 x1

x3 x2, x3 x1 x3 x1, x2

Gerdt and Blinkov [10, Proposition 3.6] showed that both these divisions are involutive.

Definition 2.5. For a finite set U ⊂ M of monomials, the sets C(U) =
⋃

u∈U uM and CL(U) =
⋃

u∈U uL(u, U) are called, respectively, the cone and the L-involutive cone generated by U .

Definition 2.6. For a finite set U ⊂ M of monomials, a set Ũ with U ⊆ Ũ ⊆ M is called an

L-completion of U , if C(U) = CL(Ũ). Furthermore, U is L-complete or L-involutive, if it holds

CL(U) = C(U). An involutive division L is said to be Nœtherian, if every finite set U possesses a

finite L-completion.

We are now in a position to introduce the concept of involutive bases. A finite set F ⊂ R is

L-autoreduced, if for any f ∈ F , no monomial occurring in f is L-divisible by LM(F ) \ {LM(f)}.

Definition 2.7. Let I ⊂ R be an ideal and L an involutive division. Then an L-autoreduced subset

G ⊂ I is called an L-involutive basis (or shortly an involutive basis) for I, if for each f ∈ I there

exists g ∈ G so that LM(g)|LLM(f).

According to the above definition, every involutive basis is a Gröbner basis for the ideal it

generates. Furthermore, in [10, Proposition 4.5], it was shown that the Janet division is Nœtherian

and it follows immediately from this property that every ideal has a (finite) Janet basis. Gerdt in [9]

described an algorithmic approach to construct involutive bases. We shall point out that this pro-

cess terminates in finitely many steps only for Nœtherian divisions. However, the following simple

example illustrates that finite Pommaret bases do not exist in general.

Example 2.8. Let I = 〈x2〉 ⊂ K[x1, x2]. The Pommaret basis of I is the infinite set {xi
1x2 | i ≥ 0}.

The third author in [23] explicitly related the ideals with finite Pommaret bases to the notion

of genericity. For this, the notion of quasi stable position was introduced and it was shown that an

ideal in such a position possesses a finite Pommaret basis.
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Definition 2.9. A monomial ideal I ⊂ R is quasi stable, if for any monomial m ∈ I and all positive

integers i, j, s with 1 ≤ j < i ≤ n, if xs
i | m, there exists an integer t ≥ 0 such that xt

j(m/xs
i ) ∈ I.

An ideal I ⊂ R is called in quasi stable position, if LM(I) w.r.t. ≺ is quasi stable.

Proposition 2.10 ([23, Proposition 4.4]). A homogeneous ideal I has a finite Pommaret basis, if and

only if it is in quasi stable position.

Since K is infinite, then, for a given ideal, by applying a generic linear change of variables, one

is able to transform the ideal into quasi stable position and in consequence the new ideal has a finite

Pommaret basis, see [23] for more details.

3. Dubé’s approach

In this section, we give a short review of Dubé’s [6] method which entails degree upper bound for

Gröbner bases. For this, let us first recall some basic definitions from [6]. Let us denote by indet(u)
the set of all variables appearing in the monomial u ∈ M. For a finite set F ⊂ R of monomials, we

set indet(F ) =
⋃

u∈F indet(u).

Definition 3.1. Let T ⊂ R. The family S1, . . . , St of subsets of T is said to be a direct decompo-

sition of T if every p ∈ T can be uniquely expressed of the form p =
∑r

i=1 pi where pi ∈ Si and

r ≤ t. This property is indicated by the notation T = S1 ⊕ S2 ⊕ · · · ⊕ Sm.

For example, ideal I = 〈x2〉 in Example 2.8 has a direct decomposition Si = {xi
1x

j
2 | j ≥ 1},

i ≥ 0. Also, for any ideal I we can decompose R = I ⊕NI . For a homogeneous polynomial h and

set u ⊆ X , the set C(h, u) = {ah | a ∈ R and indet(a) ⊆ u} is also called the cone presented by h
and u.

Definition 3.2. Let h1, . . . , ht be homogeneous polynomials in R, and u1, . . . , ut subsets of X . A

finite set P = {C(h1, u1), . . . , C(ht, ut)} is called a cone decomposition of T ⊂ R if the cones

C(hi, ui)’s form a direct decomposition for T .

If the set F = {f1, . . . , fk} is a Janet basis for a given ideal I then, from properties of a Janet

basis it follows that {C(f1,MJ (LM(fk),LM(F ))), . . . , C(fk,MJ (LM(fk),LM(F )))} forms a

cone decomposition for I. For a cone decomposition P , we write P+ = {C(h, u) ∈ P | u 6= ∅}.

Definition 3.3. Let k be a non-negative integer and P a cone decomposition. Then, P is called

k-standard if the following conditions hold:

1. There is no cone C(h, u) ∈ P+ with deg(h) < k.

2. For each C(g, u) ∈ P+ and k ≤ d ≤ deg(g), there exists C(h, v) ∈ P+ with deg(h) = d and

|u| ≥ |v|.
By convention, if P+ is the empty set, then P is k-standard for all k.

Example 3.4. Let I = 〈x1x2x3, x1x
2
3, x1x4〉 ⊂ K[x1, x2, x3, x4]. Then C(1, {x2, x3, x4}) ⊕

C(x1, {x1, x2})⊕ C(x1x3, {x1}) is a 0-standard cone decomposition for NI .

Definition 3.5. A cone decomposition P is called exact if it is k-standard for some k, and in addition

for each d, there exists at most one C(h, u) ∈ P+ with deg(h) = d.

For example, one observes that the 0-standard cone decomposition in Example 3.4 is exact, as

well.

Definition 3.6. The Macaulay constants of a k-exact cone decomposition P is defined to be:

bi = min{d ≥ k | ∀ C(h, u) ∈ P ; |u| ≥ i =⇒ deg(h) < d}, i = 0, . . . , n+ 1.
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We note as a simple observation that b0 ≥ b1 ≥ · · · ≥ bn+1 = k. In Example 3.4, Macaulay

constants for set NI are b0 = 3, b1 = 3, b2 = 2, b3 = 1, b4 = 0 and b5 = 0.

Lemma 3.7 ([6, Lemma 6.1]). Let P be an exact cone decomposition, and b0, . . . , bn+1 be the

Macaulay constants of P . Then for each i = 1, . . . , n and any given degree d with bi+1 ≤ d < bi,
there is exactly one cone C(h, u) ∈ P+ such that deg(h) = d and in that cone |u| = i.

Now, we are ready to give the outline of the approach proposed by Dubé in [6].

1. Starting with a homogeneous generating set F for a given ideal I ⊂ R and assume that d is

the maximum degree of the polynomials in F .

2. Finding a 0-exact cone decomposition for NI and also a direct decomposition of the form I =
C(f, {x1 . . . , xn})⊕ S such that f ∈ F, deg(f) = d and S is a d-exact cone decomposition.

3. Using Macaulay constants of these two exact cone decompositions to give a simple formulation

for Hilbert functions of NI and I.

4. Using these Hilbert functions and applying the equality R = I ⊕ NI to find a new upper

bound for the Macaulay constants.

5. It was shown that this upper bound can be generalized for an arbitrary ideal generated by a set

of polynomials of degree at most d.

Given an ideal, by applying the next algorithm, we are able to construct a 0-standard cone decom-

position for NLM(I) w.r.t. a fixed monomial ordering. In the next algorithm, we assume that I is a

monomial ideal.

Algorithm 1 SPLIT

1: Input: h ∈ M, u ⊆ X and F a minimal monomial basis for the monomial ideal I : h
2: Output: A pair of cone decompositions (P,Q) so that C(h, u) = P ⊕Q, P ⊆ I and Q ⊆ NI

3: if 1 ∈ F then

4: return({C(h, u)}, ∅)
5: end if

6: if F ∩ K[u] = ∅ then

7: return(∅, {C(h, u)})
8: end if

9: Choose a maximal subset s ⊂ u such that F ∩ K[s] = ∅
10: Choose xj ∈ u \ s
11: (P0, Q0) :=SPLIT(h, u \ {xj}, F )
12: F ′ := a minimal monomial basis for 〈F 〉 : xj

13: (P1, Q1) :=SPLIT(xjh, u, F
′)

14: return(P = P0 ∪ P1, Q = Q0 ∪Q1)

Example 3.8. As a simple example, SPLIT(1, {x1, x2}, {x2
1x2, x1x

2
2, x

3
2}) returns (P,Q) with

P =
{

C(x3
2, {x2}), C(x1x

2
2, {x2}), C(x2

1x2, {x1, x2})
}

Q =
{

C(1, {x1}), C(x2, ∅), C(x2
2, ∅), C(x1x2, ∅)

}

.

It was proved in [6, Lemmata 4.3 and 4.4] that this algorithm terminates in finitely many

steps and is correct. In addition, it was shown in [6, Lemma 4.10, Theorem 4.11] that if we have

(P,Q) =SPLIT(h, u, F ) then Q is a deg(h)-standard cone decomposition. Now, given a homoge-

neous ideal I, we give a pair of cone decompositions for I and NI . For this, let us assume that

(P,Q) =SPLIT(1, X,LM(G)) where G is a Gröbner basis for I. It follows that Q is a 0-standard

cone decomposition for NI (note that here we use the fact that NI = NLM(I), see [5] for more

information). Furthermore, we can conclude that P can provide a standard decomposition for I. In
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[6], an algorithm was described to transform a k-standard cone decomposition into an k-exact cone

decomposition. All together, we are able to construct a 0-exact cone decomposition for NI .

Let T be a K-vector space so that the homogeneous components of any element of T belong to

T . The set of all homogeneous polynomials in T of degree i is denoted by Ti. The Hilbert function

of T at i, denoted by ϕT (i), is the dimension of Ti as a K-vector space. Now, assume that P is

an exact cone decomposition for a homogeneous K-vector space T and b0, . . . , bn+1 are Macaulay

constants of P . Then, the Hilbert function of T can be expressed as follows:

ϕT (z) =
∑

C(h,u)∈P

ϕC(h,u)(z).

For any z ≥ b0, each of the cones in P+ has a Hilbert function described by the binomial coefficient

ϕC(h,u)(z) =

(

z − deg(h) + |u| − 1

|u| − 1

)

and in consequence for z ≥ b0, we can write

ϕT (z) =
∑

C(h,u)∈P+

(

z − deg(h) + |u| − 1

|u| − 1

)

.

By applying Lemma 3.7, for z ≥ b0 we have

ϕT (z) =
n
∑

j=1

bj−1
∑

d=bj+1

(

z − d+ j − 1

j − 1

)

.

Then, using a combinatorial argument, it was shown in [6, page 768] that for z ≥ b0 it holds

ϕT (z) =

(

z − bn+1 + n

n

)

− 1−
n
∑

i=1

(

z − bi + i− 1

i

)

. (1)

The Hilbert function ϕT for z ≥ b0 can be represented by a unique polynomial, so-called the Hilbert

polynomial of T and is denoted by ϕ̄T (z). Hence for z ≥ b0, ϕT (z) = ϕ̄T (z).
In [6, Lemma 7.1], it was proved that the Macaulay constants b0, . . . , bn for T are uniquely

determined if bn+1 has been fixed. Summarizing, the SPLIT algorithm returns a 0-standard cone

decomposition Q for NI where I is a homogeneous ideal. Furthermore, in [6, Theorem 4.11] it

was shown that t = 1 + max{deg(h) | C(h, u) ∈ Q} is an upper bound for the degrees of the

polynomials in any reduced Gröbner basis of the ideal I. Finally, the construction of the exact cones

shows that the Macaulay constant b0 is greater than t, and according to [6, Lemma 7.2] b0 remains

an upper bound for degree of any reduced Gröbner basis of I.

4. A new upper degree bound for Gröbner bases

In this section, by a deeper analysis of Dubé’s method, we give a more accurate upper bound for

the degrees of the polynomials in any reduced Gröbner basis of a homogeneous ideal I. For this,

assume that we are given a 0-exact cone decomposition Q with the Macaulay constants b0 ≥ b1 ≥
· · · ≥ bn+1 = 0 for NI . Then, the Hilbert function of NI for z ≥ b0 equals

ϕNI
(z) =

(

z + n

n

)

− 1−
n
∑

i=1

(

z − bi + i− 1

i

)

.

Furthermore, if d is the maximum degree of a generating set of I then I = C(f,X) ⊕ K ′ where

deg(f) = d and K ′ is a d-exact cone decomposition with the Macaulay constants a0 ≥ a1 ≥ · · · ≥
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an+1 = d. Then, for z ≥ a0 the Hilbert function of I is:

ϕI(z) =

(

z − d+ n− 1

n− 1

)

+

(

z − d+ n

n

)

− 1−
n
∑

i=1

(

z − ai + i− 1

i

)

.

From the equality R = I ⊕NI , for z ≥ max{a0, b0}, we can write

ϕR(z) =

(

z + n− 1

n− 1

)

(2)

=

(

z − d+ n− 1

n− 1

)

+

(

z − d+ n

n

)

+

(

z + n

n

)

− 2

−
n
∑

i=1

[(

z − ai + i− 1

i

)

+

(

z − bi + i− 1

i

)]

.

By considering both sides as polynomials in z and making equal the coefficients of the polynomials

at the left and right hand sides, we try to find the desired upper bound. For this, and following the

notations of [6], the backward difference operator ∇, for any function f(x) is defined as ∇f(x) :=
f(x) − f(x − 1), and inductively, for any j, ∇jf(x) = ∇(∇j−1f(x)). It is seen that the degree

of univariate polynomial in (2) is n − 1. Now to extract the coefficients of the polynomial in (2), it

is enough to apply the operator ∇j to both sides of (2) for j = 0, . . . , n − 1. Hence applying this

operator to both sides of (2) and taking into account the identity ∇j
(

z+k
n

)

=
(

z+k−j
n−j

)

, for enough

large value of z, we obtain:
(

z + n− j − 1

n− j − 1

)

=

(

z − d+ n− j − 1

n− j − 1

)

+

(

z − d+ n− j

n− j

)

+

(

z + n− j

n− j

)

−
n
∑

i=j

[(

z − ai + i− j − 1

i− j

)

+

(

z − bi + i− j − 1

i− j

)]

.

For i = j we have
(

z−ai+i−j−1
i−j

)

+
(

z−bi+i−j−1
i−j

)

= 2 and in turn

(

z + n− j − 1

n− j − 1

)

=

(

z − d+ n− j − 1

n− j − 1

)

+

(

z − d+ n− j

n− j

)

+

(

z + n− j

n− j

)

− 2 (3)

−
n
∑

i=j+1

[(

z − ai + i− j − 1

i− j

)

+

(

z − bi + i− j − 1

i− j

)]

.

For simplicity, we denote the constant coefficient of
(

z+k
n

)

by:

l(k, n) =







1 if n = 0
k(k − 1) · · · (k − n+ 1)

n!
if n 6= 0.

So, comparing the constant coefficient of both sides of Equality (3), we get

1 = l(−d+ n− j − 1, n− j − 1) + l(−d+ n− j, n− j)− 1 (4)

−
n
∑

i=j+1

[l(−ai + i− j − 1, i− j) + l(−bi + i− j − 1, i− j)] .

For j = n− 1, we have:

1 = l(−d, 0) + l(−d+ 1, 1)− 1− l(−an, 1)− l(−bn, 1) = 1− d+ 1− 1 + an + bn.
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Thus, an + bn = d. On the other hand, we have an ≥ d and bn ≥ 0 which implies that an = d and

bn = 0. Using these properties, we can simplify Equality (4) as follows:

1 = l(−d+ n− j − 1, n− j − 1) + l(−d+ n− j, n− j)− l(−d+ n− j − 1, n− j)− 1

−
n−1
∑

i=j+1

[l(−ai + i− j − 1, i− j) + l(−bi + i− j − 1, i− j)] .

From the equality l(−d+n− j, n− j)− l(−d+n− j− 1, n− j) = l(−d+n− j− 1, n− j− 1),
it follows that:

1 = 2l(−d+ n− j − 1, n− j − 1)− 1

−
n−1
∑

i=j+1

[l(−ai + i− j − 1, i− j) + l(−bi + i− j − 1, i− j)] .

Let for each j, cj denote the sum aj + bj . Then, we can conclude that:

cj+1 = −2l(−d+ n− j − 1, n− j − 1) + 2 (5)

+
n−1
∑

i=j+2

[l(−ai + i− j − 1, i− j) + l(−bi + i− j − 1, i− j)] .

For j = n− 2, one observes that cn−1 = −2l(−d+ 1, 1) + 2 = 2d. For j = n− 3 we have:

cn−2 = −2l(−d+ 2, 2) + 2 + l(−an−1 + 1, 2) + l(−bn−1 + 1, 2)

= −2
(d− 1)(d− 2)

2
+ 2 +

an−1(an−1 − 1)

2
+

bn−1(bn−1 − 1)

2

= −d2 + 2d+
a2n−1 + b2n−1

2

≤ −d2 + 2d+
c2n−1

2
= d2 + 2d.

Below, we state a simple helpful lemma which can be shown using calculus.

Lemma 4.1. Consider the function f(x, y) = xn + yn where n ∈ N, x + y = 2d , x ≥ d and

y ≥ 0. Then, the maximum and minimum values of f are 2ndn and 2dn, respectively.

Let us continue the above reasoning for j = n−4 and j = n−5. In fact, by studying different

values of j, we try to predict the desired degree upper bound. For j = n− 4, we have

cn−3 = 2 + 2
(d− 1)(d− 2)(d− 3)

6
+

a2n−2 + b2n−2

2
+

−an−2 − bn−2

2

+
−a3n−1 − b3n−1

6
+

a2n−1 + b2n−1

2
+

−an−1 − bn−1

3

By using Lemma 4.1 and this inequality, one gets −cn−2 ≤ −cn−1 = −2d and in consequence

cn−3 ≤ 2 + 2
(d− 1)(d− 2)(d− 3)

6
+

(d2 + 2d)2

2
+

−2d

2

+
−2d3

6
+

4d2

2
+

−2d

3
=

1

2
d4 + 2d3 + 2d2 + 2d.

Finally, for j = n− 5 by a similar argument, we can obtain:

cn−4 ≤ 1

8
d8 + d7 + 3d6 + 5d5 +

85

12
d4 + 6d3 +

35

12
d2 + 2d.

We are now in a position to set up an induction to show that for each j = 1, . . . , n − 1, there exists

a univariate polynomial Fj(d) ∈ Q[d] such that cj ≤ Fj(d) and deg(Fj) = 2n−j−1.
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Lemma 4.2. Under the above assumptions, for 1 ≤ t ≤ n− 1, it holds ct ≤ Ft(d) where Ft(d) ∈
Q[d] and deg(Ft) = 2n−t−1.

Proof. The proof proceeds by an induction on t. By the above arguments, the assertion holds for

n− 4 ≤ t ≤ n− 1. Assume that the claim is true for any j +1 < t ≤ n− 4 and we want to proof it

for j + 1. Using Equality (5), we have:

cj+1 = −2l(−d+ n− j − 1, n− j − 1) + 2 +
a2j+2 + b2j+2

2
+

−aj+2 − bj+2

2

+

n−1
∑

i=j+3

[l(−ai + i− j − 1, i− j) + l(−bi + i− j − 1, i− j)]

≤ −2l(−d+ n− j − 1, n− j − 1) + 2 +
c2j+2

2
− d

+

n−1
∑

i=j+3

[l(−ai + i− j − 1, i− j) + l(−bi + i− j − 1, i− j)] .

Note that to prove the last inequality, we used the fact that −aj+2 − bj+2 ≤ −an−1 − bn−1 =
−2d. By applying the inductive assumptions, we know that the polynomial Fj+2(d) ∈ Q[d] ex-

ists such that cj+2 ≤ Fj+2(d) and deg(Fj+2) = 2n−j−3. Hence (cj+2)
2 ≤ (Fj+2(d))

2 and

deg((Fj+2)
2) = 2n−j−2. On the other hand, from deg(l(−d+ n− j − 1, n− j − 1)) = n− j − 1

and j + 1 < n − 4, it yields that 2n−j−2 > n − j − 1. Therefore, to prove the assertion, we must

show that
∑n−1

i=j+3 [l(−ai + i− j − 1, i− j) + l(−bi + i− j − 1, i− j)] is less than a polynomial

in terms of d of degree less than 2n−j−2. We have

l(−ai + i− j − 1, i− j) + l(−bi + i− j − 1, i− j)

=
(−ai + i− j − 1) · · · (−ai)

(i− j)!
+

(−bi + i− j − 1) · · · (−bi)

(i− j)!

=
1

(i− j)!

i−j
∑

t=1

qt(a
t
i + bti), with qt ∈ Z

Now, if qt > 0 then qt(a
t
i + bti) ≤ qtc

t
i and if qt < 0 then qt(a

t
i + bti) ≤ qt2d

t. By the induction
hypotheses, it follows that

l(−ai + i− j − 1, i− j) + l(−bi + i− j − 1, i− j) ≤
1

(i− j)!

[

i−j
∑

qt>0,t=1

qt(Fi(d))
t +

i−j
∑

qt<0,t=1

qt2d
t
]

.

For simplicity, define the polynomial Gi(d) =
1

(i− j)!
[
∑i−j

qt>0,t=1 qt(Fi(d))
t +

∑i−j

qt<0,t=1 qt2d
t].

It is easy to check that deg(Gi) ≤ (i− j)(2n−i−1). From j+3 ≤ i ≤ n− 1, we have i− j ≥ 3 and

in turn i−j < 2i−j−1. This implies that (2n−i−1)(i−j) < 2n−j−2, which completes the proof. �

Dubé in [6, Lemma 8.1] showed that for 1 ≤ j ≤ n − 2, cj ≤ Dj := 2(
d2

2
+ d)2

n−j−1

.

However, the bound that we presented here has the property deg(Fj(d)) = 2n−j−1 < deg(Dj) =
2n−j . In addition, in loc. cit., it was shown that an upper bound for c1 remains a degree upper

bound for the Gröbner basis of the initial ideal. We summarize the above discussion in the following

theorem.

Theorem 4.3. Let n ≥ 2 and I ⊂ R be an ideal generated by a set of homogeneous polynomials of

degree at most d. Then, the maximum degree of the polynomials in any reduced Gröbner basis of I
is bounded above by F1(d) ∼ O(1)d2

n−2

where O(1) is meant for fixed n and growing d.
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Based on the above discussion, the construction of Fi(d) for any i is inductive1. In the follow-

ing table, we give an explicit representation of F1(d) for some values of n.

Number of variables F1(d)
n = 1 d
n = 2 2d
n = 3 d2 + 2d

n = 4
1

2
d4 + 2d3 + 2d2 + 2d

n = 5
1

8
d8 + d7 + 3d6 + 5d5 +

85

12
d4 + 6d3 +

35

12
d2 + 2d.

We continue this section by extending Theorem 4.3 to non necessary homogeneous ideals. It is well-

known that by considering a new variable xn+1, we can transform a given finite set of polynomials

into a homogeneous one. In addition, to compute a Gröbner basis of an ideal I ⊂ R, we can arrange

first a new monomial ordering in the extended polynomial ring and the desired Gröbner basis of

I is obtained directly from the Gröbner basis of the homogenized ideal. We shall note that, the

homogenization process does not change the maximum degree of the initial generating set, see [7]

for more details on this subject. Based on this observation, we can state the next theorem.

Theorem 4.4. Let n ≥ 1 and I ⊂ R be an ideal generated by a set of non necessary homogeneous

polynomials of degree at most d. Then, the maximum degree of the polynomials in any reduced

Gröbner basis of I is bounded above by O(1)d2
n−1

where O(1) is meant for fixed n and growing d.

Remark 4.5. It is worth noting that in [18, 14], new dimension and depth depending upper bounds

for the degrees of the elements of reduced Gröbner bases has been exhibited. However, since the

approaches proposed in these papers are different from the original method given in [6], then we

can expect only a depth depending variant of the bound presented in Theorems 4.3 and 4.4

Remark 4.6. Dubé in [6, page 771] claims that

2 + (−1)n−j

[

2

(

d− 1

n− j − 1

)

−
(

an−1

n− j − 1

)

−
(

bn−1

n− j − 1

)]

≤
(

cn−1

n− j − 1

)

However, unfortunately, this inequality is not in general true. For example if n − j − 1 > cn−1

then all the binomial coefficients appeared above are zero and in turn the inequality does not hold.

Moreover, as already mentioned, Dubé in [6, Lemma 8.1] proved that cj ≤ Dj := 2(
d2

2
+ d)2

n−j−1

for 1 ≤ j ≤ n−2. In his proof, he claimed that the sum 1/2−∑n−1
i=j+3 2

i−j/(i− j + 1)! is positive.

However, this holds only for n ≤ 5 and for each n > 5 this sum is negative (it is less than −0.23).

In the next theorem, we derive a correct version of Dubé’s bound.

Theorem 4.7. Let I ⊂ R be an ideal generated by a set of homogeneous polynomials of degree at

most d. Then, the maximum degree of the polynomials in any reduced Gröbner basis of I is bounded

above by (d+ 1)2
n−2

if n > 2. If n = 1, 2, then the upper bound becomes d, 2d, respectively.

Proof. The bounds the corresponding to n = 1, 2, 3 have been already proved above. Now, let us

assume that n > 4. Keeping the above notations, we claim (by induction on j) that cj ≤ Ej :=

(d + 1)2
n−j−1

. For j = n − 2, n − 3, n − 4, we showed, respectively that cn−2 ≤ d2 + 2d ≤
(d + 1)2

n−(n−2)−1

, cn−3 ≤ d4/2 + 2d3 + 2d2 + 2d ≤ (d + 1)2
n−(n−3)−1

and cn−4 ≤ 1

8
d8 + d7 +

3d6 +5d5 +
85

12
d4 +6d3 +

35

12
d2 +2d ≤ (d+1)2

n−(n−4)−1

, proving the claim in these cases. Now,

assume inductively that the claim is true for each i with j < i ≤ n−4. Now, we are willing to prove

1The MAPLE code to calculate F1(d) for any n is available at http://amirhashemi.iut.ac.ir/softwares
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the claim for j. Recall that

cj ≤ −2l(−d+ n− j, n− j) + 2 +
c2j+1

2
− cj+1

2
+
∑n−1

i=j+2 [l(−ai + i− j, i− j + 1) + l(−bi + i− j, i− j + 1)] .

Since d ≥ 1, ai ≥ d and bi ≥ 0 then l(−d + n − j, n − j) = (−1)n−j
(

d−1
n−j

)

, l(−ai + i −
j, i − j + 1) = (−1)i−j+1

(

ai

i−j+1

)

and l(−bi + i − j, i − j + 1) = (−1)i−j+1
(

bi
i−j+1

)

. Thus, by

substituting these relations, we obtain

cj ≤ 2(−1)n−j+1

(

d− 1

n− j

)

+ 2 +

(

cj+1

2

)

+

n−1
∑

i=j+2

(−1)i−j+1

[(

ai
i− j + 1

)

+

(

bi
i− j + 1

)]

.

Now two cases may arise: If 2|n− j + 1 then from an−1 ≥ d we have
(

d−1
n−j

)

≤
(

an−1

n−j

)

and so

cj ≤ 2

(

d− 1

n− j

)

+ 2 +

(

cj+1

2

)

−
(

an−1

n− j

)

−
(

bn−1

n− j

)

+

n−2
∑

i=j+2

(−1)i−j+1

[(

ai
i− j + 1

)

+

(

bi
i− j + 1

)]

≤
(

d− 1

n− j

)

+ 2 +

(

cj+1

2

)

+

n−2
∑

i=j+2
2|i−j+1

[(

ai
i− j + 1

)

+

(

bi
i− j + 1

)]

≤
(

d− 1

n− j

)

+ 2 +

(

cj+1

2

)

+

n−2
∑

i=j+2
2|i−j+1

(

ci
i− j + 1

)

.

Otherwise, if 2 ∤ n− j + 1 then

cj ≤ −2

(

d− 1

n− j

)

+ 2 +

(

cj+1

2

)

+

n−1
∑

i=j+2

(−1)i−j+1

[(

ai
i− j + 1

)

+

(

bi
i− j + 1

)]

≤ 2 +

(

cj+1

2

)

+

n−1
∑

i=j+2
2|i−j+1

[(

ai
i− j + 1

)

+

(

bi
i− j + 1

)]

≤ 2 +

(

cj+1

2

)

+

n−1
∑

i=j+2
2|i−j+1

(

ci
i− j + 1

)

.

To bound cj , we shall need some more inequalities. For each j+3 ≤ i ≤ n− 2, i− j+1 ≤ 2i−j−1

and therefore
(

Ei

i− j + 1

)

≤ Ei−j+1
i

(i− j + 1)!
≤ E2i−j−1

i

(i− j + 1)!
≤ Ej+1

(i− j + 1)!
.

Note that for i = n− 1, these inequalities hold, as well. Indeed, we have

(

2d

n− 1− j + 1

)

≤ (2d)n−j

(n− j)!
≤ ((d+ 1)2)n−j

(n− j)!
≤ Ej+1

(n− j)!
.
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Let us consider again the case 2|n− j + 1. Using these inequalities, we can write

cj ≤ 2 +

(

d− 1

n− j

)

+

(

Ej+1

2

)

+

n−2
∑

i=j+2
2|i−j+1

(

Ei

i− j + 1

)

≤ 2 +
(d− 1)n−j

(n− j)!
+

(

Ej+1

2

)

+
n−2
∑

i=j+2
2|i−j+1

(

Ei

i− j + 1

)

≤ 2 +
(d− 1)n−j

(n− j)!
+

E2
j+1 − Ej+1

2
+

n−2
∑

i=j+2
2|i−j+1

Ej+1

(i− j + 1)!

≤ 2 +
(d− 1)n−j

(n− j)!
+

E2
j+1 − Ej+1

2
+ Ej+1

∞
∑

i=j+2
2|i−j+1

1

(i− j + 1)!

= 2 +
(d− 1)n−j

(n− j)!
+

E2
j+1 − Ej+1

2
+ Ej+1(−

3

2
+ cosh(1))

≤ 2 +
(d− 1)n−j

(n− j)!
− 45

100
Ej+1 + E2

j+1 ≤ E2
j+1.

Indeed, to get the last inequality, we shall show that
45

100
Ej+1 ≥ 2 +

(d− 1)n−j

(n− j)!
. Since n− j ≥ 5

and d ≥ 1 then we can write
45

100
Ej+1 =

45

100
(d + 1)2

n−j−2 ≥ 45

100
[(d − 1)2

n−j−2

+ 22
n−j−2

]. In

addition, from n− j ≥ 5, it follows that (n− j)! ≥ 5! = 120 and 2n−j−2 ≥ n− j. These arguments

imply that
45

100
(d − 1)2

n−j−2 ≥ (d− 1)n−j

(n− j)!
and

45

100
22

n−j−2 ≥ 2, proving the claim. A similar

argument works in the case 2 ∤ n − j + 1. All in all, we conclude that cj ≤ E2
j+1 which ends the

proof. �

Note that the results analogous to those in Theorem 4.4 are obtained if I is not necessary

homogeneous.

Remark 4.8. In the above proof, we removed negative terms from Fj to get an upper bound for cj ,

and this shows that Fj < Ej . Indeed, one observes that LT(Ej) = d2
n−j−1

, however LT(Fj) =

2(d2/2)2
n−j−2

.

Remark 4.9. We shall notice that in general the bound 2(1/2(dn−D + d))2
D−1

due to Mayr and

Ritscher [18] is sharper than the bound (d + 1)2
n−2

presented in Theorem 4.7. For example, if

D = n − 2 then it is easily verified that in general (d + 1)2 > 1/
√
2(d2 + d) and this shows that

Mayr-Ritscher’s bound is sharper than the bound given in Theorem 4.7. However, for the special

case of D = n − 1 it is seen that for n = 3, 4, 5 if we take d > 11 then the bound obtained in

Theorem 4.7 is sharper than their bound.

5. Degree upper bounds for Pommaret bases

In this section, show that the degree bounds that we discussed in Section 4 hold for Pommaret bases

as well. Here our attention is focused on the SPLIT algorithm and on the conditions under which

this algorithm returns a Janet basis. More precisely, if F ⊂ R is a finite set of monomials and
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(P,Q) =SPLIT(1, X, F ), we look for the conditions so that P is a Janet basis for the monomial

ideal 〈F 〉.
Below, when we refer to the SPLIT algorithm, we shall address a variant of this algorithm

as follows: In the lines 9 and 10, we select xj so that between all maximal subsets s ⊂ u with

F ∩ K[s] = ∅ and xj ∈ u \ s, j has the minimum index.

Corollary 5.1. Let the finite set U ⊂ R be a monomial Janet basis for the monomial ideal I. Then

set E = {C(h, u) | h ∈ U, u = MJ (h, U)} is a cone decomposition for I.

Proof. Since U is a Janet basis for I, then from definition we have I =
∑

C(h,u)∈E C(h, u).

Now assume that there exists v ∈ I such that v ∈ C(h1, u1) ∩ C(h2, u2) with C(hi, ui) ∈ E.

Then according to Definition 2.1, either h1 ∈ C(h2, u2) or h2 ∈ C(h1, u1). It follows that either

C(h1, u1) ⊂ C(h2, u2) or C(h2, u2) ⊂ C(h1, u1) which is impossible for a monomial Janet basis,

and this implies that I =
⊕

C(h,u)∈E C(h, u). �

We describe below a variant of the SPLIT algorithm which returns a pair of decompositions so

that one of the decompositions is a Janet decomposition for its input ideal.

Algorithm 2 JANETDECOMPOSITION

1: Input: h ∈ M, u ⊆ X is a set of variables and F a minimal monomial basis for I : h
2: Output: A pair of cone decompositions (P,Q) so that C(h, u) = P ⊕Q, P ⊆ I and Q ⊆ NI

3: if 1 ∈ F then

4: return({C(h, u)}, ∅)
5: end if

6: if F ∩ K[u] = ∅ then

7: return(∅, {C(h, u)})
8: end if

9: Choose xj ∈ u with j := min{i | ∃m ∈ F : indet(m) ⊆ u and xi ∈ indet(m)}.

10: (P0, Q0) :=JANETDECOMPOSITION(h, u \ {xj}, F )
11: F ′ := a minimal monomial basis for 〈F 〉 : xj

12: (P1, Q1) :=JANETDECOMPOSITION(xjh, u, F
′)

13: return(P = P0 ∪ P1, Q = Q0 ∪Q1)

Proposition 5.2. The JANETDECOMPOSITION algorithm terminates in finitely many steps and is

correct.

Proof. The termination of the algorithm is guaranteed by the lines 10 and 12. Indeed, since in the

line 10, we consider u \ {xj} then by each recursive call to the algorithm in this line, we reduce by

one the number of the variables. On the other hand, since the chosen variable xj appears in F , then

〈F 〉 ⊂ 〈F ′〉, and from nœtherianity of R we conclude that the total number of recursive call to the

algorithm should be finite. The correctness proof is similar to the proof of [6, Lemma 4.4]. �

Remark 5.3. In contrary to the SPLIT algorithm, to choose xj , we do not consider the maximal

independent set s ⊂ u, and this yields that Q is not generally a deg(h)-standard cone decomposition.

Theorem 5.4. Let F ⊂ M be a minimal monomial basis for I. If (P,Q) = is the output of

JANETDECOMPOSITION(1, X, F ) then P is a Janet basis for I.

Proof. We must show that U = {h | C(h, u) ∈ P} is a Janet basis for I. Since P generates I,

then it is enough to show that for any cone C(h, u) ∈ P , MJ (h, U) = u. Assume that, for some

h = xα1
1 · · ·xαn

n , xj ∈ MJ (h, U) and it does not belong to u. Let m = xα1
1 · · ·xαj

j . This shows

that at one stage, xj has been selected and two branches JANETDECOMPOSITION(m,u′ \ {xj}, F )
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and JANETDECOMPOSITION(xjm,u′, F ′) are produced. Now, let us consider the second branch.

Since in this branch, F ′ is a monomial basis for I : xjm, then at the end by multiplying xim by

some variables, a cone is added into P . It should be noted that, due the selection strategy in the line

10, we are sure that xjm is multiplied by some variables with indices higher than j. Therefore, this

implies that xj is not Janet multiplicative for h, leading to a contradiction. Conversely, suppose that

xj ∈ u. We must show that xj ∈ MJ (h, U). Using the above notations and by reductio ad absurdum,

suppose that there exists a monomial f ∈ U so that f ∈ [deg1(h), . . . , degj−1(h)] and degj(f) >

degj(h). We know that xα1
1 · · ·xαj−1

j−1 ∈ [deg1(h), . . . , degj−1(h)]. Then, due to the structure of

the algorithm, at one step of the algorithm, we reach the branch JANETDECOMPOSITION(m,u′, F ′)
with 〈F ′〉 = I : m and u ⊂ u′. From xj /∈ MJ (h, U), we deduce that F ′ contains a monomial

involving xj and in consequence in the construction of C(h, u), xj is excluded from u, giving rise

to a contradiction. �

Example 5.5. JANETDECOMPOSITION(1, {x1, x2}, {x2
1x2, x1x

2
2, x

3
2}) returns (P,Q) with

P =
{

C(x3
2, {x2}), C(x1x

2
2, {x2}), C(x2

1x2, {x1, x2})
}

Q =
{

C(1, ∅), C(x2, ∅), C(x1, ∅), C(x2
2, ∅), C(x1x2, ∅), C(x2

1, {x1})
}

.

Lemma 5.6. If 〈F 〉 is quasi stable and F is a minimal monomial basis for this ideal, then both

SPLIT(1, X, F ) and JANETDECOMPOSITION(1, X, F ) output the same result.

Proof. Since I = 〈F 〉 is quasi stable then F consists of pure powers of the variables {x1, . . . , xn−D}
where D = dim(I), see [23, Proposition 4.4]. Thus, at any intermediate stage of both the algorithms,

when we encounter the triple (h, u, F ′), two cases may happen: If {x1, . . . , xn−D} ∩ u 6= ∅ then

both the algorithms must choose the same variable. Otherwise, {x1, . . . , xn−D} ∩ u = ∅. We may

assume that u 6= ∅, F ′ ∩ K[u] 6= ∅ and xt ∈ u has the minimum index. We claim that a pure power

of xt belongs to F ′, and therefore both the algorithms will select xt. To prove the claim, note that

from F ′ ∩ K[u] 6= ∅, we conclude that there exists a monomial m in this intersection. In addition,

we know that 〈F ′〉 = I : h and in turn, mh ∈ I. Since m ∈ K[xn−D+1, . . . , xn] and mh ∈ I
then from quasi stability of I, it follows that xα

t h ∈ I for some integer α. This shows that xα
t ∈ F ′

which ends the proof. �

According to [23, Proposition 4.4], we know that every quasi stable monomial ideal has a

finite Pommaret basis. Then, it follows immediately from the above lemma that both the algorithms

return a finite Janet basis for its input ideal. In the next proposition, we show that this basis is also a

Pommaret basis.

Proposition 5.7. Let I = 〈F 〉 be a quasi stable monomial ideal. Furthermore, assume that (P,Q) =
JANETDECOMPOSITION(1, X, F ). Then, P forms a finite Pommaret basis for I.

Proof. We shall show that for each C(h, u) ∈ P we have u = {xt | t ≥ cls(h)}. From the proof of

Lemma 5.6, one observes that at each step of the algorithm, when we consider the triple (h, u, F ′)
then xj ∈ u with the minimum index, is chosen and this implies that u is of the form {xℓ, . . . , xn}.

Therefore, it remains only to prove that ℓ = cls(h). Assume that h = xα1
1 · · ·xαcls(u)

cls(u) . Since by the

construction of the JANETDECOMPOSITION algorithm, each multiplied variable in h, comes from

the line 12 of the algorithm then it is clear to see that xcls(u) appears in u. Moreover, since at this

stage, xcls(u) is selected, then by the selection strategy in the SPLIT algorithm (see Lemma 5.6),

cls(u) should be the minimum index in u, and this completes the proof. �

Corollary 5.8. If 〈F 〉 is quasi stable and (P,Q) =SPLIT(1, X, F ). Then, P represents the minimal

Janet basis for I. The same holds for the JANETDECOMPOSITION algorithm.
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Proof. From Proposition 5.7, we know that set P is a Pommaret basis and a Janet basis. Then,

the assertion follows from the fact that any finite Pormmaret basis is a minimal Janet basis, [8,

Corollary 3]. �

Remark 5.9. Let I = 〈F 〉 be a monomial ideal. In [12, Theorem 5.7], it was shown that I is

quasi stable ideal iff NI has a Rees decomposition, see loc. cit. for more information on Rees

decomposition. Now, if (P,Q)=SPLIT(1, X, F ) then, from the proof of Lemma 5.6, Q is a Rees

decomposition for NI .

Below, we state a generalization of [6, Lemma 7.2]. The next lemma allows us to deduce that

if b0, . . . , bn+1 are the Macaulay constants for NI then any upper bound for b0 remains an upper

bound for any basis constructed by the Dubé’s approach. It should be noticed that in the previous

section, we found an upper bound for c1 and by [6, page 773], any bound for c1 is a bound for b0.

Lemma 5.10. Let F be a finite set of monomials and (P,Q) =SPLIT(1, X, F ). Then for every

C(f, u) ∈ P , Q contains a cone C(h, v) with deg(f) = deg(h)− 1.

Proof. Let I = 〈F 〉 ⊂ R. Since I 6= R, then deg(f) > 1. From the membership C(f, u) ∈ P ,

we conclude that SPLIT(f, u, F ′) = ({C(f, u)}, ∅) where I : f = 〈F ′〉 and 1 ∈ F ′. Therefore,

f = xjh for some monomial h and some variable xj . At the same time that we construct the

branch SPLIT(f, u, F ′), we produce the branch SPLIT(h, u \ {xj}, F ′′) for some set F ′′. Thus, we

can see easily that after some recursive calls of the algorithm, we arrive at SPLIT(h, u′, F ′′) with

u′ ⊂ u \ {xj} and in turn the cone C(h, u′) is added into Q, thereby ending the proof. �

As a consequence of Theorem 4.7, Proposition 5.7 and Lemma 5.10, we state the main result

of this section.

Theorem 5.11. Let I ⊂ R be an ideal generated by a set of homogeneous polynomials of degree

at most d. Assume that I is in quasi stable position. Then, the maximum degree of the polynomials

in the Pommaret basis of I is bounded above by (d + 1)2
n−2

if n > 2. If n = 1, 2, then the upper

bound becomes d, 2d, respectively.

Proof. Let (P,Q) =SPLIT(1, X,LM(F )) where F is a Gröbner basis of I. Since I is in quasi

stable position then LM(I) is quasi stable. Then, from Lemma 5.6 and Proposition 5.7, it follows

that P is a Pommaret basis for LM(I). In addition, the elements of P form the leading monomials

of the elements of the Pommaret basis of I. Therefore, from Lemma 5.10, we conclude that an upper

bound for the degrees of the elements of P remains an upper bound for the maximum degree of the

elements of the Pommaret basis of I. Finally, the assertion is proved by Theorem 4.7. �

Remark 5.12. From [23, Theorem 9.2], it follows that the maximum degree of the elements of the

Pommaret basis of an ideal in quasi stable position is the Castelnuovo-Mumford regularity. There-

fore, the bound presented in Theorem 5.11 remains an upper bound for the Castelnuovo-Mumford

regularity of I. On the other hand, Bayer and Stillman [2, Corollary 2.5] proved that in generic

position the degree of the reduced Gröbner basis of a homogeneous ideal w.r.t. ≺ is bounded by the

Castelnuovo-Mumford regularity of the ideal. Finally, in generic position, the Pommaret basis coin-

cides with the reduced Gröbner basis [17, Theorem 2.15]. All these together gives an alternative

proof to Theorem 5.11.

6. J-stable ideals

From the proof of [10, Proposition 4.5], we conclude that n(d+ 1)2
n−2

is a degree upper bound for

Janet bases of homogeneous ideals. In this section, we introduce a new generic position in which the

bound (d+ 1)2
n−2

presented in Theorem 4.7 remains a degree upper bound for Janet bases.
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Definition 6.1. A monomial ideal I ⊂ R is J(anet)-stable if for any monomial m ∈ I and all

positive integers i, j, s with 1 ≤ j < i < n, if xs
i | m, there exists an integer t ≥ 0 such that

xt
j(m/xs

i ) ∈ I. An ideal I ⊂ R is in J-stable position if LM(I) w.r.t. ≺ is J-stable.

We shall emphasize that the difference between this definition and Definition 2.9 is that here

we consider i < n instead of i ≤ n. It is clear that any ideal in quasi stable position is in J-stable

position, however, the converse does not hold in general, see Example 6.6.

Theorem 6.2. Let I = 〈F 〉 ⊂ R be J-stable where F is a finite set of monomials. Furthermore, let

(P,Q) =SPLIT(1, X, F ). Then P is a Janet basis for I.

Proof. We first show that in the construction of a cone C(h, u) ∈ P , the variables {x1, . . . , xn−1}
are selected in the order x1, . . . , xn−1. Note that in this claim, we ignore the last variable. Assume

that in the course of the construction of this cone the variable xt has been selected. Therefore, there

exists a maximal independent set s ⊂ u′ such that F ′ ∩ K[s] = ∅ and xt ∈ u′ \ s. Note that

u ⊂ u′ and 〈F 〉 ⊂ 〈F ′〉. Now, assume in contrary that later on, and in the course of the construction

of C(h, u) ∈ P , the variable xℓ with ℓ < t is selected. Let u′ \ s = {xt, xt1 , . . . , xtk} where

t < t1 < · · · < tk. We claim that indet(m) ∩ {xt1 , . . . , xtk} 6= ∅ for any m ∈ F ′. For any m ∈ F ′,

two cases may happen: If xt ∤ m then indet(m) ∩ {xt1 , . . . , xtk} 6= ∅. Otherwise, xt|m. Since I is

J-stable and t > l then there exists an integer α ≥ 0 such that xα
l m/xβ

t ∈ 〈F 〉 where β = degt(m).
From these arguments, we conclude that indet(m) ∩ {xt1 , . . . , xtk} 6= ∅ and this proves the claim.

This implies that F ′ ∩ K[s ∪ {xt}] = ∅, leading to a contradiction with the maximality of s. To

complete the proof, we shall show that xn ∈ u. From the structure of the algorithm, u 6= ∅. Assume

in contrary that xn /∈ u. Since we start with X , then at one stage of the algorithm, xn would be

selected. On the other hand, by the selection strategy, a variable with the minimum index is chosen.

Therefore, u′ \s = {xn} for some u′ and s. In this case, we make two calls SPLIT(h′, u′ \{xn}, F ′)
and SPLIT(xnh

′, u′, F ′). The first call adds an element into Q and we do not consider it. In the

second call, xn ∈ u′ and therefore xn remains in u. In turn we do not need to consider xn in our

discussion. Thus, the proof is ended by using an argument similar to the proof of Theorem 5.4. �

Example 6.3. Let I = 〈F 〉 ⊂ R where F = {x2
1, x

2
2, . . . , x

2
n−2, xn−1xn}. Then, it is easy to

see that I is J-stable. However, since xα
n−1 /∈ I for any α ≥ 0, then I is not quasi stable. Let

(P,Q) =SPLIT(1, X, F ). Then, we have

P =
{

C(vx2
t , {xt, . . . , xn}) | 1 ≤ t ≤ n− 2, v = xα1

1 · · ·xαt−1

t−1 , 0 ≤ αi ≤ 1
}

,
⋃

{

C(vxn−1xn, {xn−1, xn}) | v = xα1
1 · · ·xαn−2

n−2 , 0 ≤ αi ≤ 1
}

.

Q =
{

C(v, {xn}) | v = xα1
1 · · ·xαn−2

n−2 , 0 ≤ αi ≤ 1
}

⋃ {C(vxn−1, {xn−1}) | v = xα1
1 · · ·xαn−2

n−2 , 0 ≤ αi ≤ 1
}

.

From Theorem 6.2, it follows that P is a Janet basis for I.

Based on Theorems 4.7 and 6.2 and Lemma 5.10, we present the main result of this section.

Theorem 6.4. Let I ⊂ R be an ideal generated by a set of homogeneous polynomials of degree

at most d. Assume that I is in J-stable position. Then, the maximum degree of the polynomials in

the Janet basis of I is bounded above by (d + 1)2
n−2

if n > 2. If n = 1, 2, then the upper bound

becomes d, 2d, respectively.

Proof. Assume that (P,Q) =SPLIT(1, X,LM(F )) where F is a Gröbner basis of I. Since I is in

J-stable position then LM(I) is J-stable and from Theorem 6.2, it follows that P is a Janet basis for

LM(I). Further, the elements of P form the leading monomials of the elements of the Janet basis

of I. Thus, from Lemma 5.10, we conclude that an upper bound for the degrees of the elements of

P remains an upper bound for the maximum degree of the elements of the Janet basis of I. So, the

assertion is proved by Theorem 4.7.
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�

Now the main questions that we address at the end of this section are: How can we test whether

or not a given monomial ideal is J-stable? If a given ideal is not in such a position, how can we

transform it into this position? The next algorithm answers the first question.

Algorithm 3 JSTABLETEST

1: Input: A finite set F ⊂ R of monomials

2: Output: True if 〈F 〉 is J-stable, and false otherwise. In the case of false, two related variables

are returned too.

3: q := maximum degree of the elements of F
4: for u ∈ F do

5: if cls(u) = n and xq
k−1u/x

degk(u)
k /∈ 〈F 〉 where k is the class of u|xn=1 then

6: return(false, xk, xk−1)

7: else if 1 < cls(u) = k < n and xq
k−1u/x

degk(u)
k /∈ 〈F 〉 then

8: return(false, xk, xk−1)
9: end if

10: end for

11: return(true)

Theorem 6.5. The JSTABLETEST algorithm terminates in finitely many steps and is correct.

Proof. The finite termination of the algorithm is trivial. Let us deal with its correctness. If I = 〈F 〉
is J-stable then it is clear the algorithm returns true. Conversely, assume that the algorithm returns

true. We must show that if xi | u then xq
ju/x

degi(u)
i ∈ 〈F 〉 when j < i < n. Since the output is true,

we conclude that xq
k−1u/x

degk(u)
k ∈ I where k < n is the largest index of the variables dividing u.

Using an induction we can show that xq
ju/(x

αj+1

j+1 · · ·xαn

k ) ∈ I . This shows the desired claim and

so I is J-stable. �

By applying this algorithm and using the method presented in [23] (to find deterministically a

linear change of variables to transform an ideal into quasi stable position), we are able to present a

deterministic and effective approach to transform a given ideal into J-stable. We have implemented

this algorithm in Maple, and in the next example we apply this algorithm to a simple ideal.

Example 6.6. Let I1 = 〈x1x
2
3, x

2
2〉 ⊂ K[x1, x2, x3] and x3 ≺drl x2 ≺drl x1. Then, one sees

readily that JSTABLETEST(F ) returns (false, x2, x1) where F = {x1x
2
3, x

2
2}. By applying the

linear change [x2 = x2+x1] on I1, we get the ideal I2 = 〈x1x
2
3, (x2+x1)

2〉. Computing the reduced

Gröbner basis G = {x2
1 +2x1x2 + x2

2, x1x
2
3, x

2
2x

2
3} for I2, we obtain LM(G) = {x2

1, x1x
2
3, x

2
2x

2
3}.

Since JSTABLETEST(LM(G)) outputs true then I2 is J-stable.

7. Ideals in prime position

In this section, we introduce a new notion of genericity and show that the degree of the minimal

Janet basis of an ideal in this position is bounded above by the degree bounds that we presented in

Section 4. Below, we define inductively the notion of prime position.

Definition 7.1. Let I ⊂ R be a monomial ideal and F be its minimal monomial generating set. If

either I = {0} or I = R then I is in prime position. Otherwise, I is called in prime position if the

following conditions hold:
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1. The variable xj with the minimum index in indet(F ) appears in one of the minimal prime

ideals of I having dimension dim(I).
2. both the ideals I : xj and I|xj=0 are in prime position.

A polynomial ideal I ⊂ R is called in prime position if LM(I) w.r.t. ≺ is in this position.

Example 7.2. We see readily that the ideal I = 〈x1x2, x1x3〉 = 〈x1〉 ∩ 〈x2, x3〉 ⊂ K[x1, x2, x3]
is in prime position. However, the ideal I = 〈x2

1, x2x3, x
2
3〉 is not in prime position, because ideal

I|x1=0 = 〈x2x3, x
2
3〉 has only the minimal prime P = 〈x3〉 which does not contain x2.

Example 7.3. The ideal I = 〈x2
1, x1x2 · · ·xn〉 ⊂ R is in prime position, however, it is not J-

stable. Indeed, we observe that xα
2 x1x2 · · ·xn/x3 /∈ I for all α ∈ N. On the other hand, the ideal

I = 〈x2
1xn, x

2
2xn, . . . , x

2
n−2xn, xn−1xn〉 ⊂ R is J-stable, however it is not in prime position. We

note that the minimal prime of I with dimension n− 1 is 〈xn〉 which does not contain x1.

Lemma 7.4. Every ideal in quasi stable position is in prime position.

Proof. Assume that I is a monomial ideal in quasi stable position. Then, from [23, Proposition 4.4],

every minimal prime of I is of the form 〈x1, . . . , xi〉 for some integer i ≥ n− dim(I). This shows

that x1 appears in any minimal prime ideal of I with the dimension dim(I). On the other hand, one

observes that I : x1 and I|x1=0 remain quasi stable and using an induction, we can conclude the

assertion. �

Example 7.2 shows that there exists an ideal in prime position which is not quasi stable. Further,

from this lemma, we infer that, given an ideal, any generic linear change of the variables transforms

it into prime position. To prove the main result of this section, we shall need the next lemma.

Lemma 7.5. Suppose that I = 〈F 〉 and F ⊂ M. Then for any maximal independent set s ⊂ X
with F ∩ K[s] = ∅, P = 〈X \ s〉 is a minimal prime of I with dim(I) = dim(P), and vice versa.

Proof. First we shall note that any prime of I is of the form 〈xi1 , . . . , xik〉. Now, let s be a maximal

independent set. Then, indet(f) ∩ (X \ s) 6= ∅ for each f ∈ F . So I is contained in P and P is

a prime ideal. Now, according to the maximality of X \ s, P is a minimal prime of I. Clearly the

converse implication holds. �

Note that in the line 11 of the SPLIT algorithm and in the line 10 of the JANETDECOMPOSI-

TION algorithm, we can replace F by F |xj=0. We establish now the main result of this section

Theorem 7.6. Let I ⊂ R be an ideal generated by a set of homogeneous polynomials of degree

at most d. Assume that I is in prime position. Then, the maximum degree of the polynomials in the

Janet basis of I is bounded above by (d+1)2
n−2

if n > 2. If n = 1, 2, then the upper bound becomes

d, 2d, respectively.

Proof. From Lemma 7.5, it follows that the behaviour of both the algorithms SPLIT and JANET-

DECOMPOSITION is similar. Considering this along with Theorems 4.7 and 5.4, the assertion is

proved. �

We continue this section by giving an example (which is a generalization of an example from

[1] to an arbitrary number of variables) to illustrate that the maximum degree of a Janet basis may

be higher than the Castelnuovo-Mumford regularity of the ideal it generates.

Example 7.7. Let d be a positive integer. Let us define the monomial ideal I(d) = 〈F 〉 ⊂ R where

F = B1 ∪B2 with

B1 =
{

xα
n−1x

β
n | α ≥ 0, β ≥ 0, α+ β = d

}

,

B2 =
{

xα1
1 · · ·xαn

n | αn > 0, α1 + · · ·+ αn−2 6= 0, α1 + · · ·+ αn = d
}

.
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This ideal is a lex segement ideal which is interesting in combinatorial commutative algebra, see

[19, Section 2.4] for more details. The set H(d) is the minimal Janet basis for I(d) where H(d) =
B1 ∪B2 ∪ L1 ∪ L2 with

L1 =
{

xα1
1 · · ·xαn−2

n−2 xd
n−1 | 1 ≤ αi ≤ d− 1

}

,

L2 =
{

vxλ
n−1 | v ∈ B2, λ > 0, degn−1(v) + λ < d

}

.

The maximum degree of this basis is (n−1)d−(n−2). On the other hand, considering the ordering

x1 ≺ · · · ≺ xn, this ideal is quasi stable and F is the minimal Pommaret and Janet basis for I(d).

This shows that the Castelnuovo-Mumford regularity of I(d) is d, see [23, Theorem 9.2] (it should

be noticed that the Castelnuovo-Mumford regularity of an ideal remains stable after any change of

the variables). Let (P,Q) =SPLIT(1, X, F ) where in the line 10 of the SPLIT algorithm, we select

xj with the maximum index j. Then Q is a 0-standard cone decomposition for NI(d) . Let us consider

Q as the union Q = Q1 ∪Q2 where

Q1 =
{

C(xt
n−1, {x1, . . . , xn−2}) | 0 ≤ t ≤ d− 1

}

,

Q2 =
{

C(u, ∅) | xn|u, u /∈ I(d)
}

.

Since Q1 is a 0-exact cone decomposition, then Q is also a 0-exact cone decomposition. Due to

the definition, we have b0 = 1 + max{deg(h) | ∃u ⊂ X, C(h, u) ∈ Q} and in consequence

b0 = d. Summarizing, for the ideal I(d), the maximum degree of the minimal Janet basis may

become arbitrarily larger than its Castelnuovo-Mumford regularity. For instance, if n = d = 3 we

have:

I(3) =
{

x2
1x3, x1x

2
3, x1x2x3, x

2
2x3, x2x

2
3, x

3
2, x

3
3

}

,

H(3) =
{

x3
3, x

2
1x3, x2x

2
3, x

2
2x3, x

2
3x1, x1x3x2, x

3
2, x

3
2x1, x3x1x

2
2, x

3
2x

2
1, x3x

2
1x2, x3x

2
2x

2
1

}

,

P =
{

C(x3
2, {x1, x2}), C(x2

1x3, {x1}), C(x1x2x3, {x1}), C(x2
2x3, {x1, x2})

}

⋃
{

C(x1x
2
3{x1}), C(x2x

2
3, {x1, x2}), C(x3

3, {x1, x2, x3})
}

,

Q =
{

C(1, {x1}), C(x2, {x1}), C(x2
2, {x1}), C(x3, ∅), C(x1x3, ∅), C(x2x3, ∅), C(x2

3, ∅)
}

.

Furthermore, it should be remarked that for this example the difference between the degree of the

Janet basis and the Castelnuovo-Mumford regularity is O(nd) and thus gets larger for both increas-

ing d and increasing n.

We conclude the paper by studying how we can test whether or not a given monomial ideal is

in prime position. In addition, if the ideal is not in such a position, how we can transform it into this

position. Let us first deal with the first problem. We shall note that in the next algorithm, we shall

need the computation of minimal primes of a monomial ideal which can be done relatively simply

via Alexander duality, see [19, Chapter 5].
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Algorithm 4 PRIMEPOSITIONTEST

1: Input: F ⊂ M
2: Output: true if 〈F 〉 is in prime position and false, otherwise

3: if 1 ∈ F or F = {0} then

4: return(true)
5: end if

6: j1 = min{i | xi ∈ indet(F )}
7: j2 := min{i | xi ∈ P,P is a prime of 〈F 〉 so that dim(〈F 〉) = dim(P)}
8: if xj1 6= xj2 then

9: return(false, xj2 , xj1)
10: end if

11: A :=TEST(F |xj1
=0)

12: B :=TEST(F ′) where F ′ is the minimal generating set for 〈F 〉 : xj1

13: if A = true and B = true then

14: return(true)
15: else if A 6= true and B = true then

16: return(A)
17: else if A = true and B 6= true then

18: return(B)
19: else

20: A := (false, xj20 , xj10)
21: B := (false, xj21 , xj11)
22: if j10 < j11 then

23: return(A)
24: else

25: return(B)
26: end if

27: end if

Algorithm 5 PRIMEPOSITION

1: Input: A finite set F ⊂ R of homogeneous polynomials

2: Output: A linear change Φ so that 〈Φ(F )〉 is in prime position

3: Φ :=the identity linear change

4: G :=GRÖBNERBASIS(F,≺)
5: A :=PRIMEPOSITIONTEST(LM(G))
6: while A 6= true do

7: φ := A[2] 7→ A[2] + cA[3] where c ∈ K is a random number

8: Temp :=GRÖBNERBASIS(Φ ◦ φ(G),≺)
9: B :=PRIMEPOSITIONTEST(LM(Temp))

10: if B 6= A then

11: Φ := Φ ◦ φ
12: A := B
13: end if

14: end while

15: return(Φ)

To prove the termination of the PRIMEPOSITION algorithm, we shall need the next lemma.
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Lemma 7.8. If PRIMEPOSITIONTEST(F ) returns (false, xj2 , xj1), then u ∈ F exists with β =

degj2(u) such that β 6= 0 and for every α ≥ 0, xα
j1
u/xβ

j2
/∈ 〈F 〉.

Proof. According to the structure of the PRIMEPOSITIONTEST algorithm, we have xj1 6= xj2 where

j1 := min{i | xi ∈ indet(F )} and j2 := min{i | xi ∈ P where P is a prime of 〈F 〉, dim(〈F 〉) =
dim(P)}. Assume that P is a prime of 〈F 〉 so that P = 〈xj2 , xj3 , . . . , xjt〉 and j2 < j3 < · · · < jt.
Assume in contrary that for every u ∈ F that xj2 |u with β = degj2(u), there is α ≥ 0 with

xα
j1
u/xβ

j2
∈ 〈F 〉. We claim that the prime ideal P ′ = 〈xj3 , . . . , xjt〉 contains I, leading to a contra-

diction. For every monomial m ∈ F , if xj2 ∤ m, indet(v)∩{xj3 , . . . , xjt} 6= ∅ and we are done. Oth-

erwise, assume that for a monomial m ∈ F we have xj2 |m and λ = degj2(m). Since xj1 ∈ indet(F )

then an integer α ≥ 0 exists such that xα
j1
m/xλ

j2
∈ 〈F 〉 then indet(xα

j1
m/xλ

j2
)∩{xj3 , . . . , xjt} 6= ∅.

It follows that indet(m)∩ {xj3 , . . . , xjt} 6= ∅ and this shows that P ′ includes a minimal prime ideal

of I. �

Theorem 7.9. The PRIMEPOSITION algorithm terminates in finitely many steps and is correct.

Proof. Lemma 7.8 shows that if PRIMEPOSITIONTEST(F ) returns (false, xj2 , xj1) then we find

an obstruction to quasi stability of the ideal generated by F . On the other hand, the third author in

[23] described a deterministic to find an elementary linear change of variables to find and solve an

obstruction to quasi stability of the givn ideal. Thus the construction of the linear change to transform

an ideal into the prime position is partially similar to the transformation which is needed for the quasi

stability. This shows both the correctness and finite termination of the algorithm. �

Remark 7.10. If in the PRIMEPOSITION algorithm we choose c = 1, then the algorithm becomes

deterministic, see [23, 13]. Note that in the case that the characteristic of K is positive, then by [13,

Section 6] the algorithm terminates as well, and returns the correct output.

Example 7.11. We illustrate the steps of the algorithm by an example. Let I1 = 〈x1x
2
2, x

3
2, x

3
3〉 ⊂

K[x1, x2, x3] and x3 ≺drl x2 ≺drl x1. Let B1 = {x1x
2
2, x

3
2, x

3
3}. Then PRIMEPOSITIONTEST(B1)

returns (false, x2, x1). We perform the linear change [x2 = x2 + x1]. By applying this change on

I1, we get the ideal I2 = 〈x1(x2 + x1)
2, (x2 + x1)

3, x3
3〉. Computing the reduced Gröbner basis

B2 = {x3
3, x

2
1x2 + 2x1x

2
2 + x3

2, x
3
1 − 3x1x

2
2 − 2x3

2} for I2, we obtain LM(B2) = {x3
1, x

2
1x2, x

3
3}.

Then PRIMEPOSITIONTEST(LM(B2)) = true and in turn I2 is in prime position.

We end this section by comparing the performance of our proposed algorithms to transform

a given ideal into J-stable and prime positions. We have implemented both these algorithms in

MAPLE 182. In the following tables, we compare only the number of the performed elementary

linear changes for some well-known examples from computer algebra literature3. All computations

were done over the field of the rational numbers using the degree reverse lexicographical ordering.

Name PRIMEPOSITION JSTABLE

Liu 1 6

Bermejo and Gimenez 0 0

Weispfenning94 3 2

Sturmfels and Eisenbud 13 21

Lichtblau 1 0

Green 2 1

Eco7 3 5

Eco8 3 6

Name PRIMEPOSITION JSTABLE

Noon 0 6

Gerdt2 1 1

Cyclic 5 3 3

Cyclic 6 5 6

Seiler 1 1

Vermeer 5 4

Katsura5 0 0

Katsura6 0 0

As a simple observation, one sees that the PRIMEPOSITION algorithm needs less transformations

than the JSTABLE algorithm. Finally, we shall remark that the 0 entry in the PRIMEPOSITION

column indicates that the corresponding ideal is already in this position. The same holds for the

JSTABLE column.

2The MAPLE code of our implementations are available at http://amirhashemi.iut.ac.ir/softwares
3For further details see the SymbolicData Project (http://www.SymbolicData.org)
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[20] MÖLLER, H., AND MORA, F. Upper and lower bounds for the degree of Gröbner bases. EUROSAM 84,
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