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Abstract

There exists a well established differential topological theory of singularities of ordinary differ-
ential equations. It has mainly studied scalar equations of low order. We propose an extension of
the key concepts to arbitrary systems of ordinary or partial differential equations. Furthermore,
we show how a combination of this geometric theory with (differential) algebraic tools allows
us to make parts of the theory algorithmic. Our three main results are firstly a proof that even
in the case of partial differential equations regular points are generic. Secondly, we present an
algorithm for the effective detection of all singularities at a given order or, more precisely, for the
determination of a regularity decomposition. Finally, we give a rigorous definition of a regular
differential equation, a notoriously difficult notion, ubiquitous in the geometric theory of dif-
ferential equations, and show that our algorithm extracts from each prime component a regular
differential equation. Our main tools are on the one hand the algebraic resp. differential Thomas
decomposition and on the other hand the Vessiot theory of differential equations.
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1. Introduction

Many different forms of singular behaviour appear in the context of differential equations and
many different views have been developed for them. Most of them are related to singularities
of individual solutions of a given differential equation like blow-ups or shocks, i.e. either a
solution component or some derivative of it becomes infinite. By contrast, we will be concerned
with singularities of the differential equation itself. Using the geometric theory of differential
equations [1, 2], (systems of) differential equations are identified with subsets of suitable jet
bundles and singularities are special points on these subsets.

*We dedicate this work to the memory of our friend Vladmir P. Gerdt who introduced us to the Thomas decomposition
and discussions with whom started this project.

Email addresses: markus.lange.hegermann@th-owl.de (Markus Lange-Hegermann),
daniel.robertz@plymouth.ac.uk (Daniel Robertz), seiler@mathematik.uni-kassel.de (Werner M. Seiler),
mseiss@mathematik.uni-kassel.de (Matthias Seif3)

IThe work of the last two authors was partially supported by the bilateral project ANR-17-CE40-0036 and DFG-
391322026 SYMBIONT.

Preprint submitted to Elsevier July 28, 2021



Within differential topology, singularities of smooth maps between manifolds [3 4] have
been much studied. The geometric singularities of differential equations, which are our main
topic here, may be viewed as a special case (overviews over some basic results can be found in
[S] or [6]). The main emphasis in the literature has been on the classification of singularities
(see e. g. [7]) and on the construction of local normal forms for them. Of course, such questions
can be reasonably treated only in sufficiently small dimensions and hence most works consider
only scalar ordinary differential equations of first or second order. With similar techniques,
singularities of solutions of partial differential equations have been studied, e. g. in [8} 9], but as
already mentioned this represents a different problem.

By contrast, we are concerned with the effective treatment of general systems of differen-
tial equations, i.e. also of under- or overdetermined systems of ordinary or partial differential
equations. For this purpose, we extend the needed concepts from differential topology to sys-
tems which are not of finite type and we combine them with (differential) algebraic algorithms to
make them effective. Such a combination of geometric and algebraic approaches to singularities
appeared already in the work of Hubert [[10] on scalar first-order ordinary differential equations.
However, we cover much more general situations than she did; in particular, we admit systems,
equations of arbitrary order and partial differential equations.

We concentrate in this work on the definition and the algorithmic detection of singularities
of general differential systems. The analysis of the local solution behaviour around a singularity
represents a much harder problem that probably cannot be solved at the same level of generality
or effectivity. The algebraic techniques employed by us require that we work over the complex
numbers and that we restrict to differential equations with polynomial nonlinearities. From the
point of view of applications, the latter restriction is not very serious, as most differential systems
arising in applied sciences are polynomial.

Studying fully nonlinear or implicit systems is not at all straightforward and we need to
address several challenges. For systems of differential equations, the corresponding subsets of
jet bundles are no longer hypersurfaces leading to a much more complicated relation between
the given differential system and the subsets defined by it. As a further complication, general
systems of differential equations may hide integrability conditions, which must be exhibited
explicitly before statements about the existence and uniqueness of solutions can be made. These
facts make case distinctions (which are related to the appearance of singularities) unavoidable.
Furthermore, in the case of partial differential equations the completion may require to move to
higher-order jet bundles, so that a priori it is not even clear at what order any further analysis
should be performed.

Our approach proceeds in two steps: a differential one and an algebraic one. In the first step,
we use the differential Thomas decomposition [11,[12]] (see [13} 14} 15,116} [17] for modern treat-
ments) to split the input system into a finite set of so-called simple differential systems. Besides
the splitting, the differential step also takes care of the just mentioned problem of hidden integra-
bility conditions, as it includes a completion procedure. Each of the arising simple differential
systems is then analysed separately. This decomposition also addresses singular integrals, which
are automatically isolated into separate simple systems, whereas the general integral corresponds
to other systems. However, we do not claim to detect whether a system corresponds to singular
integrals, a difficult question closely connected to the Ritt problem [18, §IV.9]. An alternative to
the Thomas decomposition is the Rosenfeld-Grobner algorithm [19]); the splittings it performs,
however, do not in general result in decompositions of the solution set into pairwise disjoint sub-
sets. An elimination method for differential algebra based on splittings analogous to Thomas’
ones was developed by Seidenberg [20].
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For the algebraic step, we must first choose a suitably high order in which we want to analyse
the simple differential system. We associate with the differential system a polynomial radical
ideal in the coordinate ring of the jet bundle of the chosen order and introduce this way algebraic
jet sets as a geometric model of the differential system (Definition 2.T). Over such sets, we
study their Vessiot cones, which are fundamental for defining geometric singularities. Using the
algebraic Thomas decomposition, we partition algebraic jet sets with respect to the behaviour of
the Vessiot cones and show that such a decomposition is equivalent to the identification of all
geometric singularities. In order to find algebraic singularities, we augment this procedure with
a suitable version of the Jacobian criterion from algebraic geometry.

In the algebraic step, we must study more general situations than usually considered in the
differential topological approach to singularities. Hence, we extend this approach in several di-
rections. We provide a more general definition of geometric singularities that can also handle
partial differential equations (Definition [4.I). This requires a considerably more involved def-
inition taking into account a whole neighbourhood of the studied point, whereas the classical
definitions use pointwise criteria. In the case of systems, one can no longer expect that singulari-
ties are isolated points, as it is traditionally done at least for irregular singularities. Therefore, we
introduce the novel notion of a regularity decomposition of an algebraic jet set (Definition
as a partitioning into subsets on which the relevant geometric structures (the Vessiot and symbol
cones) show a uniform behaviour.

Our first two main results concern these generalisations. Theorem [4.7] proves that the regular
points form a Zariski open and dense subset and thus justifies calling the other points singular.
In the situations traditionally considered in differential topology or analysis, i. e. for differential
equations of finite type, this statement is fairly trivial. As we also include equations which are
not of finite type, we must prove the existence of a smooth regular involutive distribution of the
right dimension on some neighbourhood of any regular point, which requires the application of
advanced results from the geometric theory of differential equations. Our second main result
concerns the existence of regularity decompositions for arbitrary differential systems. We pro-
vide here a constructive proof by providing an explicit algorithm for the effective construction of
such decompositions (Algorithms[5.3]and [5.14) and proving its correctness (Theorem [5.13).

Our third and final main result concerns an old problem in the geometric theory of differ-
ential equations. There one usually considers only regular differential equations. However, in
many cases not even a precise definition of this term is given and an effective test for regularity is
still unknown to the best of our knowledge, as it involves considering not only one order, but all
orders. Hence, we first provide a rigorous definition of this notion within our framework (Def-
inition [6.1]) and then Theorem [6.3] asserts that our algorithm for the construction of a regularity
decomposition automatically identifies in each irreducible component a Zariski dense subset that
is a regular differential equation.

This article is structured as follows. In Sections [2{ and [3| we combine differential algebraic
concepts with the geometric theory of differential equations, leading to algebraic jet sets. In
Section [4 we extend the classical definition of singularities to arbitrary systems of differential
equations, including partial differential equations, and show that regular points are dense. The
subsequent Section [5introduces our concept of a regularity decomposition of a differential sys-
tem and presents an algorithm to compute this decomposition. Then, Section [¢]looks at regular
behaviour in prolongations and where it appears in our decomposition. Section [/| treats some
examples in detail. Finally, some conclusions are given in Section|[8]



2. Connecting Algebra and Geometry

In this section, we lay the groundwork to formalise and effectively prove the theorems of
the later sections, by adapting and combining the geometric theory of differential equations and
methods from (differential) algebra. For the convenience of the reader, we briefly summarise
some basic concepts of the geometric theory in Appendix [C| and (differential) algebra in the
Appendices[A]and [B]

This combination of methods represents a non-trivial task, as the philosophies behind the
used geometric and algebraic approaches are very different. In differential algebra, one always
considers all orders simultaneously by studying differential ideals. This implies that one has
to deal with infinitely many variables. Such an approach is particularly adapted to tackle com-
pletion questions, i. e. the construction of hidden integrability conditions, for which it is unclear
how geometric approaches could be extended in the presence of singularitiesﬂ By contrast, in the
geometric theory one works typically in a jet bundle of fixed order, which allows to define sin-
gularities as points with special properties, whereas the Kolchin topology in differential algebra
employs a rather generic notion of points not suitable to describe singularities.

As our algebraic tools require that the underlying field is algebraically closed, we consider
throughout complex differential equations, i.e. all variables are assumed to be complex-valued.
While the usual starting point of the geometric theory is an arbitrary fibred manifold 7 : & — X,
we consider only trivial bundles with total space & = C" x C™, base space X = C" and x the
projection on the first factor (the coordinates (x',...,x") of the base space thus represent the
independent variables and the fibre coordinates (', ..., u™) of the total space the dependent vari-
ables of our differential equations). As all our considerations are of a local nature, this restriction
is not serious. But it allows us to identify the total spaces of the jet bundles J,m with affine spaces
ZA% of suitable dimensions d and thus apply standard concepts from algebraic geometry to these
spaces. We use two topologies on J,m, namely the Zariski topology and the standard topology
induced by the Euclidean metric. To avoid confusions, we will always explicitly write Zariski,
respectively metric, open or closed.

Definition 2.1. An algebraic jet set of order ¢ is a locally Zariski closed subset J, C Jym of a
jet bundle of order ¢ (i.e. the difference of two varieties in J,m). It is an algebraic differential
equation of order £, if in addition the metric closure of 7‘(J) is the whole base C". An algebraic
jet set or an algebraic differential equation is called irreducible, if it is an irreducible locally
Zariski closed subset.

Compared with the classical geometric Definition [C.2] of a differential equation, varieties
are used here instead of manifolds which is simultaneously a generalisation and a restriction.
On one side, we permit that the differential equation J, contains singular points in the sense
of algebraic geometry. On the other side, we consider exclusively differential equations which
can be globally described as the solution set of an algebraic system on J,m with polynomials
pi»q; € Dy (see Appendices [A]and [B]for notations and definitions).

Deﬁnitionfurthermore requires that the restriction of the canonical projection ¢ : J,mr —
X to the set J; is a surjective submersion. We are relaxing this requirement in two directions:
surjectivity is replaced by a closure condition for the image and we do not impose a maximal

2A fundamental problem arises already in the geometric definition of a prolonged equation, if the given equation
is not a manifold but only a variety. Thus basic notions like formal integrability or involution are highly non-trivial to
generalise to equations admitting singularities, and to our knowledge, nobody has done this so far.
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rank condition. The second relaxation is crucial for the definition of geometric singularities.
Surjectivity of the restricted projection represents a geometric way of saying that the independent
variables are indeed independent, as otherwise our differential equation could imply relations
between them. However, this idea is also captured by our condition on the metric closure of its
image and for an equation like xu’ = 1 surjectivity represents too strong a condition. We use the
metric closure here instead of the Zariski one, as for the analysis of the local solution behaviour
around singularities (which we will not do in this work) it is important that exceptional points
may be considered as the limit of a sequence of points in 7°(J).

In applications, the typical starting point is a differential system of the form S = {p; =
0,....,ps;=0,91 #0, ..., g # 0} as introduced in (D) in Appendix [B|rather than an algebraic
differential equation as defined above. Thus we start on the differential algebraic side and discuss
now how we can obtain geometric objects (and algebraic descriptions of them). It turns out that
this process involves a number of subtleties requiring a careful discussion.

We associate with such a differential system S the differential ideal

Taw(S) :=(prs....pIa €D
generated by the equations in S. It induces for any order £ € INj the algebraic ideal
1(8) = Lan(S) N D¢ € Dy

as the corresponding finite-dimensional truncation. Note that this ideal automatically contains
all hidden integrability conditions up to order £. The inequations in the differential system S
are also used to define for any order £ € Ny an algebraic idealE] however, in a slightly different
manner:

t
K(S):=(Qp,  with 0= [] g
|
ord](q/)st’

These ideals lead then to the algebraic jet sets
Je(8) 1= Sol*(14(8)) \ SOI*(K(S)) C Jer (1)

consisting of all points of J,rr satisfying both the equations and the inequations in S, interpreted
as algebraic equations in Jymr. Since their definition is based on the differential ideal 74 (S ),
these sets satisfy for any £ > 0 the inclusions nﬁ*k(j rk(8)) € J¢(S). In fact, we always have

ﬂg”‘(Sola(]A' k(S ))) = Sola(f' ¢(S)), but the inequations may lead to a strict inclusion of the above
jet sets [211].

Remark 2.2. While it is possible to define the ideals 7 ¢(S) and the algebraic jet sets j ¢(§) for any
order ¢ € Ny, these ideals and sets are really meaningful only if no equation p; in the underlying
differential system is of an order greater than £. Assuming that the system S is solvable and the
sets J¢(S) are algebraic differential equations, their solution sets are otherwise not comparable,
as all equations in S of order greater than £ are ignored in the construction of (S ). In particular,
for different values of ¢ the corresponding equations Ju(S) may have different solution sets. Note
that the orders of the inequations in S are irrelevant here, as they should be considered more as
conditions on allowed initial data. From now on, we always assume that ¢ is sufficiently large.

3Note that it is pointless to introduce a differential ideal defined by the inequations, as differentiating an inequation
does not lead to a condition that has to be satisfied by any holomorphic or formal solution of the differential system S.
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While this construction of the algebraic jet sets Ju(S) appears very natural, it faces a number
of serious challenges making it inadequate for our purposes:

(i) There may exist differential polynomials that vanish on every solution in Sol!(S), but are
not contained in the differential ideal 7 4;5(S).

(ii) It is not so easy to study the algebraic jet sets j}(S ), as e. g. the ideals 7 ¢(§) are gen-
erally not radical—this is a consequence of (i)—and thus not the vanishing ideals of the
underlying variety. In particular, it is not immediately obvious whether the algebraic jet
sets are non-empty. Furthermore, the algebraic jet sets J;(S) are not necessarily algebraic
differential equations, as it is not guaranteed that their projection 7(J (S )) satisfies the
closure condition of Definition 2.1}

(iii) The effective determination of bases for the algebraic ideals 7 ¢(S) is non-trivial, because
of the possible existence of hidden integrability conditions.

(iv) The algebraic jet sets J;(S) may be too small, as interpreting differential inequations as
algebraic ones leads to a change in their semantics eliminating many “interesting” points.
Assume for simplicity that the differential system S contains the (differential) inequation
u, # 0. It entails that the x-derivative of any solution of S can never be the zero function.
Nevertheless, it is well possible that the x-derivative of a solution possesses zeros and thus
the corresponding jets of this solution have a vanishing u,-coordinate. However, no point
on a set j((S) with £ > 0 can have a vanishing u,-coordinate, as the algebraic system
describing j’ ¢(S) contains u, # 0 as an (algebraic) inequation [21]].

Challenge (i) requires a differential Nullstellensatz for differential systems, i.e. an extension
of Theorem E] that also includes inequations. [[17, Lemma 2.2.62] asserts that the vanishing
ideal of Sol!(S) is given by the differential ideal

ZL4in(S) = \/jdiff(s) Q0 CcD  with Q= l_[qj. (2)
=1

Hence, as a first step, we must replace the differential ideal Taie(S) by this ideal. However, using
directly the above definition of 7 4;(S) makes its explicit determination rather expensive because
of the required radical computation (so that Challenge (iii) becomes even more pronounced).
Our next step towards overcoming the mentioned difficulties consists of restricting to simple
differential systems. For any differential system S, a differential Thomas decomposition provides

us with simple differential systems S 1, ..., S such that Sol%(S) is the disjoint union of the sets
Sol!(S;). Hence, using such a decomposition we may analyse instead of the original system S
one by one the simple systems S,...,S,. Recall, however, that such a decomposition is not
unique.

So we assume from now on that S is a simple differential system. For simple systems, [[17,
Prop. 2.2.72] entails that the ideal 7 4;#(S) defined in (IZ]) may alternatively be constructed via a
simple saturation without an explicit radical computation:

Tn($) = Tan($): @ with Q= [ [(init(p) - sep (py)) - (3)
i=1

Note that now we do not saturate with respect to the inequations in S but with respect to the prod-
uct of the initials and separants of all the equations in the differential system § E] As before, we

4Given an arbitrary differential system S, let S1,..., Sk be the simple systems of any differential Thomas decompo-
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use the differential ideal 7 4;(S) to introduce for any sufficiently large order ¢ (see Remark
the algebraic ideal
I,(S):=Law(S)NDe € Dy 4)

Since the differential ideal 7 4;(S) is radical, the same is true for all the finite truncations 7 ,(S),
which greatly simplifies the study of their varieties. Our steps so far suggest to consider instead
of the sets J¢(S) the algebraic jet sets

Je(S) = Sol*(Z(S)) \ Sol*(K¢(S)) S Jer. )

Lemma 2.3. Given a simple differential system S, these algebraic jet sets satisfy n’;”(j e+k(S)) =
TJ(S) for all prolongation orders k > 0.

Proof. As already mentioned above, the fact that the algebraic ideals 7,(S) stem from a dif-
ferential ideal entails that ﬂ’;”(Sola(I k(S ))) = Sol*(Z¢(S)). Since we are now dealing with
a simple differential system, no leader of an inequation is a derivative of a leader of an equa-
tion and the leaders of all equations and inequations are pairwise different. Hence, we have

ﬂjff(SO]a(‘Kmk(S))) = Sol*(Ke(S)). O

Note that this result resembles the definition of formal integrability in the geometric theory
of differential equations [2| Def. 2.3.15]. However, many regularity assumptions are made in
the geometric theory and given a fibred submanifold J, C J,x, its prolongation Jyx C Jeuim
is defined via an intrinsic geometric process. Formal integrability is then a special property of
some submanifolds J, encoding the absence of hidden integrability conditions. In our approach,
it is an automatic consequence of the use of a differential ideal and the simplicity of the defining
differential system.

Remark 2.4. From a geometric point of view, saturations as they appear in (2) and (3), respec-
tively, have the following meaning: Sol*(1 : J*) is the Zariski closure of the set Sol*(1) \ Sol*(J).
Thus, since the same ideal 7 4;3(S) appears in ) and (3), the variety Sol*(Z4(S)) is the Zariski
closure of the set obtained by removing from Sola(j' ¢(S)) either all points at which a separant or
an initial of an equation in the system S vanishes or Sol*(%;). In both cases, the Zariski closure
restores many of the removed points. This is important for us, as most of the singularities we are
interested in are actually points of this kind.

However, if a whole irreducible component of Sola(f ¢(S)) consists only of such removed
points, then it remains removed. Indeed, there are two possibilities for such a component. Either
it does not define an algebraic differential equation on its own. Then trivially it cannot have
any solutions and there is no point in looking for singularities. Or if it is an algebraic differ-
ential equation, then we analyse it elsewhere. Indeed, recall that we obtained a simple system
only by computing a differential Thomas decomposition of our original system and the removed
component corresponds to some other simple system arising in this decomposition.

sition of it. Then [17, Prop. 2.2.72] yields the ideal decomposition

k
T4n(S) = ﬂ Laig(S): O,
i=1
where Q; is the product of the initials and separants of the equations in S;. This intersection is in general not minimal,
but no effective way is known to decide whether or not an ideal in this intersection is superfluous, which is again the
so-called Ritt problem [18} §IV.9].
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By [22, Thm. 1.94], the ideal 7,(S) is furthermore equidimensional in the sense that all of
its associated primes possess the same dimension, which excludes in particular the existence of
embedded prime components. This represents a further simplification entailed by the restriction
to simple systems.

Remark 2.5. It follows from [22|, Cor. 1.96] that the set of equations in any simple differential
system forms a regular chain. Hence, the ideals 7(S) and Z,(S) are (differentially resp. alge-
braically) characterisable, i.e. ideals defined by characteristic sets (cf. 23] 24] for a survey of
the properties of such ideals and [23] for an application).

Even after this replacement, Challenge (iv) remains open and indicates that we should en-
large the sets J,(S). However, for a general algebraic differential equation J, we face another
challenge. If we consider the subset of J, obtained as the union of the images of all prolon-
gations jeo of classical solutions of the equation, then this subset may cover only a small part
of J, (this happens in particular, if hidden integrability conditions exist). As one of the main
aspects of singularities is an analysis of the local solution behaviour in their neighbourhood, we
only want situations where this subset lies dense in the considered differential algebraic equation.
This motivates the following notion.

Definition 2.6. The algebraic differential equation J,; C J¢r is locally integrable, if [, contains
a Zariski open and dense subset R, C J, such that for every point p € R, at least one classical
solution o exists with p € im jyo.

In general it is difficult to decide whether a given algebraic differential equation J, € J,7 is
locally integrable, as this obviously requires an existence theory for solutions. In particular, such
a decision cannot be made by a purely geometric analysis of J,, but requires the considerations
of higher-order equations, too (large parts of [2] are concerned with this question in the regular
case). However, the situation is different under our assumption of a simple differential system,
as for such systems the local integrability is essentially part of their definition. More precisely,
we obtain the following result which already indicates how the above defined algebraic jet sets
J¢(S) can be enlarged without losing this property.

Proposition 2.7. Let S be a simple differential system with respect to a Riquier ranking and
consider for an arbitrary order € € N the above defined algebraic jet set J;(S). Then its Zariski
closure J¢(S) is a locally integrable algebraic differential equation.

Proof. Obviously, J¢(S) is Zariski dense in J,(S) and it suffices to prove that J,(S) is a locally
integrable algebraic differential equation. The proof of the local integrability essentially boils
down to an extension of Remark [B.5] where the construction of formal power series solutions is
discussed. We consider the Zariski open subset R, € J¢(S) consisting of all smooth points at
which no separant or initial of an equation in S vanishes. By the considerations in Remark [2.4}
Ry is even Zariski dense in J;. As remarked in [16, Cor. 11], one can now straightforwardly
adapt the proof of Riquier’s Theorem [B.2]and conclude that the formal power series constructed
in Remark [B.5|converges to a holomorphic solution o~ defined on some open subset of C".  [J

We are thus lead to consider the Zariski closure J,(S) instead of J,(S). Since it is a Zariski
closed set in J,mr and thus a variety, we are obviously interested in its vanishing ideal. Since 7 ,(S)
is a radical ideal and we are working over an algebraically closed field, it is a classical result in
algebraic geometry that it is given by the quotient ideal 7,(S) : Q; (cf. e. g. [26, Chapt. 4, Sect. 4,
Thm. 7]). The following lemma shows that in our case this quotient simply means to ignore the
inequations in the system.
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Lemma 2.8. For any order € € N we have J,(S) = Sol*(Z4(S)).

Proof. Our assertion is equivalent to the following equality:

(\/jdiff(s) DO ﬂD() 1 Q= \/jdiff(s) 10N Dy.

The inclusion “2” is clear. For the reverse inclusion, we first note that, since Q[ divides Q
we have O = 0,0 for some O € D. Let P € D, be such that (PO,)* € Tax(S) : O for
some positive integer k. Then there exists an exponent r € Ny such that P"Q”;Q’ e 7 it (S).
Multiplication by OF yields that P*Q"* € T4ix(S). Hence, P* € T4ig(S) : O and thus P lies in
the radical. O]

By definition, the equations in a simple differential system define a passive system. This ob-
servation allows us to resolve Challenge (ii). Passivity implies consistency, making it impossible
that an equation p; depends only on the independent variables x/. Hence, for each algebraic jet
set Sol*(Z,(S)) it is clear that its image under the canonical projection n‘ satisfies the closure
condition of Definition [2.1] and thus that it is an algebraic differential equation. Furthermore, a
passive system cannot contain a constant implying via Hilbert’s Nullstellensatz that all these sets
are non-empty.

Remark 2.9. The passivity of the equations also allows us to solve the remaining Challenge (iii):
the explicit construction of generators for the now used algebraic ideals 7¢(S). The definition of
passivity of a differential system is based on the notion of (non-)multiplicative variables [[15}[17].
Consider for any ¢ the set

Bep:={&"pi| 1 <i<s, |ul+ord(p;) < £, = 0if jnot Janet-multiplicative for p;|  (6)

obtained by differentiating each equation in S with respect to its multiplicative variables until the
order ¢ is reached. It provides us as a first step with an explicit generating set of the ideal T4(8).

We define an algebraic system S <, by taking the elements of B, as the equations and keeping
all inequations of S with order less than or equal to €. Since S is assumed to be a simple
differential system, it is easy to see that S <, is a simple algebraic system (both the initial and
the separant of a derivative & p; are simply the separant of p;). In [22, Lemma 1.93] it is shown
that 7,,(S <¢) = Z(S), where the ideal 7 ,,(S <) is defined in Equation (A.T). Recall from (A.T))
that the determination of 7 ,,(S <¢) requires a saturation as second step. Thus an explicit basis
of 7,(S) is obtained by saturating the ideal generated by B, by the product of the initials of the
elements of B.,. This operation can be done effectively using Grobner bases. It follows from
Remarkm and the definition (A.T) of 7, that Sol*(S <) = J¢(S).

Example 2.10. To demonstrate in particular the effect of the saturation in the definition of the
ideal 7 4;#(S ), we consider the following differential system consisting of two partial differential
equations for an unknown function u(x, y):

p1 = uux—yu—yz, D2 =Yy —U. 7

Adding the inequation sep (p;) = u # 0 yields the only simple differential system S appearing
in a differential Thomas decomposition of the system (@. If we start with the differential ideal
7 aiff (S) = (p1, p2)a, then the algebraic ideal 7 1(S) = 7 4t () N Dy has the prime decomposition
11(8) = (p2, p3) N u,y), where
p3 = Uy —u—y, ®)
9



hence 7 4i(S) cannot be prime either. The saturation by Q := yu used in the definition of
1 4i(S) removes the prime component (u, y) of 7 1(S), more precisely 7 4g(S) = (p2, p3)a and
thus 7| = (p2, p3) € D) (note that p; = yp3 — u,p,). Indeed, if we compare for any order £ > 0
the algebraic jet sets Sol*(Z,(S)) C Sola(f «(§)) c Jym, then we see that at all removed points the
separants of the equations (7)) vanish.

In this particular case, the generators of the removed prime component do not define a con-
sistent differential system, as one of them is the independent variable y. Hence, we are not losing
any solutions by its removal. In other examples we may remove components defining consistent
systems. However, in such cases the properties of the differential Thomas decomposition ensure
that the corresponding solutions appear in some other simple differential system.

Remark 2.11. Riquier’s Theorem [B.2] asserts that a certain initial value problem adapted to the
choice of leaders in the equations of the system possesses a unique holomorphic solution (the
explicit construction of the corresponding initial conditions is explained in more modern terms
in [27]; see also [2, Sect. 9.3]). If the system S, is of finite type, then the coordinates of
the considered point p € J, provide all required initial data and in this case the holomorphic
solution o such that p € im j,o is uniquely determined. Otherwise, the coordinates of the
considered point p € J; provide only values for a finite subset of the infinitely many arbitrary
Taylor coefficients of the series constructed in Remark [B.5] Hence, in this case infinitely many
different holomorphic solutions o exist such that p € im j,o, all of which possess the same
Taylor expansion up to order ¢.

3. Vessiot Cones and Generalised Solutions

In Appendix [C] we recall some basic concepts of Vessiot’s approach to a solution theory for
differential equations. Again some adaptions are required, as we are now using a more general
notion of differential equations. Furthermore, it turns out useful for the study of singularities to
introduce a more general concept of solutions than the classical solutions of Definition [C.3]

The Vessiot space V,[J] (cf. Definition @) at a point p on a differential equation J
consists of the tangential part of the contact distribution at p. As an algebraic jet set [, is a
locally Zariski closed subset which may contain non-smooth points, the question arises how
this definition should be extended. One could continue to apply it without changes using the
tangent space T, in the sense of algebraic geometry. Then one would still obtain linear spaces;
however, their dimension would be too high. We therefore prefer another extension. Given a
classical solution o of J, such that p € im j,o, it follows from a well-known characterisation of
the tangent cone as limit of secants (see e. g. [26} §9.7, Thm. 6]) that actually T,,(im jeo) € C, 7
where C,J, denotes the tangent cone of J, at p. This observation motivates the following
extension of Vessiot spaces.

Definition 3.1. The Vessiot cone V,[J] of the algebraic jet set J, C Jorr at a point p € J; is
the set (Vp[j[] = ij[ N C[|p.

We continue to denote the family of all Vessiot cones by V[J,]. At smooth points, the
tangent cone and the tangent space coincide and therefore we still speak of Vessiot spaces at
such a point. A Vessiot space can be easily determined by solving a linear system of equations
[2l Sect. 9.5]. In the geometric theory, one always assumes that the Vessiot spaces define a
smooth regular distribution on J,. By considering the linear system as being parametrised by
the points of J,, one obtains in our more general situation by standard genericity arguments the
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following proposition. As a consequence of it, we still often call V[ J;] the Vessiot distribution
of J; in the sequel, although, strictly speaking, this terminology is not correct, as a cone is
generally not a linear space, but only a union of one-dimensional linear spaces.

Proposition 3.2. Let J; be an irreducible algebraic jet set. Then the family of Vessiot cones
V[T defines on a Zariski open and dense subset Oy C ¢ a smooth regular distribution.

Proof. The subset of all smooth points of 7, is Zariski open and dense and defines a connected
complex manifold [28, Sect. 0.2]. At any point p of this manifold, the tangent space 7,,J, and
thus the Vessiot space V,[J] can be computed using linear algebra. As a locally Zariski closed
set, the algebraic jet set J, is a Zariski open subset of the zero set of some polynomial functions
@" : Jor — C. Since, by definition, the Vessiot spaces are contained in the contact distribution,
we make for any vector V € V,[J/] the ansatz

V= dc,+ > Y pch, )

=t @

with yet to be determined coefficients a’, bj € €. Ata smooth point p, such a vector is tangential
to Je, if and only if it satisfies d®|,(V) = O for all 7. Hence, we obtain a homogeneous linear
system for the coefficient vectors a, b,

D(p)a+ M¢(p)b =0, (10)
where the entries of the matrices D, M, are given byE]
Di(p) = C@)(p),  (MF'(p) = Ca(@)(p). (1)

In general, the behaviour of (T0) varies over J¢; e. g. the dimension of V,[J¢] may jump. How-
ever, considered as functions of p, the solutions of (T0) are smooth outside of a Zariski closed
set by Cramer’s rule and—by potentially enlarging this set—we may even assume that the di-
mension of the solution remains constant, since dimension is an upper semicontinuous function.
Thus, we obtain a smooth regular distribution on a Zariski open and dense set. O

In an analogous way, we extend the notion of a symbol space to that of a symbol cone. Again,
it is straightforward to show that on a Zariski open subset of ., the symbol spaces N,[J,] define
a smooth regular distribution N[J¢]. At a smooth point p € J, the symbol space N,[J¢]
consists of those solutions of (I0) for which all coefficients a vanish. Hence, at smooth points
we can always decompose the Vessiot space as a direct sum of linear subspaces,

(Vp[jt’] :Np[j[]@ﬂp, (12)

with some n‘-transversal complement %, which is not uniquely determined.

Remark 3.3. If one computes for a differential equation J, order by order a formal power series
solution around some expansion point, then one obtains for the Taylor coefficients of order £ + 1
an inhomogeneous linear system with a matrix and right hand side depending on the lower order
coefficients (see [2 Sect. 2.3] for more details). One can show that the linear system (I0) is a

5The columns of the matrix M, are labelled by 7 and the rows by the pairs (u, @).
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homogenised form of this linear system [2, Rem. 9.5.6]. Let us assume that it is possible to solve
(I0) in such a way that the coefficients a remain undetermined (this is actually what we expect
to happen generically). Then we can relate the solutions of (I0) with the derivatives u? of order
¢ + 1 of the power series solution. Indeed, in this case we must find for each value 1 <i<na
solution a, b such that @/ = 6{ and I_az = "‘Z oy Conversely, one can see that if no such solution
exists for at some point p € J, then no smooth solution o with p € im j,o can exist, as at
least one derivative of order £ + 1 becomes infinite.

In the decomposition (I2), we can choose at any smooth point p € J an arbitrary comple-
ment H,. A solution o with p € im j,o can exist only, if the complement HH, is n-dimensional
(cf. Proposition[C.5)). This raises the question whether it is possible to correlate the choices in the
neighbourhood of a point in such a way that the chosen complements form an involutive distribu-
tion. If this is possible at all, then for most systems, there are actually infinitely many ways to do
this (parametrised by the symbol). Only for a special class of differential equations—comprising
in particular most ordinary differential equations—only a unique possibility exists.

Definition 3.4. An algebraic differential equation 7 is of finite type, if it contains a Zariski open
and dense subset #, € J; such that at all points p € ¥ the symbol cone N,[J] vanishes.

In the literature, one can find many alternative names for equations of finite type. In the
theory of linear systems, the term holonomic system is very popular. Another common terminol-
ogy, in particular for partial differential equations, is maximally overdetermined system. From a
geometric point of view, (regular first-order) equations of finite type correspond to connections
over the fibration 7 (see [2, Remark 2.3.6]).

For the analysis of singularities it turns out to be convenient to introduce more general kinds
of solutions directly as geometric objects without reference to a section. The following definition
simply relaxes some of the conditions on the subdistribution # in the second part of Proposi-
tion [C.5] Note that such a generalised solution lives in the jet bundle J,7 and not in the total
space & of the fibration r like a section, but it can be projected to & = Jy.

Definition 3.5. Let J, C J,m be an algebraic differential equation in n independent variables. A
generalised solution of J; is an n-dimensional submanifold N C J, such that TN C V[J,lIn-
A geometric solution of [ is the projection ﬂS(N ) € & of a generalised solution N.

If the section o : X — & defines a solution of J;, then im j,o is automatically a generalised
solution with im o~ as the corresponding geometric solution; this follows immediately from the
definition of the Vessiot distribution. However, if the differential equation J, has geometric
singularities as defined below, then not every geometric solution is the image of a section o :
X — & (in fact, generally it is not even a manifold).

4. Singularities of General Differential Equations

In classical analysis, one usually studies singularities like a blow-up or a shock. Thus the sin-
gular behaviour refers to an individual solution and consists of either the solution itself or some
derivative of it becoming infinite at some finite point x € X. By contrast, we study singularities
of the differential system S itself: we define singularities as points p € J, for some sufficiently
high order ¢ such that generalised solutions in the sense of Definition [3.5]in the neighbourhood
show a “special” behaviour. If J is a differential equation of finite type, then we expect that
on any sufficiently small neighbourhood of a regular point p € J, a unique foliation of the

12



neighbourhood by generalised solutions exists and that all generalised solutions are the image of
prolonged classical solutions. If the equation is not of finite type, then around regular points still
such foliations exist, but they are no longer unique. In fact, infinitely many foliations exist.

Definition 4.1. Let J,; C J,m be a locally integrable algebraic differential equation in » indepen-
dent variables. A non-smooth point p € J is called an algebraic singularity of J,. A smooth
point p € J is called

(i) regular, if a metric open neighbourhood p € U C g, exists such that the Vessiot distri-
bution V[ 9] is regular on YU and can be decomposed as V[ ;] = N[J¢] ® H with an
n-dimensional, transversal, involutive, smooth distribution H C TU,

(ii) regular singular, if a metric open neighbourhood p € U C J; exists such that the Vessiot
distribution V[ 7] is regular on U, but at the point p no n-dimensional complement to the
symbol N,[J¢] exists, i.e. we have dim V,[J¢] — dim N,[J¢] < n;

(iii) irregular singular, if the Vessiot spaces do not form a regular distribution on any metric
open neighbourhood p € U C J; i. e. any such neighbourhood contains at least one point
p such that dim V5[ ,] < dim V,[J].

An irregular singularity p € J; is called purely irregular, if an n-dimensional complement to the
symbol space N,[T¢] exists, i.e. dim V,[J,] — dim N, [T ,] = n.

This definition of singularities follows the same geometric ideas as the classical one in dif-
ferential topology (see e. g. [6]), where usually only scalar ordinary differential equations are
considered. It extends the definitions given in [2, Def. 9.1.9] for not underdetermined systems
of ordinary differential equations and in [29, Def. 3.1] for maximally overdetermined systems of
partial differential equations also to systems which are not of finite typeE]

Example 4.2. As a concrete example where all different types of points appearing in the above
definition occur, we consider the following second-order system of semilinear partial differential
equations for one unknown function u in two independent variables x, y:

xzuxx + xu, + (x — 1)2u =0,
a1- yz)uyy +2yuy, +2u=0.

If we consider the algebraic differential equation 9, C Jox defined by it, then one must distin-
guish seven different cases in the analysis of the linear system defining the Vessiot spaces:

1. Regular points on , are characterised by the conditions x # 0 and y*> — 1 # 0. They have
a three-dimensional Vessiot space.

2. Points where x = 0, y> — 1 # 0 and either u, # 0 or u, # 0 are regular singular. They also
possess a three-dimensional Vessiot space. As the coefficients a; and a; in (9) must satisfy
the equation 2u,a; + uya, = 0, only a one-dimensional transversal complement exists.

5These definitions also assumed that the given differential equation defines a manifold, whereas here we also allow
varieties with algebraic singularities.
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3. Basically the same holds for points where y> — 1 = 0, x # 0 and either yu, + Uy # 0
or u # 0: they are regular singular and have a three-dimensional Vessiot space with a
one-dimensional transversal complement defined by the equation (yu, + .y )a; —2ua, = 0.

4. Points where x = 0, y*> — 1 = 0 and either u, # O or Vi, + uy # 0 are irregular sin-
gularities which are not purely irregular: the Vessiot space is four-dimensional with a
one-dimensional transversal complement defined by the condition a; = 0.

5. Points where x = 0, u, = 0, uy, = 0 and y*> — 1 # 0 are purely irregular singular and possess
a four-dimensional Vessiot space defined by the equation (y> — 1)bg, — 2yuya; = 0.

6. The same behaviour is shown by points with y2 -1=0,u=0,u, =0, x # 0, but with the
Vessiot space defined by the equation x*by + (% — xy — 2x — Duya; = 0.

7. Finally, the points where x = 0, y*> = 1 = 0, u,y = 0 and u = 0 are also purely irregular
singular, but now with a five-dimensional Vessiot space.

Note that the cases 2, 3 and 4 do not correspond to an algebraic jet set but the union of two such
sets, because of the disjunctions in their defining conditions. Hence, if one applies the algorithm
we present in the next section to this example, then one obtains actually 10 = 7 + 3 cases.

Remark 4.3. For differential equations of finite type (and thus, in particular, for all not under-
determined ordinary differential equations), Definition [4.1] can be considerably simplified, as it
is no longer necessary to consider neighbourhoods. For a passive equation of finite type, it is a
priori clear that the expected dimension of the Vessiot space at a regular point is n. Thus, singu-
larities can be recognised by a simple comparison with this value (see [29] for such a definition
of regular and irregular singularities). Our more complicated approach via neighbourhoods is the
prize to be paid for the fact that Definition [4.1] is to our knowledge the first attempt to provide
a systematic taxonomy of the singularities of arbitrary systems of partial differential equations.
We do not claim that our definition already provides a complete taxonomy, however, it appears
very natural from the point of view of the geometric theory of differential equations, as it takes
all fundamental geometric objects (Vessiot and symbol spaces) into account.

A further effect of the extension beyond equations of finite type is the novel notion of a purely
irregular singularity. At generic singularities, such a distinction is not necessary: the dimension
of the symbol space N,[J,] jumps generically at a singularity only by one, and in this case
any irregular singularity is automatically purely irregular. At points where no n-dimensional
transversal complement to the symbol space exists, not even a formal power series solution can
exist. Hence, pure irregularity is important for any kind of solution theory around singularities.

The inclusion of equations which are not of finite type also explains why we impose for
regular points the condition that an involutive complement 9 must exist on a neighbourhood.
It ensures the local existence of at least one foliation by generalised solutions, which is our
intuitive picture of regular points, as discussed above. Thus, one may consider this as a solvability
condition (see also Prop. [C.5] where the assumption of an involutive distribution is crucial).

Remark 4.4. If we ignore the requirement that in the neighbourhood of a regular point the com-
plement H must be involutive, then the three cases in Definition[d.1]correspond to the analysis of
the linear system (I0). A necessary condition for a point p € J to be regular is that the symbol
matrix M(p) has its maximal possible rank and that this rank coincides with the maximal pos-
sible rank of the augmented matrix (D(p) | M,(p)). At a regular singular point, the augmented
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matrix has still the maximal possible rank, but the rank of the symbol matrix has dropped. At an
irregular singular point even the rank of the augmented matrix has dropped.

In the case of ordinary differential equations, any complement H can only be one-dimensio-
nal and thus is trivially involutive wherever it defines a regular distribution. Hence, for ordinary
differential equations Definition provides a complete taxonomy of all points on J,. For
partial differential equations, it is in general difficult to prove the involutivity of H around points
where the above mentioned necessary condition for a regular point is satisfied.

We always study algebraic jet sets coming from simple differential systems produced by a
differential Thomas decomposition. Here it is possible to prove for generic points that they are
regular. For the other points satisfying the above necessary condition, two possibilities arise.
If they are regular (which we are not able to prove), then there are (prolonged) solutions going
through them. By the properties of the differential Thomas decomposition, they must belong to
the solution set of another simple differential system arising in the decomposition. Hence, one
can argue that they are irrelevant in the analysis of the given simple differential system. If they are
not regular, then they fall outside the taxonomy of Definition[4.1] It is unclear whether this case
is actually possible; at least we do not know of any concrete example where such points appear.
They could be related to novel kinds of singular behaviour that only exist in partial differential
equations, but they also could simply be accidentially introduced by taking the Zariski closure.

Remark 4.5. Regular and irregular singularities may be considered as geometric singularities
in the sense that they represent the critical points of the restriction of the canonical projection
”21 : Jem — Jy_ym to the considered subset T, i.e. of the map ﬁ'gfl I — ﬂgfl(j() C Joym.
In other words, they are the points p where the tangent map Tpfrgf | is not surjective. Indeed, at
smooth points the symbol spaces are the kernels of the restricted projection frﬁ_l. Hence, one may
say that geometric singularities are those points where the dimension of the symbol space jumps.
This is the classical approach to define singularities of implicit ordinary differential equations, as
one can find it e. g. in [3].

Definition4.1]is really meaningful only, if we can show that the regular points form a Zariski
dense subset and thus really represent the “regular” behaviour. The main problem in proving this
fact consists in establishing the existence of a smooth distribution H possessing all the required
properties. As this is much easier for systems of finite type, we treat this case separately.

Proposition 4.6. Let S be a simple differential system, with respect to a Riquier ranking, com-
prising no equation of an order greater than £ € N, for which the associated algebraic differen-
tial equation J(S) defined in (9) is of finite type. Then the regular points in its Zariski closure
J(S) contain a Zariski open and dense subset.

Proof. By Proposition J¢(S) is a locally integrable algebraic differential equation. In the
proof of that proposition it was shown that every point p in a Zariski open and dense subset
Re € Je(S) lies in the image of a prolonged classical solution o~. In Remark [2.11]it was discussed
that for an equation of finite type this solution o is uniquely determined by p. This implies
in particular that for different such solutions the images of their prolongations cannot intersect
in a sufficiently small neighbourhood of p. Hence, these images define a foliation of such a
neighbourhood with n-dimensional leaves and the tangent spaces of the points on the leaves are
just the Vessiot spaces there. This observation implies that the Vessiot distribution restricted to
this neighbourhood is integrable and hence involutive by the Frobenius Theorem. Therefore, all
smooth points p € R, are regular in the sense of Definition 4.1] O
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Note that this proof also tells us precisely the local solution behaviour near a regular point:
the neighbourhood of the point is foliated by n-dimensional transversal leaves, which are gener-
alised solutions projecting on geometric solutions that are the images of classical solutions. The
generalisation to arbitrary systems requires the use of the Vessiot theory of differential equations
introduced originally in [30]. A modern presentation relating it to the geometric theory of dif-
ferential equations can be found in [31] (see also [32] or [2, Sects. 9.5/6]). These references are
concerned with the existence of flat Vessiot connections. The horizontal bundle of such a con-
nection is nothing but a smooth distribution 4 with all the properties required in the definition
of a regular point.

Theorem 4.7. Let S be a simple differential system, with respect to a Riquier ranking, compris-
ing no equation of an order greater than £ € IN, and J¢(S) the associated algebraic differential
equation defined in (). Then the regular points in the Zariski closure J¢(S) contain a Zariski
open and dense subset.

Proof. As in the proof of Proposition[4.6] we consider again the Zariski open and dense subset
Re € J¢(S). As a smooth point, any point p € R, lies on exactly one irreducible component
of J¢(S). The intersection of R, with this irreducible component is a manifold which, by the
proof of Proposition defines a formally integrable differential equation in the sense of the
geometric theory, since local integrability trivially entails formal integrability. The equations in a
simple system form by definition a (differential) Janet basis and it is easy to see that consequently
their principal parts (introduced in Appendix [C) define at any point p € R, a (polynomial) Janet
basis of the principal symbol module M[p]. The maximal degree of a generator in this basis
is at most £. By [2, Thm. 5.4.12, Rem. 5.4.13], this Janet basis induces a free resolution of
M(p] and the form of this resolution implies that the Castelnuovo-Mumford regularity of M|p]
is at most £. By [2, Rem. 6.1.23], this implies that the symbol N,[J,] is involutive at any point
p € Ry, as the order at which a symbol becomes involutive is determined by the regularity of the
principal symbol module. Hence, the manifold defines even an involutive differential equation in
the sense of the geometric theory. Now [32, Thm. 3] (or equivalently [2, Thm. 9.6.11]) asserts
the existence of a smooth distribution H with the required properties in a neighbourhood of p,
so that p is indeed a regular point. [

It should be emphasised that the distribution H appearing at the end of the proof is never
unique for a system which is not of finite type. Again, each particular choice of a distribution
H induces a foliation of a neighbourhood of the regular point with n-dimensional transversal
leaves, which are the images of generalised solutions coming from classical solutions. However,
for a system not of finite type there always exist infinitely many such choices and hence infinitely
many different foliations. Nevertheless, we may still say that regular points are characterised by
the existence of at least one such foliation.

Remark 4.8. The rows of the symbol matrix M,(p) can be understood as linear generators of
the homogeneous component of degree ¢ of the principal symbol module M[p]. If an algebraic
differential equation J,(S) is described by a simple algebraic system as in the theorem above,
then the symbol matrix M,(p) automatically arises in a triangular form and the pivots are the
separants of the equations in the system.

Example 4.9. It should be noted that the notions introduced in Definition [4.1] are relative in

the sense that they obviously depend on the choice of the differential equation J;. In some

situations one may have more than one option and then obtains different results for certain points.
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As a simple concrete example, we may consider the Clairaut equation u = xu’ + f(u’); the
corresponding algebraic jet set is shown in Figure [T)in blue. It represents a classical instance of
a differential equation with a singular integral. Its general solution is given by the straight lines
u(x) = cx+ f(c) with a parameter ¢ (some lines are shown in green in the figure). Their envelope
is the singular integral given parametrically by x(r) = —f'(7), u(t) = —tf'(7) + f(7) (shown
in red). The singular integral is the sole solution of the overdetermined system u = xu’ + f(u’)
and f’(u’) + x = 0 (the separant of the first equation). If we choose as | the whole blue
surface, then all points on the singular integral are irregular singularities, as the Vessiot spaces
are two-dimensional there. If we choose instead only the curve defined by the prolonged singular
integral (which represents an algebraic differential equation in its own righﬂ), then all points on
it are regular, as now for the overdetermined system the Vessiot space is always one-dimensional
and coincides with the tangent space of the curve. This effect is captured in Definition 4.1 by the
use of a metric open neighbourhood of the considered point. Depending on the choice of J, the
dimension of the neighbourhood as a smooth manifold may vary and the neighbourhood decides
what is considered as regular and what as singular.

u

Figure 1: Clairaut equation for f(s) = —%sz with the singular integral in red. Left: generalised solutions in Jyz. Right:
solution graphs in x-u plane.

5. Regularity Decomposition of a Differential System

The geometric theory of differential equations considers usually exclusively “regular” equa-
tions, although it is not so easy to provide a rigorous definition of what this regularity should be
and even harder to verify effectively whether or not a given equation is regular. Very often, one
only finds generic statements that all assertions are valid outside of some (unspecified) hyper-
surface (see e. g. [33] and references therein). We now define first a rigorous notion of a regular
algebraic jet set. For such jet sets, we can extend the pointwise decomposition (I2)) to a global
one: V[J,] = NLJ¢]® H with some smooth vector bundle H. We study the generalisation to a
regular differential equation in the sense of the geometric theory of differential equations in the
following Section[§]

7With the notation from below, the Clairaut equation can be decomposed into two primary components: the general
solution and the singular integral. This decomposition can be seen when prolonging to order two.
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Definition 5.1. An algebraic jet set J; C J,r is regular, if
(1) it consists only of smooth points, i.e. J, is a smooth manifold,
(i1) its Vessiot distribution V[ J,] defines a smooth vector bundle over J, and
(iii) its symbol N[ J,] defines a smooth vector bundle over 7.

Let S be a differential system. As discussed in Section [2] as a first step we compute a
differential Thomas decomposition of S into simple differential systems, each of which we then
treat separately. Thus we assume from now on that S is already a simple differential system.
We choose a sufficiently high order ¢ and consider the associated algebraic jet set J,(S) C J¢m.
In general it might be a reducible variety. As any point contained in the intersection of two
irreducible components of J,(S) is automatically an algebraic singularity, we prefer to study
each irreducible component separately. We then want to express each irreducible component as
a disjoint union of regular algebraic jet sets.

Definition 5.2. Let S C D be a simple differential system and J,(S) C J,x the associated al-
gebraic jet set in a sufficiently high order . Let furthermore J,(S) = J¢1 U --- U Ty, be its
decomposition into irreducible varieties. A regularity decomposition of the variety J, repre-

sents it as a disjoint union of finitely many regular algebraic jet sets 7, {(}1/{)’ ces é’k), the regularity

components of T, and of the set ASing(J¢(S)) of algebraic singularities.

If we classify the points on the irreducible variety Jx according to Definition[4.1} then if one
point on a regularity component 7, {E'l)c is a regular (irregular) singularity, then all other points on
this component are regular (irregular) singularities, too. Indeed, Definition [5.1]implies that at all
points on a regular algebraic jet set the symbol and the Vessiot space, respectively, have the same
dimension. The situation is more involved for regular points (of partial differential equations), as
discussed in Remark @ However, as a consequence of Remark @] and Theorem @ we may
conclude that the regular points contain on each prime component J;; a Zariski open and dense
subset. If a point lies in the intersection of several irreducible components, then we classify it
separately with respect to each of these components. It is well possible that one obtains here
different results (see Examples [4.9] or[7.3] for concrete instances).

We now prove the existence of regularity decompositions by providing an algorithm for their
construction. For at least one component of the obtained decomposition (which contains a Zariski
open and dense subset), we prove that it consists of regular points. As discussed in Remark 4.4}
we cannot exclude the possibility that in some other regularity components the Vessiot and the
symbol space have at all points the dimension expected for a regular point, but we are unable to
prove the involutivity of the complement H. We say that such points are of unknown type.

The first step of our algorithm consists of determining a generating set {p;, ..., ps} of the
algebraic ideal 7 (S ) according to Remark[2.9] As second step, we determine the minimal prime
decomposition 7 ,(S) = N;_; Z¢x of the ideal 7(S), which is radical by definition. According to
Lemma Je(S) = Sol*(Z(S)) and, by construction, Sol*(Z¢(S)) = ;_; Sol*(Z¢x). We then
determine for each irreducible component Sol*(Z ;) separately a regularity decomposition.

For the determination of these regularity decompositions, we exploit that our taxonomy of
regular and singular points (Definition4.T) is mainly based on the properties of the linear system
(I0) determining the Vessiot distribution. If {py,..., prs} is a generating set of the prime
component 7z, then we use these polynomials for setting up the linear system (T0), as it simply
encodes a condition of tangency to the irreducible component J;x = Sol*(Z ).

In addition, we set up a second linear system for the detection of the algebraic singularities
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defined by

I(pey) = chaHZdax, =0, r=1,..., 5. (13)

=t @

The left hand side is obtained by multlplymg the Jacobian matrix of py,..., prs by the vec-
tor of auxiliary indeterminates ¢;; and d’. The equations in the combined linear system may
be considered as elements of the extended polynomial ring Z)f" = Dyla,b,c,d], where we
have adjoined the auxiliary indeterminates a, b of the ansatz (9) and ¢, d of (I3). Further-
more, we consider this combined linear system only at points on J¢ and thus add the equations
Pkls-- > Pks, € De € D*. We compute an algebraic Thomas decomposition of the combined
system in D;* using an ordering satisfying the following conditions: (i)d > ¢>b >a>u > x,
(ii) restricted to the variables u the ordering corresponds to an orderly ranking (cf. Appendix [B)
and (iii) the variables ¢, and by, respectively, are ordered among themselves in the same way as
the derivatives u.

Let S} be one of the resulting simple algebraic systems. If S¢* has less than codim Sol*(Z )
equatlons w1th leader among the auxiliary indeterminates c, d we remove all equations with
leader among a, b, ¢, d and obtain the simple system S ; over D, which contributes Sol*(S ;) to
ASing(J¢(S)). Otherwise, again removing all equations with leader among a, b, ¢, d, we obtain a
simple algebraic system S ,; in Dy, which contributes the regularity component 0 _ = Sol*(S¢.)-
In a more formal language, we arrive at Algorithm[5.3]

Algorithm 5.3 (Regularity Decomposition of a Simple Differential System).
Input: a simple differential system S over K{U} and a sufficiently high order £ € N
Output: a regularity decomposition for each prime component 7 4(S) of the ideal 7,(S) ¢ D,
Algorithm:
1: compute a generating set {py, ..., p,} of the radical ideal 7 ,(S) according to Remark
2: compute a prime decomposition Z,(S) = Z,1(S)N...N L4(S) of T,(S) and a generating

set {Pk1,- .-, Pks ) for each prime component 74 (S)
3: forke{l,...,t}do
4:  compute an algebralc Thomas decomposition S £* RTRETR z"rk with respect to a total order
d > ¢ > b > a > u > x satisfying the above mentioned conditions of the algebraic system
Jpry) = 0,
V(pk,j) = 0, j=1,...,Sk (14)
prj = 0,

defined over Df", where

V= Za O+ ZZb"C" and J= ch Ouo +Zd’ ¥
lul=t «
5: od
6: return the systems S ; consisting of those equations p = 0 and inequations g # 0 in S7%
with p € D, and g € Dy

The remainder of this section is dedicated to explaining this algorithm and proving its cor-
rectness.
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Remark 5.4. Algorithm[5.3]is in principle not yet completely specified, as we say nothing about
how the algebraic Thomas decomposition in Step 4 is computed. In fact, the correctness of the
algorithm depends on whether this Thomas decomposition has been computed in a “good” way
(this is made precise in Proposition[5.TT). As any reasonable implementation automatically sat-
isfies this condition, we have not mentioned it in the algorithm. It also should be noted that the
output of our algorithm depends not only on details of the implementation of the Thomas de-
composition, but strongly on the used ranking. In a system with several independent variables x
or several differential unknowns u, very different results can be obtained for different orderings
inside each of the blocks x and u, respectively. In particular, the obtained regularity decompo-
sition is often overly complicated, i.e. consists of too many different components, as in Step 4
we implicitly compute a Thomas decomposition of the variety Sol*(Z,x(S)), which might entail
many case distinctions that are not necessary for our purposes. In a post-processing step these
unnecessary case distinctions could be conflated by comparing for all cases with smooth points
the linear part corresponding to the system V(py ;) = 0 and combining all cases where equivalent
equations have been obtained.

In Remark it was already mentioned that the ideal 7,(S) can be generated by a simple
algebraic system. Now [22| Thm. 1.94] entails that this ideal is equidimensional in the strong
sense that all its associated primes have the same dimensionﬂ In particular, no embedded primes
can exist. Because of the assumptions that S is a simple differential system and that ¢ is suffi-
ciently large, the prime decomposition of 7,(S) computed in the second step of our algorithm
induces also a prime decomposition of the differential ideal 7 4(S), as we show below. Note,
however, that even if the prime decomposition of 7,(S) is minimal, there is no guarantee that
also the differential prime decomposition is minimal. Here we encounter again the well-known
Ritt problem [18, §IV.9] in differential algebra: no algorithm is known to decide whether one
differential prime ideal is contained in another one.

For the next proof it is important to discuss the relationship between the notion of a simple
differential system as defined in Definition[B.3]and the notion of a regular differential system of-
ten used in differential algebra—see e. g. [24] Def. 4.7]. The following lemma and its proof entail
that we may always assume without loss of generality that a simple differential system is also
regular, as the only difference between these two notions is the extent to which autoreduction
has been performed. [24) Def. 4.7] uses partial reductions, i.e. only reductions using derived
equations are performed, but no purely algebraic reductions. However, it is always assumed
that the whole differential polynomial is reduced. By contrast, the conditions imposed in Def-
initions [A.T] and [B.3| require only head reductions, but algebraic reductions are also performed.
From a theoretical point of view, it is irrelevant whether or not tail reductions are performed.
From a computational point of view, they are often expensive and thus it is better to omit them.

Lemma 5.5. Let S be a simple differential system as in (D). Then S is equivalent to a regular
differential system in the sense that some tail (pseudo) reductions turn S into a regular system
with the same leaders and the same saturated multiplicatively closed set generated by the initials
and separants.

Proof. From S we collect the left hand sides of the equations and inequations, respectively, in
the two sets P and Q. The first two properties in Definition [B.3]entail that, modulo tail reduction,

8Some authors call such ideals unmixed dimensional and speak of equidimensional ideals already when all minimal
primes have the same dimensions.
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P is a differential triangular set. The second property also ensures that all A-polynomials that can
be formed with elements of P reduce to zero modulo P. The first and third property imply that,
modulo tail reduction, each inequation is partially reduced with respect to P. Finally, denote
by O~ the smallest subset of D that contains 1 and Q and has the property that ¢,§ € O~
is equivalent to gg € Q, i.e. the saturated multiplicatively closed set generated by Q. Note
that tail (pseudo) reduction amongst elements of P might change their initials and separants, by
multiplying them by the initial or separants of the reducing polynomial. Finally, any separant
of an equation in P lies in O™, up to reduction by P. Thus all conditions in the definition [24}
Def. 4.7] of a regular differential system are satisfied. O

Proposition 5.6. Assume that S does not contain any equation or inequation of order greater
than € and denote by q the product of all separants of the equations in S. Then the differential
ideals (p1, ..., Prsa : 4 (in the notation of Algorithm[5.3)) for 1 < k < t represent all essential
prime components of the differential ideal 1 4ig (S ).

Proof. By Lemma [5.5] we may assume that S is a regular differential system. The statement
follows then immediately from [24, Thm. 4.13]. O

Remark 5.77. When setting up the linear equations describing the Vessiot spaces in Step 4, it
suffices to consider only those generators p ; that depend on some jet variables of order ¢, as
all other generators would only contribute the trivial equation 0 = 0. Indeed, if p is a generator
of lower order, then we have trivially C4(p) = 0, and it follows from (C.2) that Cl@(p) = D;p.
Since by Proposition the ideal Z,4(S) is the truncation of a differential ideal, the formal
derivative D;p (defined in Appendix [C) can be written as a linear combination of the genera-
tors py ;. Hence, V(p) vanishes modulo Z¢4(S), i.e. it is zero at all considered points.

As preparation for showing the correctness of Algorithm[5.3] we prove some results about the
simple algebraic systems S;”; produced by the algorithm relating them to algebraic singularities
and the Vessiot and symbol spaces. Furthermore, we provide a technical proposition needed for
the correctness proof.

Proposition 5.8. Given any subset Sol*(S;)) C Vix = Sol*(Z ), either all points contained in
it are smooth in Vg or all are algebraic singularities of V.

Proof. By substituting the coordinates of a point p € V into (T3], we obtain a system of linear
equations in ¢, d whose solution space is the tangent space to V, at p. The point p is smooth in
Vi, if and only if this tangent space has dimension dim V;;, and singular otherwise. The alge-
braic system (T4)) consists only of equations, and the equations which involve the indeterminates
¢, d are homogeneous of degree one in these indeterminates. Since ¢, d are ranked higher than
the indeterminates u, x, we conclude that the simple algebraic system S obtained in Step 4
of Algorithm [5.3] contains no inequations with a leader among ¢, d, and every equation which
involves the indeterminates ¢, d is homogeneous of degree one in these indeterminates. Consider
now those equations with leader among ¢, d in §}”;. Due to the linearity and the triangularity of
the system, the number of these equations is equal to the codimension of the tangent space and
this codimension is independent of the choice of p € Sol*(Sy,), because S z"l is simple. Hence,
Sol*(S ;) consists entirely of smooth points, if and only if the number of equations with leader
among ¢, d is equal to the codimension of V,, and entirely of singular points otherwise. O

Remark 5.9. No equation in the system (I4)) contains simultaneously indeterminates from a, b
and from ¢, d. Since the algebraic Thomas decomposition method does not apply polynomial
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division to a pair of equations involving different sets of indeterminates from a, b and ¢, d,
respectively, the correctness does not depend on the choice of how a, b, ¢, d are ordered.

Proposition 5.10. Let ST be a simple algebraic system obtained in Step 4 of Algorzthmsuch
that Sol*(S ;) consists entlrely of smooth points. Denote by N, and Ny, the number of equations
with a leader among the variables a and b, respectively. Then at any point p € Sol*(Sy;) C
Sol*(Z¢x) the dimension of the symbol space and of the Vessiot space, resp., is given by

dim V, [Sol*(Z1(5))] = m(f e 1) fn—Ny—Na, (15)
dim AV, [Sol*(T/(5))] = m(f - 1) Ny 16)

Furthermore, an n-dimensional complement H,, to the symbol space N,[Sol*(Z¢x(S))] exists in
the Vessiot space (Vp[Sola(Z' ek (S)], if and only if Ny = 0. Finally, the set Sol*(Sy;) is a regular
algebraic jet set.

Proof. The algebraic system (14) consists only of equations, and the equations which involve the
indeterminates a and b are homogeneous of degree one in these indeterminates and independent
of the indeterminates ¢ and d. Thus, for notational simplicity, we may ignore in the sequel the
equations containing ¢ and d. Since a and b are ranked higher than the indeterminates u, X,
the simple algebraic system S % cannot contain inequations with a leader in a or b, and every
equation which involves the indeterminates a and b is still homogeneous of degree one in these
indeterminates. The triangularity of S;”; means that these equations correspond to a reduced row
echelon form of the determining equations of the Vessiot distribution. This row echelon form is
preserved for any choice of the point p € Sol*(Sy;). Since the dimensions of the vectors b and a
are m(”’}’l) and n, respectively, the claimed expression for the dimension of the Vessiot spaces
follows immediately from the linearity of the equations.

We consider next the symbol spaces. Let p = (u,x) be a point on Sol*(Sy ;). The symbol
space N,[Sol*(Z¢x(S))] consists of all solutions of § Z* of the form (b, 0, u, x). We rank b higher
than a. Hence, any equation with a leader in a is 1ndependent of the indeterminates b and can
be ignored when the symbol is computed, as it is automatically satisfied by homogeneity. This
observation entails the claimed expression for the dimension of the symbol space.

The dimension of any complement H, is trivially the difference of the dimensions of the
Vessiot and the symbol space. Hence, by the just derived expressions for these dimensions, it is
given by n — N,, which proves the last assertion. Finally, we note that by the above mentioned
independence of the pivots in the row echelon form of the chosen point p € Sol*(Sy,), the
dimensions of the Vessiot and the symbol spaces are constant over Sol*(S;). Hence, this set is a
regular algebraic jet set. O

One key point in proving the correctness of Algorithm [5.3] concerns the last step when we
move from the systems S 2"1 including the indeterminates a, b, ¢, d to the projected systems Sy ;.
The next proposition asserts that the disjointness is preserved by this operation. We consider
the following generalisation of our set-up. Let R = Clyy,...,ynllz1,.-.,24] be a polynomial
ring equipped with the ranking z; > 20 > ... >z, > y; > y» > ... > y,. Let S be a (not
necessarily simple) algebraic system, defined over R, which does not contain any inequation
with a leader in {z,...,z,} and whose equations with a leader in {zy,...,z,} are homogeneous
of degree one as polynomials in zj, ..., z,. Applying any judicious algorithm computing a
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Thomas decomposition—e. g. the one from [13]—to S computes an output of this form (for
the necessity of this form see Remark [@] below), since both the initials and the discriminants
of the homogeneous polynomials of degree one are polynomials in the variables y and hence
no case distinction with respect to any polynomial in the variables z is necessary. Moreover,
let Sy, ..., S, be an algebraic Thomas decomposition of S with respect to a ranking > such
that no S; contains an inequation with a leader in {zj,...,z,}. Our situation is recovered by
identifying the variables z with the parameters a, b, ¢, d and the variables y with the appearing jet
variables. In the sequel, we denote by (S )<, the algebraic subsystem consisting of all equations
and inequations in the simple system S; with a leader less than z;. Thus (S;),, corresponds to
the projected system without any of the variables z.

Proposition 5.11. In the situation described above, the solution sets Sol*((S1)<;,), SoI*((S2)<z,),
..., SOI*((S )<z,) of the projected systems are also pairwise disjoint.

Proof. We first note that any subsystem (S;)<; is also simple. By the properties of simple alge-
braic systems [[17, Subsect. 2.2.1], every solution

(aj+l7 Ajy2yenns anaﬂl’ “ee aﬁm) € C(n+m)_j

of the subsystem (S;)<;, can be extended to a solution

—(i-1
(@), Qjats @js2s o s W P o, ) € CFM7UTD

of the larger subsystem (S ;)<;,_, . Indeed, the subsystem (S )<, , can differ from (S;)<,; by at most
one additional equation or inequation with leader z;_; which then restricts the possible values for
«;. In the case of j =1, we set (S;)<;, = S;.

For B = (By,...,Bn) € C", we define the intersections

Vﬂ = SOla(S)ﬁ{(Z],...,Zn,ﬁl,-n,ﬁm)|Zl’~--’ZnE(C}’

and fori € {1,...,n} and (@1, @js2, . . ., @,) € C" we set

V(l,ﬁ = {(aiaai+ls-~~7an’ﬂ1"-~,ﬂm) | a; € Cand
Ao, a1 €C : (1., @B, o) € SOIX(S) |

Since the equations in § with a leader in {z1, ..., z,} are homogeneous of degree one as polyno-
mialsin zy, ..., z,, foreach 8 = (81, ...,B,) € C" the set V; is either empty or an affine subspace
of C™™. For the same reason, for each i € {1,...,n} and @ = (@41, @isa, . .., @) € C" the set
Vap is also either empty or an affine subspace of C*+™~(=1),
Assume that Sol*((S;,)<;,) and Sol*((S},)<,,) are not disjoint for i; # i». Let (B1,...,Bm) €
Sol*((S,)<z,) N Sol*((S;,)<,,)- Since both S;, and S;, are simple algebraic systems, the point
(B1,...,Bx) can be extended to solutions p = (a/(li‘), a(zi‘), el aﬁf‘),ﬁl ,...,Bm) and (a(liZ), a(ziZ), el a(niZ),,Bl, B

of §;, and S, respectively. The disjointness of the solution sets Sol*(S;,) and Sol*(S;,) implies
that there exists k € {1, ..., n} such that a,(c") * “/(52)- Let k be maximal with that property. Hence,
(a/f{”), .. .,aﬁf‘),ﬁl, ...,Bm) and (a/ff), .. .,aﬁf”,ﬁ'l, ...,Bm) are two distinct elements of the affine
subspace .Va,ﬁ of C(”+m)‘(k"), where @ = (a,i’}r)l,ag)z, caiy = (a,?i)l,agi)z, ..., a'®). There-
fore, V,p is not finite.
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We introduce the index set

Ip.ky={ie(l,....rl@.....a Bi.....Bu) € SOP((S)<) |
Then we have iy, i, € I(p, k) and

Vag= | Sol"(S)< )

icl(p.k)

Since the affine subspace V, g of C"*™~*=1 js not finite, but /(p, k) is finite, there exists j; €
I(p, k) such that Sol*((S j,)<,_,) is infinite. Hence, S ;, contains no equation with a leader z.
However, by assumption, S ;, contains no inequation with a leader z; either. By exchanging the
roles of i; and i if necessary, we may assume without loss of generality that j; # i;. We conclude

that (S, )<;,_, and (S j, )<, have the common solution (ag‘), e, af,"),ﬁl, ey B)-
If k = 1, this observation contradicts the disjointness of Sol*(S;,) and Sol*(S j,). Otherwise,
the thus obtained common solution can be extended to a solution (a/(lj D a(zj Do a,({j_‘ i, ai”), e Bl B

of §;. By a similar reasoning as above, the disjointness of the solution sets Sol*(S;,) and

Sol*(S ;,) implies that there exists / € {1,...,k — 1} such that a/gi') * a'gj V. Let [ be maximal
with that property. Then V, g is not finite, where o’ = (afﬂf, aﬁ;, e, aﬁf‘)). Hence, there exists
J2 € I(p,]) such that § ;, neither contains an equation with a leader z; nor an inequation with a
leader z;. Without loss of generality, we may assume j, # i;. Then (agi‘), . ,aff‘),ﬁl, vevsBm)
is a common solution of (S; )<, and (S j,)<;_,. If { = 1, this is a contradiction. Otherwise, this
argument can be repeated to obtain a contradiction. Hence, the sets Sol*((S1)<;,), Sol*((S2)<z, ),

Zn

..., Sol*((S ;);,) are pairwise disjoint. O

Zn

Remark 5.12. The assumption in Proposition [5.11] about the absence of inequations with leader
in {z1,...,2,} cannot be omitted. For example, let R = C[y][z;,22] and z; > zo > y and consider
the system S = {z; = 0}. Then the systems

77 =0 a =0 a =0
Sll {Zl : 0 Sz: 2 # 0 S3Z L F 0
S y = 0 y # 0

provide a Thomas decomposition of S with respect to >, where Sol*((S 1)<,,) and Sol*((S2)<,,)
are not disjoint and Sol*((S 1)<,,) and Sol*((S 3)<,,) are not disjoint either. Note, however, that this
Thomas decomposition involves case distinctions which would not occur in an application of the
Thomas algorithm to S. In fact, the original algebraic system S is already simple. The assump-
tion of Proposition[5.11]is automatically satisfied by any comprehensive Thomas decomposition,
which can also be computed algorithmically [34, Alg. 3.80].

Theorem 5.13. Algorithm[5.3|terminates and is correct.

Proof. The termination is obvious, as only terminating subalgorithms are used. For the correct-
ness, it is sufficient to show that the output is correct for any prime component 7, ;(S) of Z7(S ;).
Letk € {1,...,t}. We argue first that the output systems S, ..., St form a Thomas decompo-
sition. Since S is obtained from the simple algebraic system S7”; by omitting the equations and
inequations with a leader among d, ¢, b, a, the algebraic system S ; is simple. In the proofs of
Proposition [5.8]and [5.10]it was shown that we are in a situation where Proposition [5.11]is appli-
cable to the Thomas decomposition S z‘l, oS z‘rk. Hence, the output systems S 1, ..., Sk, have
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pairwise disjoint solution sets Sol*(S ;) which either consist entirely of algebraic singularities by
Proposition [5.8] or are regular algebraic jet sets by Proposition [5.10} O

Finally, we describe how one determines a regularity decomposition of a general differential
system S in some order £ € IN. The first step is to compute a differential Thomas decomposition
of S into simple differential systems S 1, ..., S,. For each simple system one needs to check that
the order ¢ we have chosen for the regularity decomposition is sufficiently high. This means that
we need to guarantee that no equation or inequation in a simple differential system S; is cut off
when going from §; to the algebraic ideal 7,(S;). If the simple differential systems S, ..., S,
do contain an equation or inequation of order greater than £, then a regularity decomposition in
this order is not possible. In this case one needs to adjust the order £. If the order is high enough,
then one computes in a last step a regularity decomposition of each simple differential system S;
in order ¢ with Algorithm[5.3] A formal summary of this process is Algorithm [5.14] below.

Algorithm 5.14 (Regularity Decomposition of a General Differential System).

Input: a differential system S, defined over K{u}, and order £ € N
Output: regularity decompositions in order ¢ of the irreducible components of the algebraic jet
sets of the simple systems in a differential Thomas decomposition of §

Algorithm:
1: compute a differential Thomas decomposition Sy, ..., S, of the differential system S
2: if one of the systems S; has an equation or an inequation of order greater than £ then

3:  error: order £ too small.

4: fi

5: return the regularity decompositions in order ¢ of the simple differential systems S; deter-
mined by Algorithm[5.3]

6. Regular Differential Equations

A basic assumption in most of the geometric theory of differential equations is that one is
dealing with a regular equation. This means that not only the given differential equation J, C J,m
but also all its prolongations to higher order are smooth manifolds on which symbol and Vessiot
spaces define vector bundles. For nonlinear systems, it is generally very hard to verify these
infinitely many conditions and no effective method is known. We now provide a definition of
regular differential equation adapted to our framework and prove that we can identify in the
output of Algorithm [5.3] one unique regular equation for each irreducible component and that
this equation lies dense in the irreducible component.

The key problem encountered here is that the definition of a regular differential equation
requires to look at prolongations. So far we could avoid prolongations, as we assumed throughout
that we start with a differential system S and then associate with it at any order ¢ an algebraic
jet set defined via the differential ideal 7 4i#(S). The problem of computing prolongations then
corresponds to explicitly constructing the polynomial ideals Z,(S), a question which has been
settled above. By contrast, we assume now that we start with an algebraic differential equation
Je C Jem which is a regular algebraic jet set in the sense of Definition[5.1} The geometric theory
describes an intrinsic prolongation process which, however, assumes that one is dealing with a
fibred submanifold. In our framework, this assumption is not necessarily satisfied and thus we
must develop another approach.
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As alocally Zariski closed subset of J,m, we may consider J; as the solution set of an alge-
braic system S in the jet variables up to order . Identifying the jet variables with the derivatives
of the dependent variables, we can also interpret S as a differential system which we associate
with J,. Forming the differential ideal 74z(S) corresponds to adding all differential conse-
quences of the equations describing 7,. Obviously, this construction is independent of the choice
of the algebraic system S .

It may happen that 1 € 74#(S). In this case, the system S is differentially inconsistent and
any further differential analysis is pointless. Otherwise, we consider for any k > O the algebraic
jetsets ¢k (S). It may happen that J,(S) C J,, namely if some of the differential consequences
are of an order less than or equal to ¢ (i.e. if hidden integrability conditions exist in S). In this
case, it is again pointless to analyse J,: one should study J,(S) instead. Otherwise, we call the
algebraic jet set Jrx = Tk (S) the k-th prolongation of .

Definition 6.1. The algebraic differential equation J, C J,r is called regular, if the differential
system S associated with it satisfies

(1) Zgig(S) is a prime differential ideal,

(i) Je(S) =T and

(iii) for all £ > O the algebraic jet sets Jp.x(S) are regular and algebraic differential equations.

Given an algebraic differential equation J, C J,m, it is not obvious how one can effectively
verify that it is regular, since the above definition comprises infinitely many conditions, as in the
geometric theory. We now show that Algorithm [5.3] solves this problem to some extent, as one
can always identify regular differential equations in its output.

Proposition 6.2. For each prime component 1 ;;(S) arising in Algorithm there exists among
the simple systems Sy ; in the output a unique distinguished system S f;(n such that Sol*(S f;(n) is
Zariski dense in Jy .

Proof. System @]) comprises the equations py; = 0,...,prs = 0 defining the irreducible
variety J¢, and linear equations in the auxiliary indeterminates a, b, ¢, d. Hence, the variety
defined by (T4) is trivially fibred over ¢4 and therefore irreducible. By [I7, Cor. 2.2.66], any
Thomas decomposition for an irreducible variety contains a unique simple system whose solution
set is dense in that variety. Therefore, there exists a unique index i such that Sol*(S i) 1s a dense
subset of the variety defined by (T4). Since S z"l contains no inequations with leader among the
a, b, ¢, d and the equations involving a, b, ¢, d are homogeneous of degree one, the projected
system S ; has the claimed property. O

Theorem 6.3. In the notation of Proposition the set Sol*(S fj{n) is a regular differential
equation.

Proof. Assume for notational simplicity that already J 4;(S) is a prime differential ideal so that
we can drop the index k. In this case, the ideal 7,(S) is generated by the triangular set B<,
defined in (6) followed by a saturation with respect to the inequations in S (cf. Equations (2)) and
(@3)). Since our ordering of the variables ¢ and b, respectively, is linked to an orderly ranking
of the derivatives u, the two linear subsystems of (I4) arise now immediately in a row echelon
fornﬂ and its pivots are separants of the equations in B<,. Furthermore, in the generic system

Recall from Remarkthat the saturation only eliminates unwanted points. Hence, at the remaining points we
can use for the construction of the tangent space the equations in the triangular set B<, instead of some ideal generators
obtained after the saturation.
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S, 8% of the algebraic Thomas decomposition the separants and initials of the equations in B, are
1mphed being non-zero. It is now trivial to see that Sol*(S; gen 'k ) is a regular algebraic jet set.

We now show that the same holds for Sol*(S%"), the generic branch obtained by applying
our algorithm at the next order. By induction, we obtain that the generic branch defines at any
prolongation order a regular algebraic jet set and thus our claim. By the same arguments as above,
the ideal 7,.1(S) is generated by the triangular set B<,.; followed by a saturation. Since we
assume that S contains no equations or inequations of an order greater than ¢, B, is obtained
by augmenting B<, by certain formal derivatives (defined in Appendix[C) of its elements of order
{. By the properties of the formal derivative, the new elements are linear in their leaders and their
initials (and thus also their separants) are the separants of the elements of B<, from which they
are derived. This implies that no new separants or initials arise during the prolongation. Again,
these separants and initials are implied to be non-zero by the algebraic Thomas decomposition.
Since again the linear subsystems of (I4) arise immediately in triangular form with separants
as pivots, the made observation about the separants entails trivially that Sol*(S ge‘}) is a regular
algebraic jet set, too.

For the general case, we exploit again that, by Lemmal[5.5] we may assume that S is a regular
differential system. [24, Thm. 4.13] asserts that any characteristic set C describing a prime
component of 7 4(S) has the same leaders as the differential system S. In Algorithm [5.3] we
first compute in Step 2 some basis for each prime component 7, ;(S) and then in Step 4 perform
an algebraic Thomas decomposition. The generic branch of this decomposition determines a
characteristic set Cyy describing Z,4(S ), namely the equations in Sgen Furthermore, among the
inequations in S %in we must find the initials and separants of C. Asin the proof of Proposition|5.
(24, Thm. 4.13] allows us to interpret C also as a differential characteristic set. By definition of
a simple differential system, S is passive for the Janet division. This implies that C must also be
passive for the Janet division. Indeed, otherwise C would induce integrability conditions and any
characteristic set of the ideal induced by C would require additional leaders which contradicts
[24, Thm. 4.13]. But now we can apply to C exactly the same reasoning as in the special case
above and conclude that Sol*(S gen) is a regular differential equation. O

Corollary 6.4. For any index k, the set Sol*(S gen) consists entirely of regular points of the alge-
braic differential equation .

Proof. By the considerations in the proof of Theorem the equations in §& kn are passive for
the Janet division. Since Siekn arises from an algebraic Thomas decomposition, it is a simple
algebraic system. No leader of an inequation is the derivative of the leader of an equation, as all
(suitable, cf. Equation (6)) derivatives of the differential equations have been added as algebraic
equations. Hence, S7," is also simple as a differential system. It follows now from Theorem
that the regular points form a Zariski dense subset of J . Since Sol*(S ge") is also Zariski dense
in ¢ by Proposition [6.2} it contains regular points. By Proposition [5.10] - this means that at all
of its points the Vessiot and symbol spaces have the right dimensions. Furthermore, we have seen
above that at the points in Sol*(S gen) no initial or separant vanishes. Hence, we can conclude as
in the proof of Theoremthat Sola(S gen) is actually an involutive differential equation and thus
that around each point the required 1nvolut1ve complement to the symbol spaces exists. O
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7. Examples

Example 7.1. We continue Example There it was already mentioned that a differential
Thomas decomposition of the differential system defined by the partial differential equations
p1 = 0 and p, = 0 with p; and p, given by yields only one simple differential system
comprising, besides the two given equations, the inequation sep (p;) = u # 0. Now we want to
apply Algorithm[5.3|for the determination of the geometric singularities of this simple differential
system in order £ = 1, or, more precisely, a regularity decomposition of J(S). All different types
of singularities introduced in Definition 4.T]appear in this example.

The first step of Algorithm [5.3] requires the saturation already discussed in Example 2.10]
which leads to the addition of a third generator ps given by (8). The algebraic ideal 7,(S)
generated by these three generators is prime, so that nothing is to be done in the second step.
It was already mentioned above that p; is a linear combination of p, and p3 and thus can in
principle be omitted. As the equations p, = 0 and p3; = 0 can be solved for u and y, respectively,
the variety J1(S) is a graph and thus no algebraic singularities occur here. Therefore, we ignore
in the sequel the equations J(py) = 0. In general, such a redundancy is not easy to recognise
and we therefore do not exploit it any more in the following computations. The linear part of the
system (I4) defining the Vessiot spaces takes here the form

u 0 u(ue—y) -2y—u+u(uc—y) ZIO
0 vy —u, 0 - aof =0. (17)
Uy Uy —Uy -1 -u, 2

The nonlinear part is given by p; = p» = p3 = 0. The algebraic Thomas decomposition of this
system performed in Step 4 yields after the projection in the last step the following four systems

S1:={p1=0,p=0,u#0,y %0},

Sy ={uy=0,u, #0,u =0,y =0},

S3:={uy#0,u,=0,u=0,y=0},
{

S4:={u,=0,u,=0,u=0,y=0}.

We now show that the corresponding algebraic jet sets (S ;) are all regular and thus define a
regularity decomposition of our system in order 1. Obviously, J1(S ;) is a Zariski open subset of
a three-dimensional variety in Jy7. J1(S,) and J(S3) are disjoint Zariski open subsets of two-
dimensional varieties lying in the Zariski closure of 71(S ). Finally, J1(S4) is a curve lying in
the intersection of the Zariski closures of all the other systems. Of the four jet sets, only J1(S ;)
is an algebraic differential equation, as for the other three systems the projections 7' (J(S))
violate the closure condition of Definition [2.| because of the equation y = 0.

We finally discuss the Vessiot spaces for the points on these algebraic jet sets so that we can
classify them according to the taxonomy of Definition d.1I] Linear systems for them are part of
the extended systems S ¢* obtained in Step 4, namely those (homogeneous linear) equations that
depend on a and b. For better readability, we describe them in terms of their coefficient matrices.
Essentially, these matrices arise by using the equations in the corresponding projected system S';
to simplify the entries of the matrix in (T7). The Thomas decomposition uses pseudo-divisions
in the simplification process to obtain pivots which are provable non-vanishing on the whole
considered component which sometimes makes some entries not immediately obvious.
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Figure 2: Hyperbolic gather. Left: Surface with singularities in jet space. Right: solution graphs—note how the red
curves “go backwards” after meeting the black curve, a generic behaviour at regular singularities.

For points on the first algebraic jet set J1(S 1), we get the matrix

w0 Yu+y) —-uP(y+u)
0 u -u-y 0 )

The two corresponding equations express bjo and bg; in terms of the unconstrained variables
a' and a®. Thus all Vessiot spaces are two-dimensional and all symbol spaces vanish, so that
the Vessiot spaces are transversal. Hence, all the points on the algebraic jet set J(S ) are
regular points of the differential equation J1(S). By Theorem[6.3] 7 (S 1) is a regular differential
equation, as obviously S is the generic branch in the algebraic Thomas decomposition. Thus
our findings are consistent with Corollary [6.4]

An analogous comparison of the dimensions of Vessiot and symbol spaces, respectively,
determines the singular character of the points on J1(S2), J1(S3) and J1(S4). The respective
Vessiot spaces are the kernels of the three matrices:

(y 0 0 -1-u), (g o (1) _01), 0 0 0 1).

All points on J(S,) are purely irregular singular, as their Vessiot spaces are three-dimensional,
but still contain a two-dimensional transversal part. At points on J(S3), the dimension of the
Vessiot spaces is still two; however, the transversal part is only one-dimensional. Hence, they are
regular singular. Finally, the Vessiot spaces at points on 7 (S 4) are three-dimensional with only
one-dimensional transversal complements to the symbol spaces. Thus, these points are irregular
singular. These considerations also prove that all sets (S ;) are regular algebraic jet sets and
hence the four sets together define a regularity decomposition of J1(S) in order 1.

Example 7.2. The hyperbolic gather is a classical example from catastrophe theory and is de-
fined by the differential polynomial p := («’)® + uu’ — x. A real picture of the corresponding
algebraic differential equation is given by the blue surface on the left in Figure [2] with its fold
line shown in red. All singularities lie on this fold line. On the right, Figure 2] shows some (real)
solution graphs and one can see how solutions reach a forward or backward impasse when they
hit the projection of the fold line shown in black.
The hyperbolic gather represents probably one of the simplest examples to demonstrate the
artifacts that the algebraic Thomas decomposition may introduce in the output of Algorithm [5.3|
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Figure 3: Hyperbolic gather with redundant case distinctions.

(compare Remark [5.4). Using the implementation presented in [I3]], one obtains a regularity
decomposition consisting of seven components (all composed of smooth points). One of them
consists of the two irregular singularities shown as distinguished points on the fold line in Fig-
ure [2f three other components describe the remainder of the fold line (one of them singles out
the “tip” of the fold line, one contains only complex points not visible in the real picture).

The remaining three components contain the regular points. The corresponding extended
algebraic systems are given by

S¥:={p=0, 4’ +27x* #0, x £ 0, BW)* +u)b + (W')* - 1)a = 0},
S ={W) +uu' =0, x=0, u#0, Bw)* +u)b+ ()" - 1)a =0},
S = {uu’ +3x=0, 4u> +27x* =0, x # 0, 812 b + (36x* — 4u*)a = 0},

where we omitted the equations corresponding to the Jacobian criterion. Here S| is obviously the
unique distinguished system of Proposition[6.2]defining a regular differential equation. However,
if one takes the respective equations for the Vessiot space into account, then one seesEl that the
distinction between the three systems has no meaning for our analysis of singularities.

The appearance of these unnecessary case distinctions can be easily explained from the ge-
ometry of the corresponding algebraic jet set J; shown once more in Figure [3] over the real
numbers. Again, the red curve shows all geometric singularities of ;. The set Sol*(S3) consists
of those points of ] which lie either above or below the fold line and is shown in magenta. This
set must be singled out by any algebraic Thomas decomposition for the ordering u’ > u > x, as
at its projection to the x-u plane the fibre cardinality changes (this statement remains true over
the complex numbers, as the hyperbolic gather simply depicts the solutions of the reduced cubic
equation in u’ with coefficients u and —x). Finally, the set Sol*(S;) (shown in cyan) contains
those points where the discriminant of the discriminant of p, i.e. x, vanishes. This set has a
geometric relevance only at its intersection with the fold line, as it singles out the point where the
fold line itself folds (respectively where the underlying cubic equation has a triple zero). Because
of the inner working of the algorithm used to compute an algebraic Thomas decomposition, this
condition leads to a separate case.

101n the case of S 3, this requires that one takes the coefficients as they appear in S| and S, and rewrites them modulo
the equations in S 3.
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Example 7.3. We consider now a situation where one is dealing with a reducible variety, so that
the second step of Algorithm [5.3]becomes non-trivial. Its treatment demonstrates why we prefer
to consider only irreducible varieties. The starting point is the differential system consisting of
only one equation in factored form,

pi=@ )WY+ +x*-1)=0, (18)

where ¢ € [-1,1] is a real constant, and no inequation. A differential Thomas decomposition
yields a single simple differential system S which contains besides the equation p = 0 only the
inequation sep (p) # 0.

Algorithm [5.3] (for £ = 1) computes in the first step the algebraic ideal 7(S), which is here
simply generated by p, as the saturation has no effect. Its prime decomposition yields two prime
ideals generated by the two factors of p: p; = u’ —c and p, = (u')* +u* + x> — 1. Considered over
the reals, we are dealing here with a sphere and a horizontal plane intersecting it. Obviously,
both irreducible varieties are without algebraic singularities, so that we ignore in the sequel the
equations J(px) = 0. It is trivial to see that a regularity decomposition of J;(p;) yields only one
regularity component, namely 7 (p;) itself, and all points on it are regular. In particular, J;(p;)
is trivially a regular differential equation.

The second irreducible component was already analysed in [2} Ex. 9.1.12]. The linear equa-
tion for the Vessiot spaces is 2u’b + Quu’ + 2x)a = 0. For the ranking b > a > u’ > u > x, the
implementation presented in [[13]] determines an algebraic Thomas decomposition consisting of
five simple algebraic systems (since no algebraic singularities exist on this component, we ignore
again the part stemming from the Jacobian criterion):

Wb+ ' +x)a = 0, Wb+ uw+x)a = 0,
gex. (I/l/)2 + M2 + .XZ -1 = 0, gex. (u/)Z + M2 0,
1 w+xr-1 # 0, 2 u # 0,
-1 # 0 -1 =0

a = 0, a = 0, ,
, , u = 0,
gex. u = 0’ gex. u = 0’ gex. MZ_l = 0
3l w+xr-1 = 0, T4 u = 0, "3 -
3 ) x = 0

x—=x # 0 x-1 =0

The reduced systems corresponding to the first two systems S {* and S 5* can be combined into
one simple algebraic system leading to the following subset of the differential equation J;(p»):

R; = Sol*(S 1) U Sol*(S2) = Sol*({p2 = 0, u’ #0}). (19)

Such a combination is also possible for the third and the fourth system and yields another subset
of J1(p») disjoint of R;:

Ry = Sol*(S3) U Sol*(S4) = Sol*({p2 = 0, ' = 0,u® = 1 £ 0, x #0}). (20)

We have thus constructed a regularity decomposition of [ (p,) with three regularity components:
R and R, as defined above and Rz = Sol*(Ss).
We now classify the points on these three components according to the taxonomy of Defini-
tion By Proposition we have dim V,[J;(p2)] = 1 for all points p € R;. Moreover, for
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these points we have «’ # 0. Since «’ is the initial of the equation with leader b, the assumption
a = 0 implies b = 0 and hence the symbol space N,[J1(p>)] is trivial. We conclude that all
points in R; are regular. It follows again from Proposition [5.10] that diim V,[J1(p2)] = 1 also
for all points p € R;. Since the condition a = 0 belongs to the equations describing R;, all these
Vessiot spaces are vertical, i.e. V,[J1(p2)] = No[J1(p2)] everywhere on R,. Thus all these
points are regular singular. As the system Ss defining R3 contains no equations depending on
a or b, everywhere on R the Vessiot spaces are two-dimensional and hence all points there are
irregular singular.

In this example, it is not difficult to verify that R is a regular differential equation, although
Theorem guarantees this only for the dense subset Sol*(S ). The inequation x> — 1 # 0 is
irrelevant for the initials and separants of S and the systems S{* and S5* contain exactly the
same equation for the coeflicients a and b in our ansatz for the Vessiot space.

We can now compare the results for J1(p;) and J(p>) for the points on their intersection,
i.e. at points which are algebraic singularities of the original reducible variety J(S). If ¢ # 0O,
then the points on J1(p1) N J1(p2) have been classified as regular for both irreducible compo-
nents. However, for ¢ = 0 the points on the intersection are still regular with respect to J;(p1),
but regular singular with respect to J1(p2). This exemplifies again the statement made in the
beginning of Example [4.9] that the taxonomy of Definition {1} is relative and strongly depends
on the considered algebraic jet set.

A natural question in such a situation is whether generalised solutions exist which lie on both
components. Let us assume for simplicity that ¢ # 0. Then on each component there exists a
unique generalised solution going through p. Over the complex numbers, the identity theorem
for holomorphic functions excludes the possibility to combine pieces of these to new solutions.
Over the real numbers, solutions of lower regularity are admitted even if we restrict to classical
solutions. In our case, we can construct additional solutions through p by approaching p on one
of these two solutions and by then “switching” to the other one. As the resulting curve in Jy 7 is
still continuous, it corresponds to the prolongation of a function which is at least C' at the value x
where the switching occurs.

As the direction of the tangent of a generalised solution encodes the value of the second
derivative, a necessary and sufficient condition for the thus constructed solution to be even C*atx
is that at the intersection point the Vessiot spaces with respect to the two irreducible components
are identical. In our case, all Vessiot spaces V,[J1(p1)] are spanned by the vector 0, + cd,,,
whereas a basis of the Vessiot space V,[J1(p2)] at any point p = (X, i, p) ¢ Rs is given by the
vector p(dx + pdy) — (X + itp)d,. If we assume that we are on the intersection, i. e. that p = ¢ and
#® + ¥ = 1 — 2, then it is easy to see that the Vessiot spaces can be identical only for ¢ # 0 and
then this happens only at the two points

_(_ \/1 —c? +\/1—c2
By analysing the next prolongation of our equation, it is not difficult to show that the “switching”
solutions are exactly C?, as the value of the second derivative jumps at the switching point.
Thus we can conclude that over the real numbers we have through each point on the in-
tersection four solutions: two analytic functions with prolongations staying completely on one
component and two C' functions switching between components. For the points p, the latter

two solutions are even C2; a higher regularity is not possible for “switching” solutions. Figure E]
provides a graphical presentation of the situation over the reals for the choice ¢ = —%. The red
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Figure 4: First-order differential equation with two irreducible components. Left: generalised solutions in Jiz. Right:
solution graphs in x-u plane.

curves intersect at p,; the green curves at some point different from p.. Geometrically, p. are
distinguished by the fact that the value of u’ at these points represents a local extremum along
the generalised solution of J1(p;) going through it. This in turn means that the graph of the
corresponding classical solution has an inflection point there. This can be seen in the right part
of the picture where the black lines correspond to the solutions of #’ = ¢ and the red and green
curves to solutions of ()% + u® + x% = 1. Obviously, the black lines are tangent to the coloured
curves at the marked intersection points. But the red curve crosses the black line, whereas the
green curve stays on one side.

Example 7.4. To conclude this section, we study equations with “intrinsic” algebraic singulari-
ties, i. e. singularities that are not solely due to the intersection of irreducible components. Some
classical examples can already be found in the work of Ritt. He studied for instance the equation
(')? - 4u® = 0 [33] 11.§19]. Here, all points (x, 0, 0) are algebraic singularities, whereas all other
points on the corresponding algebraic differential equation J; are regular. As the differential
Thomas decomposition applied in the first step of Algorithm [5.14] shows, a singular integral,
namely the solution u(x) = 0, exists here besides the generic component. Obviously, our alge-
braic singularities just form the graph of the first prolongation of this solution. When we apply
Algorithm [5.3] to the generic component, then it uses the inequations in the entered differential
system only for the saturation; otherwise they are ignored. Hence the analysed algebraic dif-
ferential equation J; is the full variety corresponding to the given equation. In particular, J;
contains all the algebraic singularities, but Algorithm [5.3|recovers them and puts them again into
a separate regularity component. The singular integral represents here a kind of limit towards
which all the other solutions tend asymptotically.

As a second example, we consider the cone in the first-order jet bundle, i.e. we study the
scalar differential equation J; given by

WP - - =0

which obviously possesses an isolated algebraic singularity at the origin. The regularity decom-
position of J; determined with our algorithm yields two components: one consisting solely of
this algebraic singularity and one containing all other points which are regular.
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Figure 5: Generalised solutions going through an algebraic singularity of a real first-order differential equation. Left:
situation in Jyzr. Right: projection to x-u plane.

It is of obvious interest to study the local solution behaviour around this algebraic singularity
and again we find a much wider range of possibilities over the real numbers. In our case, a real
analysis can be performed with a simple ad hoc approach. Around any regular point (%, i1, ') €
1, the Vessiot distribution is generated by the vector field X = u/d, + (x> + u?)d, + (x — utt' )0,y .
Note that X vanishes when one approaches the origin. By restricting to either the lower or the
upper half cone, we can express u’ by x and u and project to the x-u plane obtaining the vector
field Y = + Vx2 + 129, + (x* + u*)d,,. It can trivially be continued to the origin where it vanishes.
However, it is not differentiable at this point. Therefore, its behaviour at this stationary point
cannot be decided using the Jacobian matrix. Transforming to polar coordinates (i. e. performing
a blow up) shows that there is a unique invariant manifold going through the algebraic singularity
which corresponds to the graph of a (prolonged) solution. We obtain one such solution from each
half cone (see the red curves in Figure[5). As the graphs of both solutions possess a horizontal
tangent at the origin, it is possible to “switch” at the singularity from one to the other. Hence,
we find that our equation possesses exactly four C' solutions for the initial condition u(0) = 0
and u’(0) = 0. By analysing the prolongations of our equation, it is not difficult to verify that the
solutions that stay inside of one half cone are even smooth, whereas the “switching” solutions are
only C', as their second derivative jumps from 1 to —1 or vice versa at x = 0. Figure also shows
in white the Vessiot cone at the algebraic singularity which consists of two intersecting lines. One
sees that they are indeed the tangents to the prolonged solutions through the singularity.

8. Conclusions

We developed a framework for the detection of all singularities of an arbitrary differential
system with polynomial nonlinearities at a fixed order. It is based on the notion of an algebraic jet
set (Definition 2.T) and covers both ordinary and partial differential equations. Our framework
merges concepts from differential topology with tools from differential algebra and algebraic
geometry. In particular for partial differential equations, it provides the first general and rigorous
definition of singularities. While we could not prove that the taxonomy of Definition {.1] is
complete for systems which are not of finite type, our first main result, Theorem 4.7} shows that
the definition is meaningful in the basic sense that regular points represent the generic case.
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We augmented the classical theory of singularities of differential equations by the novel no-
tion of a regularity decomposition (Definition [5.2)), which is based on the concept of a regular
algebraic jet set and in particular allows for a rigorous handling of situations where singularities
are not isolated. A regularity decomposition essentially decomposes an algebraic jet set into
subsets on which all relevant geometric structures show a uniform behaviour. Our second main
result, Theorem [5.13] provides an algorithmic proof for the existence of regularity decomposi-
tions for arbitrary simple differential systems.

Finally, we solved a long standing problem in the geometric theory of differential equations:
the construction of effectively provably regular equations. Most results in the geometric theory
assume that one is dealing with a regular differential equation. However, to the best of our
knowledge, nobody has so far provided an effective criterion for checking whether or not a given
differential equation is regular. The basic problem is that such a criterion must take into account
the infinitely many prolongations of the considered differential equation. Our third main result,
Theorem [6.3] shows that the regularity decomposition determined by our algorithm contains in
each prime component of the given system a unique regularity component which defines a regular
differential equation.

Our approach is based on both the differential and the algebraic Thomas decomposition and
is therefore fully algorithmic. An algebraic Thomas decomposition is crucial for the detection of
all singularities. However, as discussed in Example[7.2] such a decomposition yields in general
more than we really need, as it also takes into account the geometry of the embedding of the
given algebraic differential equation into the ambient jet bundle. From a theoretical point of
view, these unnecessary case distinctions are ugly but harmless. From a computational point of
view, they considerably increase the computational costs and thus it would be useful to find a
way to avoid them. Based on the existing implementation of these decompositions in MapLE [13]]
and the built-in MapLE procedure for prime decomposition, it is straightforward to implement
our Algorithms [5.3] and [5.14] for constructing a regularity decomposition in MapLe. Indeed, one
of the authors (MLH) provided such an implementation and all examples in this work have been
computed with it.

Our results lead immediately to a number of new questions. The most obvious one con-
cerns the local solution behaviour around singularities, in particular the existence of solutions
connecting two or more regularity components. Its investigation requires first an analysis of the
“neighbourhood relationships™ of the found components, i. e. does a certain component lie in the
Zariski closure of another component? Such information can be straightforwardly obtained by
classical Grobner bases techniques (cf. e. g. [26]). A deeper study of the local solution behaviour
requires additional methods which are beyond the scope of this work. Furthermore, such a study
can most probably not be done at the same level of generality as this work; one has to specialise
to more specific classes of systems.

For geometric singularities of ordinary differential equations considered over the real num-
bers much is already known from the works in the context of differential topology cited in the
Introduction. Typical questions here are existence, (non)uniqueness and regularity of one- and
two-sided solutions. At regular singularities the situation is fairly simple: they are generically
either the initial or the terminal point of two classical solutions (thus generically only one-sided
solutions exist at such points). A precise formulation covering also non-generic situations can
e. g. be found in [29, Thm. 4.1].

For the analysis of irregular singularities, one can employ dynamical systems theory, as usu-
ally the Vessiot distribution is generated outside of an irregular singularity by a vector field which
vanishes at the singularity. Generalised solutions through the singularity can then be constructed

35



as one-dimensional invariant manifolds and typically several (possibly even infinitely many) so-
Iutions intersect at such a singularity. In low-dimensional situation, it is useful to be able to
actually see the singularities and solutions through and around them. In [36]], a MaTLAB toolbox
for producing corresponding 2D and 3D plots is presented. A detailed analysis of a specific class
of scalar quasilineaxE] second-order ordinary differential equations along these lines can be found
in [39]. In particular, it is shown there how regularity questions can be answered geometrically
by studying prolongations.

For linear ordinary differential equations, the analysis of singularities over the complex num-
bers has a long tradition going back at least to the classical works of Fuchs and Frobenius which
is nowadays often considered as part of differential Galois theory (cf. [40] and references therein).
Note that in this context the terminology regular and irregular singularity is often used with a dif-
ferent meaning than in this work. In a complex setting, the regularity of solutions is of course no
issue. Instead one studies questions like the monodromy of multivalued solutions or the Stokes
phenomenon (cf. e. g. [41] or [42]) which are both from a theoretical and an algorithmic point of
view still far from being solved.

We mentioned already in Remark [.4] that for partial differential equations the taxonomy
of Definition might be incomplete. The deeper problem behind this question is to define
precisely what in this case the regular behaviour should be. For equations of finite type, the
prolonged solutions lead to a foliation of the differential equation around any regular point, as
in this case the vanishing of the symbol space implies that the Vessiot distribution itself is the
unique complement to the symbol space and its integral manifolds form the leaves of a (unique)
foliation by the Frobenius theorem. If the differential equation is not of finite type, infinitely
many possible complements exist and each of them leads to a different foliation by its integral
manifolds. Here it is still unclear whether our definition is already sufficient to avoid any possible
kind of singular behaviour. For regular differential equations, the different complements can be
constructed by solving a combined algebraic-differential system which arises out of the structure
equations of the Vessiot distribution (see the discussion in [32]). It has not yet been studied how
this construction is affected by singularities and whether further kinds of singularities may be
hidden in the structure equations.

The study of solutions around algebraic singularities has not found much attention yet.
Within differential topology, they simply do not occur, as it is always assumed that one is dealing
with a manifold. Recently, Falkensteiner and Sendra [43]] used the classical theory of algebraic
curves to study formal power series solutions of autonomous algebraic ordinary differential equa-
tions of first order by relating them to places. However, an extension of their approach to higher
dimensional situations appears to be highly nontrivial. Our analysis in the non-autonomous Ex-
ample corresponding to an algebraic surface was performed in a rather ad hoc manner, but
the principal idea should be extendable to more complicated situations, as the definition of a
simple algebraic system means that each equation in the system is solvable for its leader. Thus
one can at least in principle obtain an explicit expression for a vector field generating the Vessiot
distribution (for ordinary differential equations), as we used it in the example.

In the case of a reducible algebraic differential equation, additional algebraic singularities
appear at the intersection of irreducible components. As over the complex numbers only mero-
morphic solutions are relevant, the local solution behaviour can be determined on each compo-

11t should be noted that quasilinear differential equations possess a special geometry, as here the Vessiot distribution
is projectable [37], leading to phenomena not arising in the fully nonlinear equations usually studied in differential
topology. Using classical analytical techniques, such equations have been analysed in some detail, e. g. in [38].
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nent separately. Over the real numbers, Example demonstrates that solutions exist which
“switch” from one component to another one, although generally such solutions will only be of
finite regularity at the singularity. In this example, the points on the intersection were regular for
each component, so that on each component only one solution through them exists leading to a
total of four solutions through the singularity. It is trivial to construct examples where an inter-
section point is an irregular singularity for both involved components. If we assume furthermore
that in both cases this singularity is a folded node, then we find already on each component in-
finitely many solutions going through the singularity. Now each solution on the first component
can be combined with any solution on the second component leading to “co?” many “switching”
solutions.

In this article, it was always assumed that the given differential system is studied in a fixed,
sufficiently high order €. This obviously raises the questions how this order should be chosen
and how the obtained results depend on the chosen order. More generally, one may ask how do
singularities behave under prolongations, i. e. how are regularity decompositions at two different
orders related. It is easy to see that no singularities can arise above a regular point and that at a
regular singularity no power series solutions can exist, as the fibre above it is always empty. The
fibre over an irregular singularity consists entirely of singularities, but it is not clear of which
type. For algebraic singularities, Tuomela [44] provided an example where a prolongation leads
to a resolution of the singularity (in the sense of algebraic geometry), but it is unclear when this
happens. A power series solution can exist at an irregular singularity, if and only if at each order
of prolongation the corresponding fibre contains again at least one irregular singularity. Thus we
meet anew the problem of checking infinitely many conditions and a deeper study is beyond the
scope of this article.

Such questions are related to classical decidability questions for power series solutions as
e. g. studied by Denef and Lipshitz [45]. As is often the case, an undecidable question for power
series solutions is decidable for many relevant special cases. One of the theorems in [45] asserts
that one can algorithmically decide for an algebraic ordinary differential equation whether such
a solution exists at a fixed point x € X. From our geometric point of view, this result is easy in
many cases: whenever at least one regular point lies above x such a solution exists. It becomes
highly non-trivial when all points above x are singular (semi-linear equations typically show this
behaviour at certain points x), as it implies that the above mentioned infinitely many conditions
can be reduced to finitely many. Denef and Lipshitz [45] also proved a number of undecidabil-
ity results (including the existence of power series solutions for partial differential equations)
by presenting concrete counterexamples where the construction of formal power series solutions
leads to classical undecidable diophantine problems. All these counterexamples are linear differ-
ential equations with geometric singularities in our sense. Our work sheds additional light on the
many cases of regular points above x where the existence of power series solutions is decidable.

From an analytical point of view, one is not interested in arbitrary solutions around some
given point x, but one studies concrete initial value problems prescribing further differential
variables (in particular, for initial data corresponding to a singularity like in [39]). The theorems
presented in [45] do not cover this situation. However, in one of their proofs [45, Thm. 3.1], they
admit such additional conditions (assuming only that one is outside of any singular integral) so
that actually key results of them can be applied to initial value problems.

For studying both the local solution behaviour and prolongations, it appears very interesting
to combine our approach with the construction of various forms of formal power series (including
Laurent and Puiseux series) via Newton polygons or polyhedra [46| 47, |48]], as in particular the
leading term of such series solutions may hint at the “right” order. We note that in the recent
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manuscript [49] such techniques are applied for proving existence and uniqueness results for
formal power series also at singularities (see also [50]).

The algorithms behind the algebraic and the differential Thomas decomposition require that
the base field is algebraically closed. For this reason, we considered in this work exclusively
differential equations over the complex numbers. From an application point of view, it is of
great interest to have a similar theory as developed in this work for real differential equations.
A first step in this direction can be found in [51] for ordinary differential equations. There, the
algebraic Thomas decomposition is replaced by a parametric Gauss algorithm followed by a
quantifier elimination. This process represents a suitable alternative for the effective detection
of real singularities and as a by-product avoids to some extent the above mentioned problem
that the algebraic Thomas decomposition leads to unnecessary case distinctions because of the
geometry of the embedding of the differential equation. As demonstrated in [51], an analysis of
Example [7.2]leads now to no redundant cases.

A. Algebraic Systems and the Algebraic Thomas Decomposition

We fix a total ordering (or ranking) on the variables of the polynomial ring # = C[x', ..., x"]
by setting x' < x/ for i < j. The greatest variable with respect to < appearing in a non-constant
polynomial p € P is called the leader of p and denoted by 1d (p); for p € C we setld (p) = 1. We
regard every polynomial p € P\ C as a univariate polynomial in the indeterminate x* := 1d (p).
Then the coefficients of p as a polynomial in x* are contained in C[x’ | 1 < i < k]. The coefficient
of the highest power of 1d (p) in p is called the initial of p and denoted by init (p). Finally, we
introduce the separant of p as sep (p) := dp/ox*.

An algebraic system S is a finite set of polynomial equations and inequations

S={p1=0,...,p;=0,q1#0, ..., ¢, #0} (A)
with polynomials p;,q; € P and s, € Ny. Its solution set is defined as
Sol’(S) :={aeC"| pi(a) =0, gj(a) # Oforall i, j}.

Obviously, Sol*(S) is a locally Zariski closed set, namely the difference of the two varieties
Sol*({p1 = 0,..., p; = 0}) and Sol*({g; - - g; = O}).

Definition A.1. An algebraic system S as in (A) is said to be simple (with respect to a given
ranking <), if the following three conditions hold:
(i) All equations and inequations have pairwise different leaders, i. e. we have

[{1d(p1)..... 1d(p,). 1d(q1). ... 1d(g) } \ {1} | = s + 1

(triangularity).

(ii) For every r € {p1,...,Ps»q1,--.,q:}, the equation init () = 0 has no solution in Sol*(S)
(non-vanishing initials).

(iii) For every r € {p1,..., Ps,q1,---,q;}, the equation sep (r) = 0 has no solution in Sol*(S)
(square-freeness).

We associate with the simple algebraic system S the saturated ideal

Tag(S) :={p1,....,ps) : g~ CP where g = init (p;) - - - init (py) . (A.1)
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According to [[I7, Prop. 2.2.7], it represents the vanishing ideal of the Zariski closure of Sol*(S),
i.e. the ideal of all polynomials in # which vanish on Sol*(S). In particular, 7,,(S) is always a
radical ideal.

Simple systems are a special class of algebraic systems for which the solution set can be
obtained iteratively by finding zeros of univariate polynomials. First observe that triangularity
implies that the simple system S contains either at most one equation p(x') = 0 with leader x! or
at most one inequation g(x') # 0 with leader x'. The number of zeros of p (of ¢) in C is equal to
the degree of p (of g, respectively) due to square-freeness. In the former case, any zero a' € C
of p can be chosen for the coordinate x! of a solution of S. In the latter case, all elements of C
except the zeros of g can be chosen instead. If S does not contain any equation or inequation with
leader x!, then a' is arbitrary. We substitute a' for x! in the equation or inequation with leader
x?in S leading to a univariate polynomial in x>. The degree of this polynomial is independent of
the choice of a; due to the non-vanishing initial. Again because of square-freeness, the number
of zeros of this polynomial is equal to its degree. By iterating this process, we obtain a solution
(@,d?, ...,a" € C" of § and every solution of § can be obtained in this way. This process
makes use of the fact that the projections from the solution set of S onto the subspace with
coordinates x', x2, ..., x* have uniform fibre cardinality [S2].

Definition A.2. Let S be an algebraic system as in (A). A Thomas decomposition of it consists
of finitely many simple algebraic systems Si,...,S such that the solution set Sol*(S) is the
disjoint union of Sol*(S), ..., Sol*(Sy).

Thomas [11} [12] proved that any algebraic system admits a (non-unique) Thomas decompo-
sition. Using subresultants and case distinctions, it can be algorithmically determined [[13]. An
implementation in MAPpLE is described in [[14].

B. Differential Systems and the Differential Thomas Decomposition

We proceed to the differential polynomial ring (see [35) 153} 54] for more information on
the for us relevant parts of differential algebra). Let K = C(x',...,x") be the field of ra-
tional functions on C” and &; the derivation d/0x'. Given a set of differential indeterminates
U = {u',...,u™}, we define the ring of differential polynomials as the polynomial ring K{U} :=
Klu; | 1 < a < m,pu € Nj]in the infinitely many variables uj;. The derivations §; : K — K
extend to derivations §; : K{U} — K{U} via 6,-(u;f) = uZ o, additivity, and the Leibniz rule.
Here 1, is the multi-index of length n whose entries are 0 except for the i-th entry which is 1. We
define 6" := 6‘1“ ...0y" and |u| := yy + ... + uy, the length of any multi-index ¢ € IN. Given dif-
ferential polynomials py, ..., p; € K{U}, we distinguish between the algebraic ideal (p, ..., py)
consisting of all linear combinations of them and the differential ideal {py, ..., ps)a containing
in addition all differential consequences ¢ p of any element p of it.

We introduce the subring D c K{U} of those differential polynomials where also the coeffi-
cients are polynomials in the variables x'. Moreover, for any £ € Ny we consider the subalgebra

Z)[:([}[xi,u;fllgign,ISaSm,I/JISK],

which is the coordinate ring of the affine space Aé where d = n + m(”}f{) Later, we identify the

jet bundle Jmr of the geometric theory (see Appendix [C) with the affine space Aé and consider
Dy as its coordinate ring. Consequently, we call the variables uj; of the polynomial ring K{U} jet
variables.
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A ranking on the differential polynomial ring K{U} is a total ordering < on the set of jet
variables uff such that u* < 6;u® for all i and «, and such that ul‘f < uZ implies 6,uff < 6,-14;‘:,/

for all i, a, o/, p, /. A ranking < is orderly, if |u;| < |up| implies uy,] < uy’ for all @, a3,

Hi, p2. A Riquier ranking satisfies the following property: if the relation uj;, < uﬁ holds for
one value of the index a, then it must hold for all values of @ (the meaning of this condition
is discussed in [2| p. 428]). The definitions of leader, initial and separant given above can be
extended straightforwardly.

A differential system S is given by a finite set of differential polynomial equations and in-
equations

S={p1=0,....ps=0,g1#0, ..., 9, #0} (D)

with p;,q; € K{U} and s,t € INy. Note that by clearing denominators we may (and will) always
assume that actually p;,q; € D.

As always for differential equations, the issue arises what kind of functions are permitted as
solutions. We use here mainly local holomorphic functions f : U — C defined on some metric
open domain U C C". However, in our approach the actual nature of the considered functions
is not so important and we could equally well work with formal power series or meromorphic
functions. In the sequel, we simply assume that some set of functions admissible as solutions
has been fixed and we denote by Sol4(S) the set of solutions in this set. We further assume
that a differential Nullstellensatz holds for this set. This is needed to establish a one-to-one
correspondence between the solution sets of differential systems and the radical differential ideals
of the differential polynomial ring. For a system of differential equations in K{U} with our choice
of K, a differential Nullstellensatz holds for local holomorphic functions (see e. g. [53} 551]).

Theorem B.1 (Nullstellensatz for Holomorphic Functions). Let py, ..., ps € K{U} be differential
polynomials and I = {(p1,..., ps)a the differential ideal generated by them. Moreover, let q €
K{U} be a differential polynomial which vanishes for all local holomorphic solutions of 1. Then
some power of q is an element of I.

The concept of passivity introduced by Riquier [56] and Janet [S7] represents a differential
algebraic version of completeness or formal integrability. For lack of space, we cannot recall
here all the required definitions, but refer to [[15] for a modern presentation of the form in which
it is used here. Riquier [56, Chapt. VII, §115] showed how one can formulate for a passive
system an initial value problem (see [2, Sect. 9.3] for a modern formulation of this construction)
admitting an existence and uniqueness theorem for holomorphic solutions.

Theorem B.2 (Riquier’s Theorem). Let < be an orderly Riquier ranking. Then for a system of
holomorphic differential equations which is orthonomic and passive with respect to < the corre-
sponding initial value problem possesses for holomorphic initial data locally a unique holomor-
phic solution.

The assumption of passivity allows for the algorithmic construction of formal power series
solution for any ranking (see Remark [B.5|below). In the case of an orderly Riquier ranking, one
can then prove the convergence of this series obtaining the above theorem. Orthonomic means
that each equation can be solved in a unique manner for its leader. Obviously, a general implicit
differential equation does not satisfy this condition. For this reason, we need as in the algebraic
case the notion of a simple system permitting us the use of Riquier’s Theorem.

Definition B.3. A differential system S as in (D) is simple (with respect to a given ranking <),
if the following conditions hold:
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() § is simple as an algebraic system (in the finitely many jet variables u;; which actually
occur in S ordered according to <)E]
(i) {pi,...,ps}is a passive system (for the Janet division).
(iii) No leader of an inequation g; is an (iterated) derivative of the leader of an equation py.

Definition B.4. A Thomas decomposition of a differential system S consists of finitely many
simple differential systems S1,...,S such that Sold(S ) is the disjoint union of the solution sets
Sol(S1),...,Sol4(Sy).

Thomas [[11} [12]] proved also in the differential case the existence of such decompositions.
Again, it is possible to construct them algorithmically by interweaving algebraic Thomas decom-
positions and the Janet-Riquier theory [13]. The resulting algorithm is implemented in MAPLE
[14}16].

Remark B.5. For a simple differential system S it is possible to construct systematically formal
power series solutions. Let ¢ be the maximal order of an equation or an inequation in S and add
to S all partial derivatives of order at most ¢ of the equations in S. Now we choose an expansion
point xy = (x('), ..., x) € C" such that all equations and inequations in S are defined at x = x
and no initial and no separant vanishes for x = xy. Hence, a formal power series solution is of
the form u® = ZﬂeNg c}‘f(*_ﬂ—x,‘))“ We choose ¢ € © for all derivatives u;, up to order £. These
choices must be performed in such a manner that after substituting x by xo and all u; by the
corresponding constants ¢, no initial or separant of an equation or inequation vanishes and all
equations and inequations are satisfied. If u;; is the leader of an equation, then only finitely many
values are possible for ¢j;. If it is the leader of the derivative of an equation, then there is no
freedom in choosing ¢, as any differentiated equation is linear in its leader. If uj; is the leader of
an inequation, then all but finitely many values are possible for ¢;;. For all other jet variables u;
up to order ¢, the constants ¢, can be chosen completely freely.

The jet variables uj, of an order greater than £ can be partitioned into two disjoint sets. For
those which are not the derivative of the leader of an equation in S, the corresponding constant
¢, can be chosen arbitrarily. For all remaining ones the constants ¢;, are uniquely determined by
some derived equations, which are quasi-linear. The properties of a simple differential system
(in particular, the passivity) ensure that now the formal power series u® = ), peNT cfj(x;—fow with
1 < @ < m define a solution of S around x.

Of course, this construction does not necessarily produce all power series solutions of a

simple differential system, c. f. [21, Example 4.8,4.9] or [22} §2].

C. The Geometry of Differential Equations

Since the algebraic tools used in the algorithms developed in this work require an alge-
braically closed field, we concentrate on complex differential equations. Thus, in the following
all manifolds'?|are complex and all variables are to be understood as complex-valued. Restricting
to holomorphic sections, one can define jet bundles in the familiar way and there are no changes
with respect to the real theory outlined in standard references like [[1} 12} 58}, 159].

12We consider here the independent variables x' as part of the coefficient field. One should also note that if only the
inclusion of these variables yielded an algebraically simple system, then S would be differentially inconsistent.

3For us, manifolds have the same local dimension at every point and thus look locally like an open subset of some
€ with a fixed d.
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The basic geometric setting is a fibred manifold 7 : & — X (i.e. 7 is a surjective submer-
sion). The coordinates on the base space X are the independent variables xY, ..., x"; the fibre
coordinates u!, ..., u" represent the dependent variables or unknown functions. The £th order jet
bundle J;mr consists of all Taylor polynomials of degree £. Naturally induced coordinates on it
are thus in addition all derivatives of the u' up to order ¢; we use for them the usual multi-index
notation u,, where u € Ny is a multi-index of length . In the sequel, these natural coordinates
are called jet variables. For convenience, we identify & = Jyr.

Functions are replaced in the geometric framework by (local) sections maps o : U C
X — & such that 7 o o = idg. Locally, any section can be written in the form o(x) = (x, s(x))
with a local holomorphic function s : C" — C™. Given a section o : X — &, prolonga-
tion to order ¢ yields the section of the jet bundle j,o : X — Jym which is locally defined by
Jeo(x) = (x, 5(x), 54(%), ..., Sx.x(X)), i. €. we simply add all partial derivatives of the function s
up to order ¢.

The jet bundles of different orders form a natural hierarchy of fibrations via the canonical
projections nﬁ”‘ : Jewxm — Jemr which “forget” the higher order Taylor coefficients. Of particular
interest are the projections ng_l by just one order, as Jr is an affine bundle over J,_;m modelled
on the vector bundle S (7" X) ® Vx [2, Prop. 2.2.6]. The fundamental identification provides an
isomorphism between this vector bundle and the vertical bundle Vﬂ'gi | = ker Tﬂ'gil. In addition,
every jet bundle is fibred over the base space by the canonical projection 7’ : J,;r — X mapping
each Taylor polynomial to its expansion point. This last projection is very important in our
context: whenever we speak without further details of a transversal or a vertical vector field, it
refers to this fibration 7’

A crucial geometric structure on the jet bundle Jyr is the contact distribution C; € T (Jem).
In local jet coordinates, it is generated by the following vector fields:

CO=0u+ > U0+ > Y ut by (1<i<n),
p o<pi<t @ (C.1)

Cl =0, u=61<a<m),

where ¢ + 1; denotes the multiindex obtained by raising the i-th entry of ¢ by one. The first n
fields are transversal to the fibration 7 and encode the chain rule, whereas the remaining fields
span the vertical bundle Vﬂiil. Intuitively, the contact distribution encodes the different roles
played by the three different kinds of coordinates: independent variables, dependent variables,
and derivatives. One way to express this intuition formally is given by the following well-known
characterisation of prolongations.

Proposition C.1. A sectiony : X — Jm of the {th jet bundle is a prolongation, i. e. of the form
y = jeo for a section o : X — &, if and only if T(imy) C Cy.

The following intrinsic definition of a differential equation as a submanifold does not distin-
guish between scalar equations and systems and it is independent of any concrete way to describe
the submanifold. In particular, the definition does not assume that the submanifold is (a part of)
the solution set of polynomial equations. While it is in principle a global definition, many results
in the geometric theory are only of a local nature. The imposed condition automatically excludes
the appearance of singularities as studied in this article.

4For notational simplicity, we almost always omit the domain of definition 2/ and use a seemingly global notation.
However, all statements in this work are of a local nature.
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Definition C.2. A differential equation of order ¢ is a fibred submanifold J, C J,x such that the
restriction of the canonical projection 7’ : J,m — X to the set J; is a surjective submersion.

The notion of a solution can be easily expressed in an intrinsic manner, too. Note that the
above definition of a differential equation does not yet entail the existence of solutions, as it does
not exclude hidden integrability conditions which may lead to an inconsistency.

Definition C.3. A (classical or strong) solution of the differential equation J,; C J,r is a section
o : X — & such that its prolongation satisfies im j,o C .

Let 0 : X — & be a classical solution of the differential equation J, € Jyn. Then, by
definition, im jooo € J, is a smooth submanifold. Hence, we find at any point p € im j,o that
Ty(im jeo) € Tp,J,. Furthermore, for any prolonged section T,(im jeo) € C¢|, by Proposi-
tion[C.1] Thus the tangential part of the contact distribution restricted to J; may be considered
as the space of all infinitesimal solutions (or integral elements).

Definition C.4. The Vessiot spacﬂ Vo Je] of the differential equation J, C Jemr at a point
p € Jeisthe set V, [Tl = TpJ¢NCelp. The family of all Vessiot spaces on ¢ is briefly denoted
by V[Tl

One should note that generally the family V[ J,] does not define a smooth regular distribu-
tion, as the dimension of the Vessiot spaces may differ at different points on . It is a standard
assumption in the geometric theory (related to the notion of a regular differential equation) that
this should not happen.

The fibration ﬂi_l : Jem — Jeym allows us to define at any point p € Jymr the vertical
space V,ﬂrﬁ_1 = ker Tpﬂﬁ_l. We call the vertical part of the Vessiot space at a point p € J;
the symbol space N,[J¢] = V[Tl N Vpnﬁ_l. It is not difficult to show that the Vessiot space
can be decomposed as a direct sum of linear subspaces, V,[T¢] = N,[J] & H,, with some
n~transversal complement H, which is not uniquely determined.

The relationship between solutions and the Vessiot distribution is recalled in the following
well-known assertion (see e. g. [2, Prop. 9.5.7]). One may say that the basic idea of Vessiot’s
approach to differential equations consists of studying certain subdistributions of the Vessiot
distribution—which can to a large extent be analysed by elementary linear algebra—instead of
solutions themselves (in [32] these subdistributions are called Vessiot connections).

Proposition C.5. Ler the section o : X — & be a solution of the differential equation J; C
Jerm. Then T(im jeo) is an n-dimensional, #t-transversal, involutive, smooth subdistribution of
VIIllim j,o- Conversely, let H C V[J,] be an n-dimensional, transversal, involutive, smooth
subdistribution defined on some open subset of J,. Then any n-dimensional integral manifold of
H (and such manifolds always exist by the Frobenius Theorem [2| Thm. C.3.3]) is locally of the
form im j,o for a solution o of Jy.

Given a smooth function @ : Jr — C, its formal derivative with respect to the independent
variable x' yields a function D;® : J,, ;7 — C which can be conveniently defined via the above

151n particular in the Russian literature, the terminology Cartan space is more common. We follow here the argumen-
tation of Fackerell [60] that Vessiot put a much stronger emphasis on the vector field side, whereas Cartan prefered to
work with differential forms.
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introduced contact fields (C.1):

m

Di® = CO@) + Z Z Ch(dus, (C.2)
=t =1

where u + 1; denotes the multi-index obtained by raising the ith entry of u by one.

Assume that @ depends on some jet variables other than only the independent variables x'
and that £ > 0 is the maximal order of these jet variables. Then D;® depends on jet variables
up to order k + 1 and is always linear in those of the maximal order (and thus quasi-linear). Let
P = C[£',...,&"] be a polynomial ring in n = dim X variables and p € Jorr an arbitrary point.
We define the principal part of ® at the point p as the polynomial vector

& 0D
pp, 0= > > g P €7 (C.3)

lul=k a=1

where e, denotes the standard basis vectors in the free module £ over the polynomial ring
P = C[x!,..., x"] whose rank is the fibre dimension m of &. Note that the entries of PP, O are
homogeneous polynomials of degree k .

Locally, the differential equation J, may be considered as the zero set of some functions
®; : J;m — C. We choose a point p € J; and let £; < £ be the maximal order of jet variables
effectively appearing in @; and f; = pp, ®; € " its principal part at p. The (reduced) principal
symbol module at the point p is now the P-module M|p] = ({fi,...,f;) spanned by all the prin-
cipal parts. The degree ¢ component of this module can be identified with the annihilator of the
symbol space N,[J¢] (see [2, Rem. 7.1.18]).
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