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Abstract

In this paper, we develop and compare three different approaches for computing Janet
bases for monomial ideals. Each of these methods is straightforwardly extended to
compute Janet-like bases as well. The first approach is a recursive method based on
the structural properties of Janet bases, originally introduced by Janet in 1920. Addi-
tionally, we investigate the connection between Janet(-like) bases and staggered linear
bases, which were introduced by Gebauer and Möller in 1986, leading to novel al-
gorithms for the Janet(-like) completion process. As the third method, we present an
iterative data structure approach for computing minimal Janet(-like) bases, utilizing
the concept of Janet trees introduced by Gerdt et al. in 2001. Finally, we demon-
strate that the minimal Janet basis is inherently encoded within the minimal Janet-like
basis, enabling a more efficient computation of the minimal Janet basis. We analyze
the arithmetic complexity of these methods and provide experimental benchmarks that
illustrate their effectiveness in practical applications.

Keywords: Polynomial ideals, Gröbner bases, involutive bases, Janet bases, Janet-like
bases, completion algorithms, staggered linear bases
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1. Introduction

Gröbner bases are a fundamental concept in computational commutative algebra
and algebraic geometry, and their efficient determination has been an important topic
for a long time. Involutive bases are a special kind of Gröbner bases with additional
combinatorial properties. The basic ideas underlying them stem from Janet’s works on
general systems of partial differential equations (Janet, 1920, 1929). The first rigorous
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definition of involutive bases concerned what is nowadays called a Pommaret basis and
was given by Zharkov and Blinkov (1996); the definition of arbitrary involutive bases
and a general algorithm for their construction is due to Gerdt and Blinkov (1998). A
more efficient algorithm allowing for the construction of minimal involutive bases was
presented in (Gerdt and Blinkov, 1998). For a comprehensive study and for applica-
tions of the theory of involutive bases to commutative algebra and to partial differential
equations, we refer to (Seiler, 2010).

Using ideas of Janet, Gerdt (2005) introduced an efficient algorithm for construct-
ing involutive bases via a completion process in which the products of the current basis
elements by non-multiplicative variables are reduced with respect to the basis. This
process is guaranteed to terminate in finitely many steps for any division satisfying
certain technical assumptions. Furthermore, Gerdt and his colleagues have demon-
strated that this approach can also serve as an effective tool for the computation of
Gröbner bases; see (Blinkov et al., 2003) for an efficient implementation and analy-
sis of this approach. In particular, Gerdt et al. (2001) presented an effective approach
to Janet completion that utilizes Janet trees as data structures. However, for a given
polynomial ideal, the Janet basis may be much larger than the corresponding reduced
Gröbner basis (toric ideals are a prototypical example). To address this issue, Gerdt
and Blinkov (2005) introduced the notion of Janet-like bases; a generalization of Janet
bases in which the completion process takes into account non-multiplicative powers
instead of non-multiplicative variables in the completion process. As a result, any
method for computing Janet bases can be extended into an algorithm for computing
Janet-like bases. Furthermore, every Janet basis includes a Janet-like basis for the ideal
it generates.

Another key aspect of this paper is the concept of staggered linear bases. This type
of basis is a linear basis of a polynomial ideal which includes a Gröbner basis (Gebauer
and Möller, 1986). The first correct approach for computing staggered linear bases
using intermediate syzygies was given in (Möller et al., 1992). A simple and efficient
algorithm to compute these bases was given recently in (Hashemi and Möller, 2023).

In this work, we develop, analyze, and compare three types of algorithms for com-
puting Janet and Janet-like bases for monomial ideals. First, we employ recursive
structures for Janet bases, as outlined in (Hashemi et al., 2023). Next, we propose
another iterative algorithm based on the observation that Janet bases constitute a spe-
cialized class of staggered linear bases. Finally, inspired by the Janet tree structure
introduced in (Gerdt et al., 2001) and its variant presented in (Hashemi et al., 2025),
we develop a new iterative algorithm for computing Janet bases. We also discuss how
these algorithms can be extended to construct Janet-like bases. We establish the arith-
metic complexities of our algorithms and present experimental results comparing their
performance. Additionally, we provide a comparison with the CoCoALib implementa-
tion of Janet bases by Albert et al. (2015).

The structure of the paper is as follows. In the next section, we give basic nota-
tions and definitions that are used throughout the paper. In Sections 3 and 4 we present
improved versions of the recursive algorithms from (Hashemi et al., 2023) for the com-
putation of monomial Janet and Janet-like bases, respectively. We continue in Section
5 with an analysis of the connection of the theories of staggered linear bases and Janet
bases, leading to a novel iterative algorithm for the construction of Janet bases. We ex-
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tend these results to Janet-like bases in Section 6. In Section 7, we introduce a variation
of the existing iterative algorithms for computing minimal monomial Janet bases and
extend this approach to the computation of monomial Janet-like bases. In Section 8,
we investigate the relation between Janet-like and Janet bases, yielding a fast method
for obtaining a minimal Janet basis from a minimal Janet-like basis, a procedure for
which we coin the name filling in the gaps. We conclude in Section 9 by presenting
benchmarks for the algorithms presented in this work.

2. Preliminaries

In this section, we review some basic definitions and notations from the theo-
ries of Gröbner bases and involutive bases that will be used in the rest of the arti-
cle. Throughout, we work in the polynomial ring P = K[X] = K[x1, . . . , xn] over a
field K . We consider the polynomials f1, . . . , fk ∈ P and the ideal I = ⟨ f1, . . . , fk⟩
generated by them. We denote the total degree of and the degree with respect to a
variable xi of a polynomial f ∈ P by deg ( f ) and degi ( f ), respectively. We write
T = {xα1

1 · · · x
αn
n | αi ≥ 0, 1 ≤ i ≤ n} for the monoid of all terms in P. A term ordering

on T is denoted by ≺ and throughout we shall assume that x1 ≺ · · · ≺ xn. The leading
term of a given non-zero polynomial f ∈ P with respect to ≺ is denoted by lt( f ). If
F ⊂ P is a finite set of non-zero polynomials, we denote by lt(F) the set {lt( f ) | f ∈ F}.
A finite set G ⊂ I is called a Gröbner basis for I with respect to ≺, if its leading ideal
satisfies lt (I) = ⟨lt( f ) | f ∈ I⟩ = ⟨lt(G)⟩. We refer e. g. to (Cox et al., 2015; Adams
and Loustaunau, 1994; Mora, 2005, 2016) for more details on Gröbner bases.

Next, we recall some relevant concepts for involutive divisions and bases, see
(Gerdt, 2005; Seiler, 2010) for more details.

Definition 2.1. An involutive division L on T ⊂ P associates to any finite set U ⊂ T
of terms and any term u ∈ U a set of L-non-multipliers L̄(u,U) given by the terms
contained in a prime monomial ideal. The variables generating this prime ideal are
called the non-multiplicative variables NML(u,U) ⊆ X of u ∈ U. The set of L-
multipliers L(u,U) is given by the order ideal T \ L̄(u,U); it has as Dickson basis the
set of multiplicative variables ML(u,U) = X \ NML(u,U). For any term u ∈ U, its
involutive cone is defined as CL(u,U) = u · L(u,U). For an involutive division, the
involutive cones must satisfy the following conditions:

(i) For two terms v , u ∈ U with CL(u,U) ∩ CL(v,U) , ∅, we have u ∈ CL(v,U)
or v ∈ CL(u,U).

(ii) If a term v ∈ U lies in an involutive cone CL(u,U), then L(v,U) ⊂ L(u,U).
(iii) For any term u in a subset V ⊂ U, we have L(u,U) ⊆ L(u,V).

We write u |L w for a term u ∈ U and an arbitrary term w ∈ T , if w ∈ CL(u,U). In this
case, u is called an L-involutive divisor of w and w an L-involutive multiple of u.

The first two conditions ensure that involutive cones can intersect only trivially.
The third condition is often called the filter axiom. Obviously, it suffices for defining
an involutive division to say what are the (non-)multiplicative variables for each term
u in a finite set U. Note that involutive divisibility u |L w implies ordinary divisibility,
but not vice versa.
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Definition 2.2. For a finite set of terms U ⊂ T and an involutive division L on T , the
involutive span of U is the union CL(U) =

⋃
u∈U CL(u,U). The set U is involutively

complete or a weak involutive basis, if CL(U) = U · T . For a (strong) involutive basis
the union is disjoint, i. e. every term in CL(U) has a unique involutive divisor. An
involutive division is Nœtherian, if every monomial ideal in P has an involutive basis.

Example 2.3. One of the most important involutive divisions is the Janet division in-
troduced by Janet (1929, pages 16-17). Let U ⊂ P be a finite set of terms. For each
sequence d1, . . . , dn of non-negative integers and for each index 1 ≤ i ≤ n, we introduce
the corresponding Janet class as the subset

U[di,...,dn] =
{
u ∈ U | deg j (u) = d j, i ≤ j ≤ n

}
⊂ U . (2.1)

The variable xn is Janet multiplicative (or shorter J-multiplicative) for the term u ∈ U,
if degn (u) = max {degn (v) | v ∈ U}. For i < n the variable xi is Janet multiplicative
for u ∈ U[di+1,...,dn], if degi (u) = max {degi (v) | v ∈ U[di+1,...,dn]}. The Janet division is
Nœtherian.

We now turn to the Janet-like division introduced in (Gerdt and Blinkov, 2005).

Definition 2.4. Let U ⊂ T be a finite set of terms. For any term u ∈ U and any index
1 ≤ i ≤ n, we set

hi(u,U) = max
{
degi (v) | u, v ∈ U[di+1,...,dn]

}
− degi (u) .

If hi(u,U) > 0, the power xki
i with

ki = min
{
degi (v) − degi (u) | v, u ∈ U[di+1,...,dn], degi (v) > degi (u)}

is called a non-multiplicative power of u for the Janet-like division. The set of all
non-multiplicative powers of u ∈ U is denoted by NMP(u,U). The elements of the set

NM(u,U) = {v ∈ T | ∃w ∈ NMP(u,U),w | v}

are called the JL-non-multipliers for u ∈ U. The terms outside of it are the JL-
multipliers for u. An element u ∈ U will be called a Janet-like divisor of w ∈ T ,
if w = u · v with v a JL-multiplier for u.

A finite set U ⊂ T is called Janet-like basis of the monomial ideal ⟨U⟩, if every
term t ∈ ⟨U⟩ ∩ T has a Janet-like divisor in U. A finite set of polynomials F ⊂ P \ {0}
is a Janet-like basis of I = ⟨F⟩, if we have lt( f ) , lt(g) for all f , g ∈ F and lt(F)
forms a Janet-like basis for lt(I).

Although the Janet-like division is not an involutive division, it preserves all al-
gorithmic properties of the Janet division and allows for the construction of Janet-like
bases and in turn Gröbner bases. Indeed, the main algorithmic idea for the construction
of Janet-like bases is similar to that of Janet bases; instead of multiplying by non-
multiplicative variables one now multiplies by non-multiplicative powers. Moreover,
Janet-like bases can also be represented by trees (Hashemi et al., 2022) and bar codes
(Ceria, 2022). Since the rest of the paper focuses on checking and computing minimal
Janet and Janet-like bases, we provide the definition below.

Definition 2.5. An L-involutive (or a Janet-like) basis U ⊂ P is called minimal, if no
proper subset of U is an L-involutive (or a Janet-like) basis of the ideal ⟨U⟩.
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3. A recursive Janet completion algorithm

In this section, based on the results from (Hashemi et al., 2023), we present effective
recursive methods for testing whether a given set of terms forms a Janet basis, as well
as for the Janet completion process. Janet (1920, page 86) introduced the following
recursive criterion for determining whether a set of terms constitutes a Janet basis,
which stems from an extensive discussion on the properties of the Janet division. For
more details, we refer also to (Ceria, 2022, Theorem 3.11).

Theorem 3.1. Let U = {t1, . . . , tm} ⊂ T be a finite set of terms. We define t′i = ti|xn=1 for
all i and U′ = {t′1, . . . , t

′
m} ⊂ K[x1, . . . , xn−1]. If α = max {degn (t1), . . . , degn (tm)}, then

we introduce for each degree λ ≤ α the sets Iλ = {i | degn (ti) = λ} and U′λ = {t
′
i | i ∈ Iλ}.

Then, U is a Janet basis if and only if the following two conditions are satisfied:
(i) For each λ ≤ α the set U′λ is a Janet basis in K[x1, . . . , xn−1].

(ii) Each term t′i ∈ U′λ with λ < α lies in the Janet span of U′λ+1.

A slight modification in (Hashemi et al., 2023, Theorem 3.4) (see the next theorem)
improves this result, enabling verification of ordinary term memberships instead of
condition (ii).

Theorem 3.2. In the situation of Theorem 3.1, let β = min {degn (t1), . . . , degn (tm)}.
Then, U is a Janet basis if and only if the following conditions are satisfied:

(i) For each λ ≤ α, U′λ is a Janet basis in K[x1, . . . , xn−1].
(ii) For each β ≤ λ < α, we have U′λ ⊂ ⟨U

′
λ+1⟩.

Furthermore, Hashemi et al. (2023, Theorem 3.10) introduced the following test
for minimal Janet bases.

Theorem 3.3. With the notations of Theorem 3.1, let U be a Janet basis for the ideal
it generates. Then, U is minimal if and only if the following conditions are satisfied:

(i) For each λ ≤ α, U′λ is a minimal Janet basis.
(ii) We have ⟨U′α−1⟩ , ⟨U

′
α⟩.

Based on these results, Hashemi et al. (2023, Algorithm 3) introduced an algorithm
to minimize a Janet basis; however, no algorithm has been described for computing
the minimal Janet basis of a monomial ideal. In this context, we present Algorithm 1;
an adapted version of (Hashemi et al., 2023, Algorithm 3) that computes the minimal
Janet basis for a given monomial ideal represented by its minimal generating set. We
use Gen(A) to denote the unique minimal generating set consisting of terms for the
monomial ideal A. Let U be a set of terms; note that Gen (⟨U⟩) ⊂ U. The process of
removing irrelevant elements from U to obtain the minimal generating set of the ideal
it generates is known as minimization or inter-reduction.

Theorem 3.4. Algorithm 1 terminates in finitely many steps and returns the mini-
mal Janet basis for the ideal generated by its input set. Its arithmetic complexity1

1In this work, by arithmetic complexity we mean the total number of all involved elementary operations
such as comparison, addition and multiplication over the base field. Moreover, we assume that the cost of a
single operation is one.
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Algorithm 1: RecMinimalJanetCompletion
Data: A polynomial ring P = K[x1, . . . , xn] and a finite and inter-reduced set

U ⊂ P of terms
Result: The minimal Janet basis of ⟨U⟩

1 begin
2 U ←− {t1, . . . , tm}
3 if n = 1 or m = 1 then
4 return U

5 α←− max {degn (t1), . . . , degn (tm)}
6 β←− min {degn (t1), . . . , degn (tm)}
7 V ←− ∅ and V ′β−1 ←− ∅

8 for i = β, . . . , α do
9 V ′i ←− {t ∈ K[x1, . . . , xn−1] | t · xi

n ∈ U}
10 V ′i ←− Gen

(
⟨V ′i ∪ V ′i−1⟩

)
11 V ′i ←− RecMinimalJanetCompletion

(
K[x1, . . . , xn−1],V ′i

)
12 V ←− V ∪ {txi

n | t ∈ V ′i }

13 return (V)

is O
(
m2n2d

)
where m denotes the size of the input set U, n is the number of variables,

and d represents the maximum of the differences between the maximal and minimal
degrees of the elements of U with respect to each variable.

Proof. The termination of the algorithm is straightforward because it calls itself n times
and each call consists of a finite number of iterations. This guarantees the finite termi-
nation of the algorithm.

To prove the correctness, assume that V is the output of the algorithm and V ′i for
each i is as defined in Theorem 3.1. From the structure of the algorithm (line 10), we
conclude that ⟨V ′i−1⟩ ⊂ ⟨V

′
i ⟩ for each i. Furthermore, by line 11, V ′i is a Janet basis for

each i. Therefore, from Theorem 3.2, it follows that V is a Janet basis.
Now, to prove that V is minimal, we proceed by induction and apply Theorem 3.3.

We claim that at each iteration (on the number of variables) the Janet basis constructed
by the algorithm is minimal. We note that the input set U is inter-reduced. If n = 1
then the set U is the minimal Janet basis for the ideal it generates. Now, assume for
simplicity that we are working with n variables, and the induction hypothesis holds
true for n − 1 variables. We show that the set constructed at the end of the for-loop
forms the minimal Janet basis for the ideal it generates. Here we follow the notations
used in the algorithm. We must show that A := V ∪ {txαn | t ∈ V ′α} constructed in line
12 is a minimal Janet basis. Note that the set V ′i for each i (as a set in n − 1 variables)
constructed in line 11, is the minimal Janet basis for the ideal it generates. Now, it
suffices to show that ⟨V ′α−1⟩ , ⟨V

′
α⟩ where these sets are constructed in line 11. Since U

is inter-reduced, the set V ′α produced in line 9 is non-empty, and this proves the desired
inequality. These arguments show that the set A is the minimal Janet basis for ⟨U⟩.

Finally, we establish the complexity bound. It is evident that sorting the sequence
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t1, . . . , tm with respect to the lexicographical ordering given by x1 ≺ · · · ≺ xn requires
O(mn log(m)) operations. Furthermore, once the sequence is ordered from least to
greatest, computing the minimal generating set of the ideal generated by this sequence
necessitates O(m2n) field operations. Assume we are working in the ringK[x1, . . . , xℓ].
At this stage, define the set

A := {ti|xℓ+1=···=xn=1 | i = 1, . . . ,m}.

We then partition A into subsets Aβ, . . . , Aα, where Ai consists of the terms t such that
degℓ(t) = i. For simplicity, we may assume that α−β = d and that each Ai contains m/d
elements. For each i, we compute the minimal generating set of the ideal ⟨Aβ, . . . , Ai⟩.
Given that U is already ordered, these sets are also ordered. Consequently, finding the
minimal generating set for this ideal requires O((im/d)2n) operations. Since i ranges
from 1 to d, the total number of operations needed in this step is O(m2nd). We invoke
the algorithm for ℓ = 1, . . . , n, leading to an overall complexity of O(m2n2d).

Example 3.5. We illustrate the steps of Algorithm 1 for the inter-reduced set U =

{x2
2x3, x2

1x3
3} ⊂ K[x1, x2, x3]. Keeping the notations used in the algorithm, at the first

recursion level in K[x1, x2] one obtains
1. V ′1 = {x

2
2}. Its minimal Janet basis is {x2

2} and V = {x2
2x3}.

2. V ′2 = {x
2
2}. Its minimal Janet basis is {x2

2}, and we have V = {x2
2x3, x2

2x2
3}.

3. V ′3 = {x
2
1, x

2
2}. Its minimal Janet basis is {x2

1, x
2
1x2, x2

2}.
The final output is the minimal Janet basis V = {x2

2x3, x2
2x2

3, x
2
1x3

3, x
2
1x2x3

3, x
2
2x3

3}.

4. A recursive Janet-like completion algorithm

Janet’s criterion (Theorem 3.1) has been generalized in (Hashemi et al., 2023) to
Janet-like bases. Based on the results established in that paper, we propose an algorithm
analogous to Algorithm 1 for constructing Janet-like bases. First, we introduce some
notations. If U = {t1, . . . , tm} is a set of terms, then there exists a sequence of natural
numbers λ0, . . . , λℓ with ℓ depending on U such that each λi is the xn-degree of some
term t j ∈ U and such that conversely for each t j ∈ U there is a λi which is the xn-degree
of t j.

Theorem 4.1 ((Hashemi et al., 2023, Theorem 3.14)). Let U = {t1, . . . , tm} ⊂ P be a
set of terms and let λ0 < λ1 < · · · < λℓ be natural numbers encoding the xn-degrees
appearing in U. For each index 0 ≤ i ≤ ℓ, let Uλi ⊆ U be the subset of terms of U
having xn-degree λi and set U′λi

= {t/xλi
n | t ∈ Uλi }. Then U is a Janet-like basis of the

ideal it generates if and only if the following two conditions are satisfied:
(i) Every set U′λi

is a Janet-like basis of the monomial ideal ⟨U′λi
⟩ ⊆ K[x1, . . . , xn−1].

(ii) For each 0 ≤ i < ℓ, the inclusion U′λi
⊂ ⟨U′λi+1

⟩ holds.

Theorem 4.2 ((Hashemi et al., 2023, Theorem 3.17)). Keeping the notations of Theo-
rem 4.1, let U be a Janet-like basis for the ideal it generates. Then, U is minimal if and
only if the following conditions are satisfied:

(i) For each i ≤ ℓ, U′λi
is a minimal Janet-like basis.

(ii) For each i < ℓ, we have ⟨U′λi
⟩ , ⟨U′λi+1

⟩.
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Here, similar to Algorithm 1, we present an adapted version based on these results
to compute minimal Janet-like bases: Algorithm 2.

Algorithm 2: RecMinimalJanetLikeCompletion
Data: A polynomial ring P = K[x1, . . . , xn] and a finite U ⊂ P of

inter-reduced terms
Result: The minimal Janet-like basis of the ideal ⟨U⟩

1 begin
2 U ←− {t1, . . . , tm}
3 if n = 1 or m = 1 then
4 return U

5 (λ0, λ1, . . . , λℓ)←− the sequence of xn-degrees of the terms in U ordered
such that λ0 < λ1 < · · · < λℓ

6 V ←− ∅ and V ′λ−1
←− ∅

7 for i = 0, . . . , ℓ do
8 V ′λi

←− {t ∈ K[x1, . . . , xn−1] | t · xλi
n ∈ U}

9 V ′λi
←− Gen

(
⟨V ′λi
∪ V ′λi−1

⟩
)

10 V ′λi
←− RecMinimalJanetLikeCompletion

(
K[x1, . . . , xn−1],V ′λi

)
11 V ←− V ∪ {txλi

n | t ∈ V ′λi
}

12 return (V)

Theorem 4.3. Algorithm 2 terminates in finitely many steps and returns the minimal
Janet-like basis for the ideal generated by its input set. Its arithmetic complexity is
O
(
m2n2d

)
where m denotes the size of the input set U = {t1, . . . , tm}, n is the number of

variables, and d is the maximum of {degi(t1), . . . , degi(tm) | i = 1, . . . , n}.

Proof. The proofs of the claims proceed similarly to the proof of Theorem 3.4 and are
therefore omitted.

Example 4.4. We illustrate the steps of Algorithm 2 for the inter-reduced set U =

{x2
2x3, x2

1x3
3} ⊂ K[x1, x2, x3]. Keeping the notations used in the algorithm, at the first

recursion level in K[x1, x2] one obtains:
1. V ′1 = {x

2
2}. Its minimal Janet-like basis is {x2

2} and V = {x2
2x3}.

2. V ′3 = {x
2
1, x

2
2}. Its minimal Janet-like basis is {x2

1, x
2
2}.

The final output is the minimal Janet-like basis V = {x2
2x3, x2

1x3
3, x

2
2x3

3}.

5. Staggered linear bases and Janet bases

In this section, we aim to explore the relationship between staggered linear bases
and Janet bases. Understanding this relationship enables us to develop a new algorithm
for testing whether a given set of terms forms a Janet basis. Furthermore, we will
describe an additional algorithm for Janet completion based on this insight. To begin,
let us revisit the definition of staggered linear bases. For a polynomial f ∈ P and an
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arbitrary set T ′ ⊆ T of terms, we define T ′ · f = {t · f | t ∈ T ′}. Given an ideal I ⊂ P,
we can consider it as a K-linear subspace of P. an staggered linear basis is a basis for
this vector space. More precisely, we have:

Definition 5.1. Let I = ⟨ f1, . . . , fs⟩ ⊂ P be a polynomial ideal and B =
⋃s

i=1 Ai · fi for
sets A1, . . . ,As ⊆ T of terms. Then, B is called a staggered linear basis for I, if the
following conditions hold:

(1) for each t j ∈ T \ A j there exists ti ∈ Ai with i < j such that ti · lt( fi) = t j · lt( f j),

(2) for each t j ∈ T \ A j and each t ∈ T it holds t · t j ∈ T \ A j,

(3) for each ti ∈ Ai, t j ∈ A j with i , j we have ti · lt( fi) , t j lt( f j).

Using the above defined notations, the set Ai associated with each polynomial fi is
referred to as the set of allowed terms for fi, whereas the complement of Ai; i.e. T \Ai,
is known as the set of forbidden terms for fi. By applying the second condition in this
definition and Dickson’s lemma, we can conclude that there exist finitely many terms
t1, . . . , tℓ ∈ T \Ai such that ⟨t1, . . . , tℓ⟩ = T \Ai. For convenience, we denote {t1, . . . , tℓ}
by Fi. Consequently, we can express Ai as Ai = T \⟨Fi⟩. In the remainder of the paper,
instead of denoting an staggered linear basis for the ideal I as A1 · f1∪· · ·∪As · fs, where
each Ai · fi is possibly infinite, we adopt the notation {( f1,F1), . . . , ( fs,Fs)}, where Fi ⊂

T for each i is a finite set. Moreover, we assume that Fi for each i, is the minimal
generating set of the ideal ⟨Fi⟩. For each i, the set Ai · fi is called a cone, and fi is
said to be the vertex of the cone. For simplicity, we use the abbreviation SLB to refer
to "staggered linear basis". Furthermore, instead of the polynomials f1, . . . , fs, we
consider the terms t1, . . . , ts. For more details on SLB’s, see (Hashemi and Möller,
2023). As a direct consequence of the definition of SLB’s, we can derive the following
useful lemma.

Lemma 5.2. Let J = ⟨t1, . . . , ts⟩. Then, B := {(t1,F1), . . . , (ts,Fs)} is an SLB for J
if and only if Fi is the minimal generating set for ⟨lcm(t1, ti)/ti, . . . , lcm(ti−1, ti)/ti⟩ for
each i.

Proof. Assume that B is an SLB. From Definition 5.1, we have F1 = ∅. Let m ∈
⟨lcm(t1, ti)/ti, . . . , lcm(ti−1, ti)/ti⟩. If m ∈ ⟨Fi⟩, we are done. Otherwise, we have m · ti =
u · tℓ for some ℓ < i and some term u. It follows that u ∈ ⟨Fℓ⟩, which contradicts the
first item in Definition 5.1. Now, suppose that m ∈ ⟨Fi⟩. Then, there exists ℓ < i and a
term u such that m · ti = u · tℓ. This implies that m ∈ ⟨lcm(t1, ti)/ti, . . . , lcm(ti−1, ti)/ti⟩.

The converse is an easy application of the basic algorithm described in (Hashemi
and Möller, 2023) for computing SLB’s which concludes the proof.

Remark 5.3. It is easy to see that ⟨lcm(t1, ti)/ti, . . . , lcm(ti−1, ti)/ti⟩ = ⟨t1, . . . , ti−1⟩ : ti.

Let us continue with a simple example of an SLB. We consider the ideal I =
⟨x3

1x3
3, x1x8

2⟩ in the ring K[x1, x2, x3] and the lexicographical ordering on this ring
given by x1 ≺ x2 ≺ x3. The generating set of I is arranged according to this or-
dering, from greatest to lowest. Then, using Lemma 5.2, one observes that the set
B = {(x3

1x3
3, {}), (x1x8

2, {x
2
1x3

3})} is an SLB for I. Now, we will try to transform this SLB
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into a new SLB such that each set of forbidden terms consists of variables2. For this
purpose, we divide each forbidden term by the highest variable (with respect to ≺) ap-
pearing in it. So, we decompose x2

1x3
3 into x2

1x2
3 and x3. Then, we add the new element

(x1x8
2x3, {x2

1x2
3}) and the new SLB becomes{

(x3
1x3

3, {}), (x1x8
2x3, {x2

1x2
3}), (x1x8

2, {x
2
1x3

3, x3})
}
.

Now, we shall update the middle element. Thus, we get{
(x3

1x3
3, {}), (x1x8

2x2
3, {x

2
1x3}), (x1x8

2x3, {x2
1x2

3, x3}), (x1x8
2, {x

2
1x3

3, x3})
}
.

The critical step is here when we would like to update the second element. If we
multiply it by x3 then the order (with respect to ≺) of the elements is changed and we
shall update sets of forbidden terms. So, the new SLB that we find is{

(x1x8
2x3

3, {}), (x3
1x3

3, {x
8
2}), (x1x8

2x2
3, {x

2
1x3, x3}), (x1x8

2x3, {x2
1x2

3, x3}), (x1x8
2, {x

2
1x3

3, x3})
}
.

If we repeat this process by multiplying the second element by the powers of x2, then
the set of vertices of the final SLB (such that each set of forbidden terms consists of
only variables) forms the desired minimal Janet basis of I. From this discussion, we
conclude several observations as follows.

Lemma 5.4. Let B = {(t1,F1), . . . , (ts,Fs)} be an SLB for the ideal J generated by the
terms t1, . . . , ts. Assume that there exist a term m and integers i, j such that m is a term
in F j of degree at least 2 and xi | m. If in B we replace (t j,F j) by(

xi · t j,Gen(⟨F j⟩ : xi)
)
∪
(
t j,Gen(⟨F j ∪ {xi}⟩)

)
then we obtain an SLB for J .

Proof. We must show that (t j,F j) = (t j,Gen(⟨F j∪{xi}⟩))∪(t j ·xi,Gen(⟨F j⟩ : xi)),where
Gen(A) returns the minimal generating set for the monomial ideal A. We analyze the
elements of both sides. Let m = t j · v be an element of (t j,F j) where v < ⟨F j⟩. We
consider two cases:

1. If xi ∤ v, then m clearly belongs to the first cone on the right-hand side.

2. If xi | v, we can express m as t j · xi · u for some term u. Since v < ⟨F j⟩, it follows
that u < ⟨F j⟩ : xi, which means m is in the second cone on the right-hand side.

Conversely, since F j is a subset of both F j ∪ {xi} and ⟨F j⟩ : xi, any element on the
right-hand side must also belong to the left-hand side. This completes the proof.

By repeating the process defined in this lemma, we can easily see that after finitely
many steps we move towards an SLB such that the set of forbidden terms of each cone
is generated by a subset of variables. This leads to the following definition.

2In the subsequent examples, to clarify the main idea, we may not perform the minimization process on
the set of forbidden terms.
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Definition 5.5. Let B = {(t1,F1), . . . , (ts,Fs)} be an SLB for the ideal J generated by
terms t1, . . . , ts. B is called linear if for each i, Fi contains only variables.

A natural question that may arise here is the following: If, in obtaining a linear SLB
by applying Lemma 5.4, we consider xi, the highest variable that divides m, at each
step, does the obtained linear SLB constitute a Janet basis as we saw in the previous
example? The next example demonstrates that this is not true in general:

Example 5.6. Consider the ideal I = ⟨x2x4, x2x3, x1x3⟩ ⊂ Q[x1, x2, x3, x4]. Then B =
{(x2x4, {}), (x2x3, {x4}), (x1x3, {x2})} is a linear SLB for I. However, the set of vertices
of B is not a Janet basis, and the correct Janet basis is obtained by adding the new
elements {x2x3x4, x1x3x4} to the generating set of I.

We should note, however, that when we apply a specific minimization process to
linearize the Fi’s, we can successfully construct a Janet basis. Specifically, in our
example, the set of forbidden terms for the last element of B is {x2x4, x2} and thus,
during the customary minimization, x2 eliminates x2x4. However, if we restrict the
minimization process so that only certain variables dividing other terms can eliminate
them, using the following criterion, we can properly guide the construction of the Janet
basis: We say that a variable xi can eliminate a term m if xi | m and additionally xi

is the greatest variable appearing in m. In the remainder of this section, we refer to
this type of minimization as Janet minimization. Note that we do not employ any other
form of minimization in this process. For example, a term of degree 2 like x1x2 cannot
eliminate another term like x2

1x2. In this example, only x2 can remove x2
1x2. Now, let

us use this minimization to linearize an SLB.

Example 5.7. Consider the ideal I = ⟨x2x4, x2x3, x1x3⟩ ⊂ Q[x1, x2, x3, x4]. The gener-
ating set of the ideal is organized in descending order according to the lexicographical
ordering defined on this ring, where x1 ≺ · · · ≺ x4. An SLB for this ideal is given
by B = {(x2x4, {}), (x2x3, {x4}), (x1x3, {x2x4, x2})}. By performing the ordinary minimal
basis for the last element, we observe that it yields a linear SLB, which does not give
rise to a Janet basis. However, through the process of Janet minimization, we conclude
that B is not linear. The application of new splittings results in

{(x2x3x4, {}), (x1x3x4, {x2}), (x2x4, {x3}), (x2x3, {x4}), (x1x3, {x2})}

Notably, the set of vertices from this SLB corresponds to a Janet basis for the ideal I.

In the following theorem, we will outline the conditions under which a linear SLB
constitutes a Janet basis, under the assumption that each Fi has been minimized through
the Janet minimization process.

Theorem 5.8. Let H = {t1, . . . , ts} ⊂ T and B = {(t1,F1), . . . , (ts,Fs)} be an SLB for
the ideal J generated by H. Furthermore, assume that ts ≺ · · · ≺ t1 where ≺ stands
for the lexicographical ordering with x1 ≺ · · · ≺ xn.

(1) If {t1, . . . , ts} is a Janet basis then B is linear and for each i, Fi is the set of Janet
non-multiplicative variables for ti.

(2) If B is linear by performing Janet minimization process then H is a Janet basis
for J .
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Proof. (1) First, we show that for every i, and for every non-multiplicative variable
x j ∈ NMJ(ti,H) we have x j ∈ ⟨t1, . . . , ti−1⟩ : ti. Since H is a Janet basis, for every
non-multiplicative prolongation x j · ti there exists a unique Janet divisor tℓ ∈ H . By
definition of Janet division, we conclude that degm(ti) = degm(tℓ) for all m = j+1, . . . , n
and deg j(ti) = deg j(tℓ) − 1. It follows that ti ≺lex tℓ and consequently ℓ < i. Therefore,
x j ∈ ⟨t1, . . . , ti−1⟩ : ti. By Lemma 5.2, we know that Fi is the generating set of this
ideal, and in turn x j ∈ Fi.

Now, we show that for each i, and every variable x j ∈ Fi, we have x j ∈ NMJ(ti,H).
Again, applying Lemma 5.2 implies that x j ∈ ⟨t1, . . . , ti−1⟩ : ti and consequently x j · ti ∈
⟨t1, . . . , ti−1⟩. Then, there exist ℓ < i and a term u such that x j · ti = u · tℓ. Assume that ℓ
is the lowest integer satisfying this property. From the ordering on the set H, we have
ti ≺lex tℓ. It follows that u contains only the variables x1, . . . , x j. Moreover, we deduce
that degm(ti) = degm(tℓ) for all m = j + 1, . . . , n and deg j(ti) = deg j(tℓ) − 1. This shows
that x j ∈ NMJ(ti,H).

To complete the proof of (1), it remains to show that for each i, Fi contains only
variables. Assume that u ∈ Fi and xℓ, x j both divide u with ℓ < j. From the above
discussion, it is seen that x j lies in NMJ(ti,H). Since H is a Janet basis, x j · ti has a
unique Janet divisor; specifically, there exist ℓ < i and a term u such that x j ·ti = u·tℓ and
u contains only Janet multiplicative variables of tℓ. This shows that x j ∈ ⟨t1, . . . , ti−1⟩ :
ti, and therefore, it belongs to Fi which contradicts the minimality of Fi. All these
arguments prove (1).

(2) We must demonstrate that for every i, and for every non-multiplicative variable
x j ∈ NMJ(ti,H), the product x j · ti has a Janet divisor, i.e. there exist an index ℓ < i and
a term u ∈ K[MJ(tℓ,H)] such that x j · ti = u · tℓ. We proceed by induction on i. Since t1
is the greatest element with respect to ≺lex, then every variable is Janet multiplicative
for t1. Now, suppose that the claim holds true for t1, . . . , ti−1. From the fact that x j ∈

NMJ(ti,H), it follows that there exists an index ℓ such that ti, tℓ ∈ U[d j+1,...,dn] where
for each k, dk represents degxk

(ti) and degx j
(ti) < degx j

(tℓ). Thus, ti ≺lex tℓ and ℓ < i.
Assume that ℓ is the largest integer satisfying these properties. This implies that there
are terms u, v such that u · x j · ti = v · tℓ and therefore u · x j ∈ ⟨t1, . . . , ti−1⟩ : ti.
Note that x j has the highest index compared to all the variables dividing u. Since B
is linear by performing Janet minimization process then x j must appear in Fi. Hence
x j ∈ ⟨t1, . . . , ti−1⟩ : ti, and there exist integer m < i and a term w such that x j·ti = w·tm. If
w includes only Janet multiplicative variables of tm we are done. Otherwise, it contains
a Janet non-multiplicative variable xk. By applying the induction hypothesis the claim
is proved.

Applying this theorem, we describe the following effective Janet basis test.

Theorem 5.9. Algorithm 3 terminates in finitely many steps and is correct. Further-
more, its arithmetic complexity is O(ns2) where again n is the number of variables and
s the size of the input set.

Proof. The termination of the algorithm is straightforward, and its correctness follows
from Theorem 5.8. We now address its complexity. At the beginning of the algorithm,
we sort t1, . . . , ts, which requires O(ns log(s)) operations. This cost can be disregarded
in the subsequent analysis.
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Algorithm 3: JanetTest
Data: A finite set of terms {t1, . . . , ts}

Result: Is {t1, . . . , ts} a Janet basis?
1 begin
2 (t1, . . . , ts)←− The sorted form of t1, . . . , ts with respect to ≺lex

3 Fi ←− The minimal elements of {lcm(ti, t j)/ti | j = 1, . . . , i − 1} for any i
following Janet minimization process

4 if all Fi’s are linear then
5 return true

6 else
7 return f alse

Next, to construct the sets Fi for each i, we will perform two operations. First,
we compute {lcm(ti, t j)/ti | j = 1, . . . , i − 1} for each i, which can be accomplished in
O(n · i) operations. Additionally, sorting this set and performing the Janet minimization
process will require the same complexity. Therefore, the total number of arithmetic
operations required for all i is O(ns2), which concludes the proof.

Remark 5.10. For the efficiency of this algorithm and to execute the Janet minimization
process, we first compute the set Ai := {lcm(ti, t j)/ti | j = 1, . . . , i − 1} for each i =
1, . . . , s. Next, we identify the highest variable x j appearing in Ai. If x j is present in Ai,
we remove all elements in Ai where x j is their highest variable and continue examining
the subsequent variable. Finally, if Ai satisfies the required conditions, we proceed to
the next index, i+ 1. If, during the process, we encounter an obstruction, the algorithm
returns false; otherwise, it concludes successfully and returns true.

Remark 5.11. Assume that d ≥ 2 is the average of the differences between the maximal
and minimal degrees of the ti’s with respect to each of the variables. In (Hashemi et al.,
2023, Theorem 3.6) the complexity O(max{s2 + ns, n2(s− d)2/4+ ns2}) is provided for
the Janet basis test. As observed, Algorithm 3 exhibits a lower complexity.

Based on Theorem 5.8, we are able to describe a new algorithm for the Janet com-
pletion as well.

Theorem 5.12. Algorithm 4 terminates in finitely many steps and outputs a minimal
Janet basis for the ideal ⟨U⟩. Moreover, the arithmetic complexity of this algorithm
is O(nl2 log(l)) where again n is the number of variables and l the size of the (output)
minimal Janet basis of this ideal.

Proof. At the beginning of the algorithm, F1, . . . ,Fk contains only finitely many terms.
Furthermore, any newly added term is distinct from the existing ones and divides
lcm(t1, . . . , tk). These arguments establish the finite termination of the algorithm.

Next, we prove the correctness of the algorithm. Since, at the end of the algorithm,
B := {(t1,F1), . . . , (tl,Fl)} satisfies the conditions of item (2) in Theorem 5.8, we con-
clude that A := {t1, . . . , tl} is a Janet basis for the ideal it generates. Moreover, by the
structure of the algorithm, this ideal is equal to ⟨U⟩. Additionally, Fi represents the
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Algorithm 4: MinimalJanetCompletion
Data: A polynomial ring P = K[x1, . . . , xn] and a finite set U ⊂ P of

inter-reduced terms
Result: A minimal Janet basis for ⟨U⟩ along with the set of non-multiplicative

variables for each element in the basis
1 begin
2 (t1, . . . , tk)←− The sorted form of U with respect to ≺lex

3 i←− k
4 while i > 0 do
5 Fi ←− The minimal elements of {lcm(ti, t j)/ti | j = 1, . . . , i − 1}

following Janet minimization process
6 while {m ∈ Fi | deg(m) > 1} , ∅ do
7 Select the highest variable x jwith respect to ≺ in Fi such that

x j < Fi

8 k ←− k + 1 and i←− k
9 tk ←− x j · ti

10 Fi ←− Fi \ {m ∈ Fi s.t. x j | m} ∪ {x j}

11 (t1, . . . , tk)←− The sorted form of t1, . . . , tk with respect to ≺lex

12 i←− i − 1

13 return {(t1,F1), . . . , (tk,Fk)}

set of all Janet non-multiplicative variables for ti. We now prove that A is the minimal
Janet basis. Assume, for the sake of contradiction, that ti is the highest element with
respect to ≺lex in A and that it is redundant. This situation cannot arise at the beginning
of the algorithm, as the input set U is inter-reduced. Further, let us assume that tℓ is
the unique element in A that is a Janet divisor of ti, considering tℓ in A \ {ti}. Given
the specific ordering utilized in A, we must have i < ℓ. Consequently, there exists a
term u, which involves only Janet multiplicative variables of tℓ, as an element of A \ {ti}
such that ti = u · tℓ. It follows that u ∈ ⟨t1, . . . , tℓ−1⟩ : tℓ. Let x j be the largest variable
dividing u. Due to the specialized form of minimization we employ, x j must belong to
Fℓ, which implies that x j · tℓ appears in A. Based on the assumption regarding tℓ, we
deduce that ti = x j ·tℓ. From the structure of the algorithm (specifically, the condition of
the inner while-loop), ti cannot be produced by tℓ. Thus, there exists another element
tk with k > ℓ such that ti = xr · tk. Furthermore, tk creates ti and is generated before ti.
Next, two cases arise. If tℓ exists when ti is created, then xr ∈ Fk and ti would not be
produced. Otherwise, tℓ would not be created. These arguments demonstrate that H is
minimal.

Finally, we will address the complexity analysis of the algorithm. Similar to the
proof of Theorem 5.9, for each k, sorting t1, . . . , tk and computing Fk using the Janet
minimization process requires O(nk log(k) + nk) = O(nk log(k)) operations. Since k
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varies from s to l, we get

l∑
k=s

nk log(k) ≤ n log(l)
l∑

k=s

k

and this inequality gives the claimed complexity bound.

Remark 5.13. Note that the complexity bound provided in this theorem includes the
size of the output basis, which is different from the bound stated in Theorem 3.4.

6. Staggered linear bases and Janet-like bases

In this section, we aim to explore the relationship between SLB’s and Janet-like
bases. To this end, we directly extend the results from the previous section to Janet-
like bases. We will first introduce a new algorithm to determine whether a given SLB of
a monomial ideal constitutes a Janet-like basis. Subsequently, we will present a novel
method for constructing the Janet-like completion from a given SLB.

Let us start with a simple example. Let I = ⟨x3
1x3

3, x1x8
2⟩ ⊂ K[x1, x2, x3]. Consider

the lexicographical ordering with x1 ≺ x2 ≺ x3 and order the generating set of I using
this ordering from greatest to lowest. Then, using Lemma 5.2, one observes that the
set B = {(x3

1x3
3, {}), (x1x8

2, {x
2
1x3

3})} is an SLB for I. Now, we will try to transform this
SLB into a new SLB such that each set of forbidden terms consists of pure power of
variables. For this purpose, we divide each forbidden term by the greatest power of the
highest variable (with respect to ≺) appearing in it. So, we decompose x2

1x3
3 into x2

1 and
x3

3. Then, we multiply x1x8
2 by x3

3 and add the result to B, resulting in the new ordered
SLB {(x1x8

2x3
3, {}), (x3

1x3
3, {x

8
2}), (x1x8

2, {x
2
1x3

3, x
3
3})}. Note that, similar to the construction

of Janet bases from SLB’s, this sorting of elements according to the lexicographical
ordering is essential for the construction of Janet-like bases. From this observation, we
can extend Lemma 5.4 to the following lemma.

Lemma 6.1. Let B = {(t1,F1), . . . , (ts,Fs)} be an SLB for the ideal J generated by the
terms t1, . . . , ts. Assume that there exists a mixed term3 m and integers i, j such that
m ∈ F j and xi | m. Let a be the largest integer such that xa

i | m. If in B we replace
(t j,F j) by (

xa
i · t j,Gen(⟨F j⟩ : xa

i )
)
∪
(
t j,Gen(⟨F j ∪ {xa

i }⟩)
)
,

then we obtain an SLB for J .

Proof. It follows similar lines to the proof of Lemma 5.4.

Definition 6.2. Let B = {(t1,F1), . . . , (ts,Fs)} be an SLB for the ideal J generated by
terms t1, . . . , ts. B is called irreducible if for each i, the ideal generated by each Fi is
irreducible.

3In this paper, we refer to a term as mixed if it is divisible by at least two different variables.
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Let us fix some assumptions that we use in the rest of this section. Consider the
lexicographic term ordering ≺lex with x1 ≺lex · · · ≺lex xn. Let t1, . . . , ts be a sequence of
terms such that ts ≺lex · · · ≺lex t1. One can see easily, by Lemma 5.2, that the set F j for
each j of forbidden terms for t j is computed as the minimal generating set of the ideal

⟨lcm(ti, t j)/t j | i = 1, . . . , j − 1⟩.

Now, the natural question that may arise is whether every Janet-like basis is an irre-
ducible SLB?

Lemma 6.3. Let B = {(t1,F1), . . . , (ts,Fs)} be an SLB for the ideal J generated by
terms t1, . . . , ts where ts ≺lex · · · ≺lex t1. If T = {t1, . . . , ts} forms a Janet-like basis, then
B is irreducible.

Proof. We proceed by arguing reductio ad absurdum. Assume thus that B is not irre-
ducible. Let tℓ be the maximum element with respect to ≺lex such that ⟨Fℓ⟩ is not an
irreducible ideal. Assume that xi is the highest variable appearing in Fℓ such that there
is a mixed term in Fℓ containing xi. Assume that xα ∈ Fℓ is the minimum term among
all these terms. Thus, xα is of the form xα1

1 · · · x
αi
i and αi , 0. These assumptions imply

that xαi
i is a non-multiplicative power for tℓ. Since T is a Janet-like basis, we conclude

that xαi
i · tℓ has a Janet-like divisor in T . It follows that there exists tm ∈ T and a term

u such that u · tm = xαi
i · tℓ. On the other hand, tℓ ≺lex tm and in turn, by definition, we

have xαi
i ∈ ⟨Fℓ⟩; leading to a contradiction.

The next question that may arise is whether any irreducible SLB with respect to
lexicographic order forms a Janet-like basis? The example below shows that the answer
to this question is generally negative, and in the subsequent part of this section, we will
investigate how we can derive a Janet-like basis from a given irreducible SLB.

Example 6.4. An irreducible SLB does not give in general a Janet-like basis. In the
polynomial ringK[x1, x2, x3] with a lexicographic term ordering induced by x1 ≺ x2 ≺

x3, consider the monomial ideal I = ⟨G⟩ = ⟨t1 = x4
3, t2 = x2x3

3, t3 = x3
2x2

3, t4 =
x1x2x3, t5 = x3

1x3, t6 = x3
1x3

2⟩. Its generators are sorted from lex-largest to smallest.
Using Lemma 6.1, we obtain the SLB

B0 = {(x4
3, ∅), (x2x3

3, {x3}), (x3
2x2

3, {x3}), (x1x2x3, {x2
2x3, x2

3}), (x3
1x3, {x2, x3

3}), (x3
1x3

2, {x3})}.

In total, only one mixed term appears in these sets; x2
2x3 ∈ F4. Thus, we pick

the lex-largest pure variable power that divides it, x3, and add the term u := x3t4 as a
generator. We can sort the enlarged generating set G1 := G ∪ {u} using the lex-order
again. Thus, u is inserted between t3 and t4 and we get

B1 = {(x4
3, ∅), (x2x3

3, {x3}), (x3
2x2

3, {x3}), (x1x2x2
3, {x

2
2, x3}),

(x1x2x3, {x3}), (x3
1x3, {x2, x3

3}), (x3
1x3

2, {x3})}.

One sees that no mixed terms appear in the Fi’s and in turn B1 is an irreducible SLB,
however, G1 is not yet the Janet-like basis of I. In the following, we will show how we
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can apply a method similar to Janet minimization process introduced in Section 5 to
derive a Janet-like basis from this SLB. In this direction, for each i we write a complete
description

Hi := {lcm(ti, t j)/ti | j = 1, . . . , i − 1}

rather than just its minimal generating set Fi, and this entails

B2 = {(x4
3, ∅), (x2x3

3, {x3}), (x3
2x2

3, {x
2
3, x3}), (x1x2x2

3, {x
2
3, x3, x2

2}), (x1x2x3, {x3
3, x

2
3, x

2
2x3, x3}),

(x3
1x3, {x3

3, x2x2
3, x

3
2x3, x2x3, x2}), (x3

1x3
2, {x

4
3, x

3
3, x

2
3, x

2
3, x3, x3})}.

We say that a pure power xa
i can eliminate a term m if xa

i | m and additionally xi is the
greatest variable appearing in m. We refer to this kind of minimization as Janet-like
minimization. By performing this minimization on B2, we obtain:

B3 = {(x4
3, ∅), (x2x3

3, {x3}), (x3
2x2

3, {x3}), (x1x2x2
3, {x3, x2

2}), (x1x2x3, {x3}),

(x3
1x3, {x3

3, x2x2
3, x

3
2x3, x2x3, x2}), (x3

1x3
2, {x3})}.

Now, we look for the lowest element in this set whose set of forbidden terms contains
a mixed product of variables. We find x2x3 ∈ H6. By applying Lemma 6.1, we now
split this SLB by adding a new element, (x3

1x3) · x3. This yields the new SLB

B4 = {(x4
3, ∅), (x2x3

3, {x3}), (x3
2x2

3, {x3}), (x1x2x2
3, {x3, x2

2}), (x3
1x2

3, {x
2
3, x2x3, x2}),

(x1x2x3, {x3}), (x3
1x3, {x3, x2}), (x3

1x3
2, {x3})}.

Again, we see that x2x3 ∈ H5. The final refining gives an irreducible SLB following
the Janet-like minimization

B5 = {(x4
3, ∅), (x2x3

3, {x3}), (x3
1x3

3, {x3, x2}), (x3
2x2

3, {x3}), (x1x2x2
3, {x3, x2

2}),

(x3
1x2

3, {x3, x2}), (x1x2x3, {x3}), (x3
1x3, {x3, x2}), (x3

1x3
2, {x3})}

and the set of vertices now provides the correct minimal Janet-like basis.

Based on this observation, we can establish an analogue of Theorem 5.8 for Janet-
like bases. Since the proof is similar, we will omit it.

Theorem 6.5. Let H = {t1, . . . , ts} ⊂ T and B = {(t1,F1), . . . , (ts,Fs)} be an SLB for
the ideal J generated by H. Furthermore, assume that ts ≺ · · · ≺ t1 where ≺ denotes
the lexicographical ordering with x1 ≺ · · · ≺ xn.

(1) If {t1, . . . , ts} is a Janet-like basis then B is irreducible and for each i, Fi is the
set of Janet non-multiplicative powers for ti.

(2) If B is irreducible under the Janet-like minimization process, then H is a Janet-
like basis for J .

Utilizing Lemma 6.3 and this theorem, we can develop algorithms analogous to
Algorithms 3 and 4 for the Janet-like basis test and minimal Janet-like completion.
In the following sections, we will refer to these algorithms as Algorithms 5 and 6,
respectively. It is important to note that the arithmetic complexity of these algorithms
is similar to that of Algorithms 3 and 4.
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7. Iterative Janet completion algorithms

There exists a generic iterative algorithm for computing monomial completions
for any involutive division (provided they exist) using non-multiplicative prolongation
(Gerdt and Blinkov, 1998, Theorem 4.14). In (Seiler, 2010, Section 4.2), it was noted
that this algorithm returns a minimal involutive basis if the input is the minimal basis
of the studied monomial ideal in the usual sense. Specialisations for the monomial
completion of Janet bases have been presented by Gerdt et al. (2001, MonomialJanet-
Basis algorithm) and by Hashemi et al. (2025, Algorithm 1). The former algorithm
is based on so-called Janet trees as the underlying data structure which allows for ef-
ficiently performing many relevant tasks like determining multiplicative variables or
finding involutive divisors. The description of the algorithm is rather technical, as
the authors work immediately with binary trees, obscuring the underlying mathemat-
ical ideas which can be more clearly seen in (Seiler, 2010, Addendum, Section 3.1).
In this section, we propose a new, more efficient variant of these algorithms (along
with a counterpart for Janet-like bases) where the explicit use of trees is replaced by
a good ordering of the basis and where thus considerable overhead for managing the
data structure is avoided.

Contrary to (Hashemi et al., 2025), our approach uses the lexicographical order-
ing of the terms. The use of this ordering is quite natural, as e.g. in a Janet tree the
leaves contain the generators sorted lexicographically. The ordering is crucial for our
algorithm, as it enables us to find the sets of non-multiplicative variables for any set
of terms more efficiently based on the following result, which can be understood as
capturing a key property of Janet trees without actually referring to trees. Below, we
consider the lexicographical term ordering given by x1 ≺ · · · ≺ xn.

Lemma 7.1. Let U = {t1, . . . , tk} ⊂ P be a lex-ordered set of terms, and let ℓ be the
largest subindex such that degℓ(ti+1) > degℓ(ti) for some 1 ≤ i < k. Then,

NMJ,U(ti) =
{
xℓ
}
∪
{
x j | j > ℓ and x j ∈ NMJ,U(ti+1)

}
.

Proof. If we assume that the set of terms U = {t1, . . . , tk} ⊂ P is ordered with respect
to lex then it is clear that deg j(ti+1) = deg j(ti) for all j > ℓ. Hence, by definition, every
non-multiplicative variable of ti+1 with subindex larger than ℓ is also non-multiplicative
for ti. Furthermore, these equalities combined with the fact that degℓ(ti+1) > degℓ(ti)
directly imply that xℓ is also non-multiplicative for ti as well. Now note that there
cannot exist any term t ∈ U such that degk(t) > degk(ti) and deg j(t) = deg j(ti) for all
j > k for an index k < ℓ; because that would imply that ti ≺ t ≺ ti+1, which contradicts
our assumption.

Theorem 7.2. Algorithm 7 terminates in finitely many steps and outputs a minimal
Janet basis for the ideal ⟨U⟩. Moreover, the arithmetic complexity of this algorithm is
O(nl2 log(l)) where n is the number of variables and l the size of the (output) minimal
Janet basis of ⟨U⟩.

Proof. This algorithm follows an iterative approach similar to Algorithm 4. The steps
taken by both algorithms are essentially the same. However, Algorithm 4 computes the
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Algorithm 7: IterMinimalJanetCompletion
Data: A polynomial ring P = K[x1, . . . , xn] and a finite set U ⊂ P of

inter-reduced terms
Result: The minimal Janet basis of ⟨U⟩ together with the non-multiplicative

variables of each element of the basis
1 begin
2 (t1, . . . , tk)←− The sorted form (from the smallest to the greatest) of U

with respect to ≺lex

3 for i = k − 1, . . . , 1 do
4 ℓ ←− max{ j | deg j(ti+1) > deg j(ti)}
5 NMi ←−

(
NMi+1 ∩ {xℓ+1, . . . , xn}

)
∪ {xℓ}

6 NMk ←− {}

7 H ←− {(t1,NM1), . . . , (tk,NMk)}
8 for i = 1, . . . , k do
9 for x j ∈ NMi from the smallest to the largest variable do

10 f lag←− f alse
11 aux←− ti · x j

12 a←− i + 1
13 while f lag = f alse or a ≤ k do
14 if aux ≺ ta then
15 exit while-loop
16 if deg j(ta) = deg j(ti) + 1, degℓ(ta) ≤ degℓ(ti) ∀ℓ < j then
17 f lag←− true

18 a←− a + 1

19 if f lag = f alse then
20 // aux is inserted in the a-th place to maintain the lex order
21 H ←− H ∪ {(aux, {})}
22 Adjust non-multiplicative variables NMi+1, . . . ,NMa

23 k ←− k + 1

24 returnH

colon ideals to obtain the sets of non-multiplicative variables on each iteration together
with enough information to determine which non-multiplicative prolongations need
to be added to complete the basis. Whereas, Algorithm 7 directly computes the non-
multiplicative variables once in the first lines and then it only "updates" them as needed
as the algorithm progresses. Thus, the finite termination of the algorithm follows by
the same argument.

Next, we prove the correctness of the algorithm. Note that by Lemma 7.1 all sets
of non-multiplicative variables are correctly computed in the first for-loop. Next, as
usual, our algorithm must check whether every non-multiplicative prolongation of the
form ti · x j possesses a Janet divisor already in the set of terms, and whenever it does
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not, it must include it for completion.
Recall that the lex term ordering ≺ is J-ordering (Iglesias and Sáenz-de-Cabezón,

2025, Proposition 2.1); i.e. if the set of terms does contain a Janet divisor tk of ti · x j,
then ti ≺ tk. Hence, efficiently, Algorithm 7 starts the search from the term ti+1 and
proceeds in increasing order (see line 16). Moreover, when the algorithm encounters a
term ta that is lexicographically larger than ti · x j, it escapes the search, with the f lag
marked as false, indicating that this prolongation needs to be added for completion.
This is correct, as no term that is lexicographically larger than any other term can be its
Janet divisor, let alone its divisor. Additionally, storing the position of the immediately
next element in lexicographical order in the variable a allows the new element to be
inserted directly at that position, rather than being pushed to the end of the set and then
re-sorted.

Besides, note that because x j is non-multiplicative for ti and the Janet divisor tk ≻ ti,
then deg j(tk) = deg j(ti) + 1 = deg j(ti · x j) must hold. Hence, from Theorem 5.8 we
know that if in addition for every ℓ < j, degℓ(tk) ≤ degℓ(ti), the prolongation then does
not need to be added, as ti : tk = x j implies the existence of a Janet divisor already
among the terms. Thus, when that is the case, Algorithm 7 marks the f lag as true and
proceeds to the next non-multiplicative prolongation.

Really, all that remains to be proven regarding the correctness is that when new
elements of the form ti · x j are added to the set H in the algorithm, it only affects
the non-multiplicative variables of the terms that are positioned exactly between ti and
ti · x j. This is not only computationally beneficial from the point of view that the adjust-
ment of non-multiplicative variables becomes faster, but it also allows the algorithm to
completely insert all the required elements in one go, without having to go back to
consider variables that were initially multiplicative, as other iterative algorithms like
(Hashemi et al., 2025, Algorithm 1) do. The fact that the terms lex-larger than ti · x j

are not affected is a direct result of Lemma 7.1. Furthermore, applying Lemma 7.1
once again, if we can show that the set of non-multiplicative variables of ti remains
the same after the addition of any of its non-multiplicative prolongation, then we can
claim that all terms lex-smaller than ti are not affected either. This is clearly the case
since x j was already non-multiplicative and by the definition of the assignment of Janet
non-multiplicative variables the rest of them remain the same.

The minimality of the outputH follows from the same argument used in Theorem
5.12. A non-minimal Janet basis contains at least a term t that, when removed from
H , there exists a term t′ ∈ H that divides it involutively. However, due to the specific
J-ordering employed and the fact that the minimal generators of ⟨U⟩ are computed at
the beginning, such a situation cannot occur.

The proof of the complexity bound also follows a similar approach to that of Theo-
rem 5.12. For each newly computed element aux, determining its position and check-
ing its Janet divisor with respect to the current set H requires O(n|H| log(|H|)) op-
erations. Since the updated set H (after adding {aux}) remains sorted, adjusting the
non-multiplicative variables for each element requires O(n) operations by Lemma 7.1.
This adjustment is needed for elements ranging from the i-th to the a-th position (see
line 22), and thus the entire operation is performed in O(n|H|). Finally, since the size
ofH varies from k to l, the total complexity follows the claimed bound.
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The lex term ordering is, naturally, also well suited for the Janet-like division. Con-
sequently, Lemma 7.1 can be generalized to enable an efficient computation of all sets
of Janet-like non-multiplicative powers. The extension is done in a straightforward
manner from the previously used arguments:

Lemma 7.3. Let U = {t1, . . . , tk} ⊂ P be a lex-ordered set of terms, and let aℓ =
degℓ(ti+1) − degℓ(ti), where ℓ is the largest subindex such that degℓ(ti+1) > degℓ(ti) for
some 1 ≤ i < k. Then,

NMPJL,U(ti) = {x
aℓ
ℓ
} ∪ {xa j

j | j > ℓ and xa j

j ∈ NMPJL,U(ti+1)}.

Utilizing now Lemma 7.3 together with the Janet-like version of the arguments
used in Theorem 7.2, we can straightforwardly develop an algorithm analogous to Al-
gorithm 7 for the minimal Janet-like completion. To avoid repetitive content, we omit
the detailed description of it. In the following sections, we will refer to this particular
algorithm as Algorithm 8.

8. Computing Janet bases from Janet-like bases

Recall that, although the Janet-like division is not an involutive division, it pre-
serves all the algorithmic merits of the Janet division (Gerdt and Blinkov, 2005). In
fact, this is another indicator of the deep connection between the two divisions. More-
over, using some of the results from the last two sections based on SLB’s, we can assert
the following:

Proposition 8.1. Let J ⊂ K[x1, . . . , xn] be some monomial ideal, then the minimal
Janet-like basis of J is a subset of the minimal Janet basis of J .

Proof. The idea here is to show that every element in the minimal Janet-like basis is
also an element of the minimal Janet basis. Note that all minimal generators of J
must be in both the minimal Janet-like basis and the minimal Janet basis. Thus, let us
assume there exists some element of the minimal Janet-like basis hℓ < Gen(J). Recall
that the minimal Janet-like basis can be obtained using Algorithm 6. Thus, let m be
the first mixed term encountered via Algorithm 6 in F j and let hℓ = h j · xa

i such that
a is the highest integer for which xa

i | m and no xt | m for any t > i. Therefore, there
exists another element hk with k < j such that m = lcm(hk, h j)/h j. Besides, there
does not exist any other term m′ ∈ F j and any integer b < a such that xb

i | m′ and xi

is the highest variable appearing in m′. Let us now have a look at the elements that
are included during the Janet completion process via Algorithm 4. For this case, m
being mixed and a > 1 imply that deg(m) ≥ 2; hence, it needs to be decomposed.
Note that there may be other terms before m in F j that can have also degree 2 or
more; and thus, that now need to be decomposed before m yielding the addition of new
elements to the Janet basis. These terms are pure powers of variables with subindex
different from i. However, the insertion of these new elements does not compromise
the survivability of the term m, owing to the Janet minimization process employed in
this algorithm. When it comes to m, by Algorithm 4 a new element h j′ = h j · xi needs
to be added. Note that k < j; hence, degi(hk) = degi(h j) + a and degt(hk) = degt(h j)
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∀t > i. Thus, it is clear that hk ≻lex h j′ ≻lex h j. This implies that F j′ contains a
term m/xi of degree two or more with xi | m/xi since a > 1, but recall that now there
does not exist any other term m′ ∈ F j′ and any integer b < a − 1 such that xb

i | m′

and xi is the highest variable appearing in m′. Therefore, a new element h j′′ = h j′ · xi

needs to be added. After repeating this step a times we eventually reach the element
h ja = h ja−1 · xi = · · · = h j · xa

i = hℓ, which is also added during the Janet basis
monomial completion. This same process can be applied to all the subsequent elements
completing the Janet-like basis leading to the conclusion that every element in the
minimal Janet-like basis is, in fact, also an element of the minimal Janet basis.

Note that the minimal set of monomial generators of a given ideal is a subset of the
minimal Janet-like basis, which, as we have just seen, is itself a subset of the minimal
Janet basis. Furthermore, one can quickly deduce from the description of Algorithm 4,
combined with Lemma 5.2, that if any subset of the minimal Janet basis containing all
the minimal generators of a given ideal is used as input for Algorithm 4, then even if
the minimization of the inputted set is omitted (first line of the Algorithm), the output
will still be the minimal Janet basis of that ideal. This process of completing a Janet-
like basis to a Janet basis is what we coined as filling in the gaps process or FTG for
short. Moreover, during this process, for any given element h j of the basis, we call the
children of h j the elements that are added during the while loop that decomposes the
non-linear surviving terms in F j.

Lemma 8.2. Let J be a monomial ideal,H the minimal Janet-like basis of J andH ′

the minimal Janet basis of J . We have that NMJ(h j,H
′) = {xi | xa

i ∈ NMP(h j,H)} for
any generator h j ∈ H

′.

Proof. This is a direct result of the decomposition of non-linear terms in Algorithm 4
during the filling in the gaps process. Following Lemma 5.4 and the order used in
Algorithm 4, it is straightforward that the children added to completeH intoH ′ affect
the pure powers of variables, turning them into just variables for every set Fi. All
that is left to show is that, if done in this particular order, these sets do not change
as future children of other elements are added. In other words, new terms cannot
appear in the Fi’s that have already been linearized, even if new elements are placed
in front. Let us start with the minimal Janet-like basis H , following Algorithm 4,
after the first round of decomposition of non-linear terms all children of the smallest
lexicographical element are added. Let {h1, . . . , hk} be the lexicographically ordered
SLB composed of the elements in H plus the children of the last element. Clearly, Fk

now comprises only variables (following, of course, the Janet minimization process).
We must then show that Fk = NMJ(hk,H

′) no matter what the rest of the Fi’s look like.
To get a contradiction, let us assume there exists xt ∈ NMJ(hk,H

′) such that xt < Fk.
The only way this can still be true is if some child, h′, with degt(h

′) > degt(hk) and
degi(h

′) ≤ degi(hk) for all i > t where xt < Fk, is added during the Janet completion.
Note that this possible child h′ can only affect the terms in Fk if h′ ≻lex hk; thus,
degi(h

′) = degi(hk) for all i > t. We assumed that xt < Fk, which means that degt(hk) =
max{degt(hs) | hs ∈ {h1, . . . , hk} and degi(hs) = degi(hk) for all i > t}. Therefore, this
leaves us with two possible cases:
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• Case I: There exists hℓ ∈ {h1, . . . , hk} with degt(hℓ) > degt(hk) and degi(hℓ) =
degi(hk) for every i > t except at one index r > t where degr(hℓ) = degr(hk) − 1
in which case a possible child h′ = hℓ · xr will destroy our claim. However, hk

was the lexicographically smallest element, so this case is not possible.

• Case II: There exists hℓ ∈ {h1, . . . , hk} with degt(hℓ) > degt(hk) and degi(hℓ) ≤
degi(hk) for all i > t for which one of his children h′ = hℓ · xt. Again, this cannot
happen because either hℓ ≺ hk or else there exists m ∈ Fℓ such that xt is the
variable with largest subindex that divides m but then this would imply xt ∈ Fk,
and hence, our contradiction. Note that all the subsequent Fi’s, i.e. all sets with
index i < k, are not affected by the element hk nor by any other lexicographically
smaller element. Thus, we can now consider the subset {h1, . . . , hk−1}. We then
add all children of hk−1 and repeat the same process, obtaining the same outcome.

Lemma 8.3. LetH be the minimal Janet basis of J obtained through the filling in the
gaps process. All children of h j in H inherit the multiplicative and non-multiplicative
variables from h j.

Proof. Let us start with the minimal Janet-like basis of J . When viewed as an stag-
gered linear basis, we observe that F j = {x

ai
i | i ∈ {1, . . . , n}} for every element h j in

the basis (Theorem 6.5). We also know that if there exists ak > 1 such that xak
k ∈ F j,

then there exists a child of h j of the form h j · xk in H . Let us denote this element
as h j′ ; then it is clear that if we add this child to the minimal Janet basis, then all
xai

i ∈ F j with i > k will also belong to F j′ ; and hence, by Lemma 8.2, all such xi’s
will be non-multiplicative for both h j and h j′ in H . Thus, it just remains to show
that NMJ(h j′ ,H) ∩ {x1, . . . , xk} = {xi | xai

i ∈ F j and i ≤ k}. Note that ak > 1, thus
xak−1

k ∈ F j′ . Also, from the minimal Janet-like basis when viewed as an SLB, we ob-
serve that for any xai

i ∈ F j with i < k, there exists hℓ such that degi(hℓ) = degi(h j) + ai

and degt(hℓ) = degt(h j) for every t > i. Thus, h j′ ≻lex hℓ ≻lex h j, and hence, hℓ will
have a child hℓ′ = hℓ · xk in front of h j′ , i.e. ℓ′ < j′, which implies that each of these xi’s
will also be non-multiplicative for h j′ inH as desired. All that is left to check is that no
child can possess a non-multiplicative variable that is multiplicative for the parent (with
respect to the minimal Janet basisH). This can be easily shown by reductio ad absur-
dum, so, let us assume such a variable xi exists for an element h j′ that is a child of h j,
i.e. h j′ = h j · xq for some xq ∈ NMJ(h j,H). Then, because xi ∈ NMJ(h j′ ,H), by Theo-
rem 5.8, it implies that there exists an element hk ∈ H such that degi(hk) = degi(h j′ )+1
and degt(hk) = degt(h j′ ) = degt(h j) for every t > i. Note that if i ≥ q then that would
automatically imply that xi ∈ NMJ(h j,H), thus, a contradiction to our assumption.
Otherwise, assume i < q: then again by Theorem 5.8, there exists some hk ∈ H such
that:

degℓ(h j′ )


= degℓ(hk) − 1 = degℓ(h j) , when ℓ = i
= degℓ(hk) = degℓ(h j) , when i < ℓ < q
= degℓ(hk) = degℓ(h j) + 1 , when ℓ = q
= degℓ(hk) = degℓ(h j) , when ℓ > q.

Note that this implies that hk ≻ h j; and hence, xq is the variable with largest subindex
that divides m = lcm(hk, h j)/h j, while x2

q ∤ m. Thus, we can conclude that in this

23



scenario, either m = xq, which implies thatH is not the minimal Janet basis ofJ since
h j′ would become redundant, or m is mixed. In the latter case, the decomposition of
m should have happened during the Janet-like completion; hence, h j′ is not a child of
any element but it is instead an element of the Janet-like basis, which provides the last
contradiction that completes the proof.

By combining these last two lemmata, we obtain as a direct result an explicit
method to describe the entire minimal Janet basis in terms of the elements of the mini-
mal Janet-like basis and the non-multiplicative powers of each element:

Theorem 8.4. Let H = {h1, . . . , hs} be the minimal Janet-like basis of a monomial
ideal J ⊂ P. For each hi ∈ H , let Ti be the finite set of terms in the quotient ring
K[x j | x

a j

j ∈ NMP(hi,H)]/⟨NMP(hi,H)⟩. Then, we have that

H ′ = {hi · t | hi ∈ H and t ∈ Ti}

is the minimal Janet basis of J , and furthermore,

| H ′ |=

s∑
i=1

∏
x

a j
j ∈NMP(hi,H)

a j

It also is worth mentioning that it is already known from (Hashemi et al., 2023,
Proposition 6.10) how to obtain a Janet basis from a Janet-like basis, and even how
to read off the whole Janet complementary decomposition from the minimal Janet-like
basis (Hashemi et al., 2022, Proposition 24). Here, we present an alternative approach
to this process. Furthermore, since Lemmata 8.2 and 8.3 automatically provide the
non-multiplicative variables for all elements of the minimal Janet basis, a significant
portion of the computational effort is saved. In conclusion, by combining these lem-
mata with the last theorem, we are basically claiming that all the information about the
minimal Janet basis is encoded inside the minimal Janet-like basis. Thus, we provide
a notably more efficient method to compute the minimal Janet basis, as obtaining the
Janet-like basis is generally far less computationally expensive. This efficiency will be
demonstrated in the following section.

9. Implementation and performance comparison of algorithms

Our final section is devoted to the implementation of the algorithms presented
throughout the paper. We first compare the efficiency of the proposed algorithms for
computing minimal Janet bases. Second, we compare the efficiency of algorithms that
compute the minimal Janet-like bases. And lastly, we compare the efficiency of di-
rectly computing the minimal Janet basis versus computing the Janet-like basis using
the fastest algorithm and then completing it to the Janet basis using the FTG process,
as described in the immediately preceding section.

For our experiments, we consider various random monomial ideals. There are many
different strategies to produce randomness when dealing with monomial ideals, see for
instance the approach in (De Loera et al., 2019). Our simple approach is as follows: Let
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n, g and d be three positive integers. We build g monomials in n variables by randomly
choosing an exponent between 0 and d for each of the variables and multiplying these
powers of variables. Since there might be divisibility relations among the monomials
produced in this way, we keep on adding generators until we reach a number of g
mutually non-divisible monomials. We then consider the ideal minimally generated by
these g monomials. In order to avoid extreme cases and unwanted variations in the
execution times, for each choice of n, g and d we generate ten monomial ideals, and
run each algorithm five times on each of these ideals, taking then the average time of
these five runs to get a more accurate measure of the computing time. Technically,
n represents the number of variables, d the maximum degree, and g the number of
generators. However, in the tables, only the parameter n is shown since, for simplicity,
we always set n = d = g for all our examples. We do so because then the variation
in the sizes of the ideals and their corresponding Janet bases allows us to observe how
the computation times vary. For each value of n = d = g we compute and write in the
tables the average value of the computing time in the ten ideals generated for that value
and taken from the average of the five runs for each ideal. In Tables 1, 2 and 3 column
Size JB and Size JLB indicate the average size of the corresponding minimal Janet
and Janet-Like bases respectively.

Our algorithms are implemented in the C++ library CoCoALib ((Abbott and Bi-
gatti)). All experiments were run on an Apple M3 Pro processor with 6 Performance
Cores (up to 4.06 GHz) and 6 Efficiency Cores (2.8 GHz) and 18 GB RAM, running
under MacOsX operating system. All times in the tables are given in seconds, and the
best time for each case is written in boldface. In all tables, OOT stands for Out Of Time,
indicating that the execution of the algorithms was stopped after two hours, and OOM
stands for Out Of Memory, meaning the system ran out of RAM during the execution
of the algorithms.

9.1. Computation of Janet bases
For the direct computation of minimal Janet bases, we introduced a recursive Al-

gorithm 1. This algorithm presents a more efficient approach to recursive minimal
completion compared to existing algorithms, such as Hashemi et al. (2023, Algorithm
3), and will therefore serve as the representative for recursive algorithms. The com-
puting times for this algorithm are given in the J Recursive column of Table 1. On
the other hand, Algorithm 4 computes minimal Janet bases using a different approach,
primarily based on SLB’s. The times for this algorithm are given in the J SLB column
of Table 1. Lastly, we also introduced Algorithm 7, an innovative iterative approach
which uses the lexicographic order of terms to its advantage to achieve minimal com-
pletion more efficiently than some existing algorithms, such as (Hashemi et al., 2025,
Algorithm 1). In our testing, Algorithm 7 proved to be significantly more efficient than
the other iterative algorithms; thus, it is selected to be the representative for iterative
algorithms.

The actual implementation of these algorithms varies slightly from the schematic
descriptions, as we incorporated some optimizations beyond what was outlined in the
previous sections. For the implementation of the recursive Algorithm 1, the differences
are minimal, limited to minor details such as strategic reordering of monomials to
avoid potentially redundant computations and to improve computational efficiency. On
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the other hand, more significant changes were implemented in the SLB Algorithm 4.
Specifically, instead of computing all colon operations with lexicographically larger el-
ements for each basis element and then applying the proper Janet minimization process
(as described in Section 5), we optimize the computation by leveraging the properties
of the Janet minimization process as well as the fact that the basis is kept lexicograph-
ically ordered throughout the whole completion process. Hence, in this improved ap-
proach, colon operations are computed one by one, and those operations yielding terms
that would have been eliminated during the minimization process are now skipped. At
the same time, we track the position within the process to ensure that the new elements
that will complete the basis are inserted in the correct place, avoiding the need for any
reordering of the elements. Additionally, we introduced a break point that halts the
search for significant colon operations once the last variable appears in the Fi sets, sav-
ing considerable computational time by avoiding irrelevant calculations. For the actual
implementation of the iterative Algorithm 7 some minor details are to be noted. The
most relevant one is that the adjustment of the sets of non-multiplicative variables after
a prolongation ti ·x j is added is actually applied to an even smaller set of terms, the ones
in positions between the prior prolongation and the newly added one. Furthermore, this
adjustment is done in an optimized manner, as only the variables with subindex lower
than j can actually be affected.

n Size JB J General J Recursive J SLB J Iterative
6 193.8 0.01159 0.00036 0.00037 0.00012
7 1180.5 0.09350 0.00156 0.00270 0.00068
8 5465.2 1.05535 0.00779 0.01831 0.00410
9 38854.8 29.28535 0.06880 0.21304 0.04236

10 140924.6 167.92882 0.26584 0.94272 0.17657
11 1175672.3 OOT 2.67588 11.37893 1.96186
12 5273657.1 OOT 12.76148 65.01852 11.14658
13 21563782.0 OOT 58.37471 333.61277 56.80410

Table 1: Comparison between C++ implementations of Janet basis computation

The table includes another column, J General that shows the times obtained from
the CoCoALib implementation of the Janet-basis algorithm described in (Albert et al.,
2015). This comparison is not entirely fair, as the algorithm in question is designed
for general polynomial ideals, whereas ours are specialized for monomial ideals. How-
ever, the algorithm allows for the selection of one of four different strategies. After
some testing on the four strategies, one of them proved to be significantly more effi-
cient than the others for the monomial ideals we generate. Therefore, we include this
algorithm with that specific strategy in the comparison as a benchmark representing
the previous state-of-the-art implementations of Janet bases algorithms. The results in
Table 1 demonstrate how much one can gain by utilizing a specialized algorithm for
the monomial case. For small values of n, the iterative algorithm clearly performs best
However, with increasing n the recursive algorithm catches up and is finally at almost
the same level as the iterative one. The SLB algorithm is significantly slower.
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9.2. Computation of Janet-like bases
For the computation of minimal Janet-like bases, we will also consider one recur-

sive algorithm, one algorithm based on SLB’s and one iterative algorithm (Algorithms
2, 6 and 8). As before, we use optimization on the actual implementation, which then
differs slightly from the description given in previous sections. These optimizations
are nearly identical to those described in the preceding subsection, but they are now
adapted to the Janet-like counterpart.

As the following table shows, both the recursive Algorithm 2 and the iterative Al-
gorithm 8 seem to be our most efficient choice again. The computing times for this
algorithm are reported in the J-L Recursive column and J-L Iterative column
of Table 2, respectively. For random examples with "smaller" bases, the iterative al-
gorithm again outperforms the recursive one. But as for Janet bases, the recursive
algorithm catches up as n increases. Since here it is possible to proceed to larger values
of n, at the end the recursive algorithm even overtakes and becomes the fastest one.
The SLB algorithm is again not competitive compared to these two.

n Size JLB J-L Recursive J-L SLB J-L Iterative
6 106.6 0.00012 0.00008 0.00003
7 361.2 0.00029 0.00030 0.00010
8 1112.8 0.00095 0.00138 0.00040
9 3636.6 0.00377 0.00677 0.00180

10 9993.2 0.01137 0.02550 0.00612
11 31962.4 0.04245 0.11229 0.02438
12 97640.4 0.13468 0.43299 0.09495
13 266318.6 0.40172 1.46883 0.31463
14 1575265.8 2.48607 11.54700 2.29572
15 4625245.1 8.26236 41.58812 8.10513
16 12822586.0 22.61042 124.85532 20.73170
17 53812460.0 102.29907 774.50050 106.93616
18 166906166.6 396.76583 2567.41633 414.66800

Table 2: Comparison between C++ implementations of Janet-like basis computation

9.3. Direct Janet basis computation vs. Janet-like computation plus FTG completion
The proposed algorithms allow us to compute the minimal Janet basis of a mono-

mial ideal in two ways. One method is through direct computation, either using Algo-
rithm 1, Algorithm 4 or Algorithm 7, and the other method involves first computing a
Janet-like basis (for which we use the implementation of Algorithm 2 or Algorithm 8),
which is usually a much faster computation, and then completing this Janet-like basis
into the full Janet basis via the FTG process, as described in Section 8. Table 3 shows
the time comparison between these methodologies using our algorithms. Column
Janet shows the time taken by the best Janet basis algorithm, column Janet-like
shows the time of the best Janet-like basis algorithm, column FTG shows the time of
the FTG completion from the Janet-like basis to the Janet basis (added up to the time
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taken to compute the Janet-like basis). Columns size JB and size JLB show the size
of the corresponding Janet and Janet-like bases, respectively.

n size JB size JLB Janet Janet-like FTG
6 193.8 106.6 0.00012 0.00003 0.00006
7 1180.5 361.2 0.00068 0.00010 0.00025
8 5465.2 1112.8 0.00410 0.00040 0.00110
9 38854.8 3636.6 0.04236 0.00180 0.00772
10 140924.6 9993.2 0.17657 0.00612 0.02953
11 1175672.3 31962.4 1.96186 0.02438 0.31014
12 5273657.1 97640.4 11.14658 0.09495 1.32594
13 21563782.0 266318.6 56.80410 0.31463 8.53521
14 OOM 1575265.8 OOM 2.29572 OOM
15 OOM 4625245.1 OOM 8.10513 OOM

Table 3: Comparison between direct Janet and Janet-like strategies for Janet basis computation

The results in Table 3 indicate that the most efficient way to compute Janet bases is
to actually compute a Janet-like basis first and then complete it to a Janet basis using
the FTG process. Comparing the times taken by this approach with those of the current
CoCoALib implementation of Janet bases (shown in the J General column of Table
1), we observe an extremely large performance gap. However, it is worth pointing out
that for almost any purpose this filling is not necessary, as the Janet-like basis provides
the same information as the Janet basis.

9.4. Dependency of the computing time on number of variables and size of the basis
The data on the tables in the previous sections demonstrate that the size of the bases

dominates the computation times, in the sense that on both Janet and Janet-like bases
computations, there is a linear relation between the size of the computed object and
the time required to compute it, while the dependency is exponential with respect to
the number of variables. This can be seen in Figure 1 where the results for all the
examples that we ran are shown. The graphics in the top row show (using a log scale
on the vertical axis) the exponential dependency of the computing time on the number
of variables. The bottom row of the figure shows (on a double logarithmic scale) the
relation between the size of the Janet and Janet-like basis and its computing time. Here
we see a linear relation. These results are compatible with the general complexity
theory of Gröbner bases (Mayr, 1997), which can be even double-exponential in the
worst case.

Finally, the graph in Figure 2 (using a double logarithmic scale) suggests a linear
relation between the size of the Janet and the Janet-like bases in our examples. This
ratio could be dependent on the type of examples used for our computation, but it poses
an interesting question on how to estimate the ratio between the size of Janet and Janet-
like bases in general. This is considered as a future line of research and exceeds the
scope of the present paper.
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