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Abstract

We discuss the use of symmetries for analysing the structural identi-
fiability and observability of control systems. Special emphasis is put on
the role of discrete symmetries, in contrast to the more commonly stud-
ied continuous or Lie symmetries. We argue that discrete symmetries are
the origin of parameters which are structurally locally identifiable, but
not globally. We exploit this fact to present a methodology for structural
identifiability analysis that detects such parameters and characterizes the
symmetries in which they are involved. We demonstrate the use of our
methodology by applying it to four case studies.

1 Introduction

We are interested in two closely related properties of dynamic models, namely
structural identifiability and observability. A state variable is observable if its
initial value can be determined from knowledge of the model’s subsequent input
and output trajectories, and a parameter in a model is structurally identifiable
if it can be determined in the same way. These properties are structural, in the
sense that they only depend on the model equations; they are not affected by
the quality of the experimental data. Since a parameter can be considered as a
constant state variable, structural identifiability will be treated as a particular
case of observability [7, 44].

Symmetries [3, 26] are a useful tool for analysing control systems [21, 22, 31,
34, 43, 44, 45, 46, 47, 48]. In particular, the existence of continuous symmetries
leaving the output invariant represents an obstruction to local observability.
Recently, two of the present authors analysed for a larger number of parametric
models the difference between local and global structural identifiability [29]. If a
parameter is locally, but not globally identifiable, then for a given output finitely
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many different values are possible for this parameter. One goal of the current
paper is to argue that this is related to the existence of discrete symmetries.

Discrete symmetries have been studied much less than their continuous coun-
terpart. The most popular approach is due to Hydon [15] and an alternative
approach was proposed by Gaeta and Rodriguez [10]. Both approaches are not
completely algorithmic. Furthermore, Hydon’s method can only be used, if con-
tinuous symmetries exist. In the particularly interesting situation that a control
system is structurally locally identifiable, but not globally, this will not be the
case.

We will follow an approach proposed by Reid et al. [27] and work with
the finite determining system instead of the infinitesimal one. This system is
generally highly non-linear and thus hard to analyse. Reid et al. relied on an
algorithm rifsimp [28] which uses many heuristics and hence may fail. We
will use rigorous techniques from differential algebra (see [40] for a concise in-
troduction), in particular the Thomas decomposition originally developed by
Thomas [41, 42] and later revived by Gerdt [11]. It is implemented in MAPLE
as a package called TDDS [12] (for an earlier version see [2]).

For just deciding identifiability, it is not necessary to compute symmetries; it
suffices to detect their existence. This can be done algorithmically with methods
from the formal theory of differential equations (see e.g. [38] and references
therein for an extensive introduction); some applications of such methods in the
context of symmetry theory have e.g. been discussed in [32, 36, 37].

2 Discrete and Continuous Symmetries for Ob-
servability

We will discuss finite-dimensional nonlinear control systems

x =f(t,x,u), (1a)
y =h(t,x,u). (1b)

Here, as usual, x € R™ denotes the state, u € R™ the input, y € R’ the output
and all these dependent variables are assumed to be smooth functions of a single
independent variable, the time ¢. We will assume that the right hand sides are
rational functions of their arguments. This covers most systems appearing in
typical applications.
For an observability analysis, one considers point transformations of the
restricted form!
t=t, x = X(t,x), a=u. (2a)

Since the input is considered as known, we should indeed admit only transfor-
mations that do not change it. And as observability is concerned with recon-
structing the state x from the output y, we cannot allow for transformation of
the time . Finally, the transformation of the output y is determined by enter-
ing (2a) into (1b). A point transformation must be invertible requiring that the
Jacobian 90X /0x must possess full rank almost everywhere.

1One could admit that X also depends on u. But one will find as one determining equation
that X4y = 0. Hence our restricted ansatz suffices.



The transformation of derivatives of arbitrary order is completely determined
by the chain rule (see e.g. [3]); for first-order one obtains the prolongation

x=XW(t,x,%) = X; + Xyx. (2b)

A control system is not observable, if it possesses symmetries that leave
the output invariant. Hence, we require that both the state equation (1a) and
the output equation (1b) remain invariant under the point transformation (2).
Entering (2) into (1) yields the conditions

XM (t,x,%) = £(¢,X(t,x),u), (3a)
h(t,x,u) = h(t, X(t,x),u) . (3b)

Note that (3b) is a purely algebraic equation, i.e. no derivatives of X appear in
it.

We eliminate X in the left hand side of (3a) by substituting x = f(x,u),
i.e. by using (la), and then clear denominators. Then each equation in (3)
can be considered as a multivariate polynomial in the inputs u with coefficients
A which are polynomials in the variables ¢, x and the functions X plus their
first derivatives X;, Xx. The finite determining system for point symmetries of
(la) is then obtained by requiring that all these coefficients A; vanish, as the
invariance must hold for arbitrary inputs u. It represents a complicated system
of first-order polynomially nonlinear partial differential equations,

A]‘(t,X,X,Xt,Xx):O, jzla""‘]a (4)

for the functions X which is generally not solved for any derivatives, i.e. fully
implicit. The number J of equations in (4) depends not only on the dimensions
n, m, £ of the vectors x, u, y, but also on the degrees with which the inputs
u appear in (1). If we assume that (1) is affine in the inputs (as it is often the
case in applications), then J = (n 4 £)(m + 1).

Most people using symmetry methods do not set up the finite determining
system (4). Instead, they use the infinitesimal approach developed by Lie al-
ready in the 19th century. Mathematically, it corresponds to determining the
Lie algebra of the Lie group of point symmetries. In this approach, one assumes
that one has at least a one-parameter group of transformations, i.e. one must
augment (2a) by a parameter e:

t=t, x = X(t,x,€), a=u. (5)

Here we always assume that we obtain the identity transformation for ¢ = 0
and that the concatenation of two transformations with the parameter values
€1 and eo, respectively, yields the transformation for €; + €.

For small €, one can linearise (5) around € = 0 and obtains the corresponding
infinitesimal generator, the vector field

X

V=%

Oy (6)

e=0

One can obtain the prolonged infinitesimal generator V) by linearising (2b).
But given an arbitrary vector field

V =&(t,x) - O, (7)



V() can also be determined directly: with the ansatz V(1) = V—i—E(l)(t, X, X) - Ox
a short calculation yields & M = &, +E€,.x. This formula can be extended to higher
derivatives [3], but the expressions are getting rapidly rather complicated.

The ansatz (7) defines an infinitesimal symmetry of the control system (1),
if and only if it satisfies

VO (x - £(t,x,u)) =0, (8a)

’)’c:f(t,x,u) N

Vh(t,x,u) =0. (8b)

The left hand side of the first equations means that one applies first the pro-
longed generator V(Y to the expression x — f(£,x,u) and then replaces in the
result every occurrence of x by f(¢,x,u). For a rational f, one has to clear
denominators in the result. Then one can again consider each equation in (8)
as a multivariate polynomial in the inputs u with coeflicients §; which are poly-
nomials in the variables ¢, x and the functions & plus their partial derivatives
&, €, and the infinitesimal determining system is obtained by requiring that
all coefficients of these polynomials vanish. In contrast to the finite determining
system, we obtain now linear partial differential equations

6j(t7xa£a€t7£x)zo7 jzla"'7J7 (9)

for the coefficients & of the vector field V.

If £(t,x) is a solution of the infinitesimal determining system (9), then in-
tegrating the system % = é (T, X) yields a one-parameter group of transfor-
mations of the form (5). For any choice of the parameter ¢, the obtained point
transformation is a solution of the finite determining system (4). But we can-
not expect that all solutions of (4) arise in this way, i.e. can be embedded in a
one-parameter family of transformations.

From a mathematical point of view, the deeper reason is that firstly one
assumes in the infinitesimal approach that one has a whole Lie group of symme-
tries, i.e. continuous symmetries. Secondly, even then, this group may consist
of several disjoint components and infinitesimal methods see only the connected
component of the identity. If a dynamical system has only discrete symmetries,
then these do not form a Lie group, but typically a finite group.

3 Symmetries and Structural Identifiability

In practise, most control systems also depend on parameters, i. e. the right hand
sides of (1) are also functions of additional arguments @ € R* representing the
parameters:

x =f(t,x,u,0), (10a)
y =h(t,x,u,0). (10b)

We distinguish between local and global versions of structural identifiability. A
parameter 6; of a model of the form (10) is structurally globally identifiable (SGI)
if, for any admissible inputs and almost all parameter vectors 8, 8, the equality
y(t,0) = y(t,0%) implies 6; = 6. A model is SGI, if every parameter 6; is SGI.
Likewise, a parameter is structurally locally identifiable (SLI) if, for almost all



vectors 8, 8™ and almost all initial conditions, the equality y(¢,0) = y(t,0")
allows only finitely many different values of 6;.

Structural identifiability may be considered as a special case of observability,
if we treat the parameters as additional state variables with a trivial dynamics,
i.e. if we augment (10) by

6=0. (10c)
Consequently, we have to extend (2a) to
t=t, x=X(t,x0), 6=0(x,0), u=u (11a)
and the prolongation (2b) to
x =XV (t,x,0,%,0) = X; + Xyx + X0, (11b)
0=01(1,x,0,%,0) =0, + Ok + Ogh. (11c)
The invariance conditions (3) take now the extended form
XM (t,x,0,%,0) = £(t,X(t,x,0),u,0(t,x,0)) (12a)
oW(t,x,0,%,0)=0, (12b)
h(t,x,u,0) = h(t,X(t,x,6),u,0(t,x,0)) . (12¢)

In these equations, we substitute x by f(¢,x,u,0) and 6 by 0. Again, if the
control system (1) is even polynomial, then we obtain immediately expressions
which can be considered as multivariate polynomials in the inputs u with coef-
ficients A; which are polynomials in the variables ¢, x, € and the functions X,
O plus their derivatives Xy, Xy, O, O (since we have for the parameters the
trivial dynamics 0= 0, the derivatives Xg and ®g will not show up). For the
finite determining system, the only difference to (4) is now that the functions
A depend on more arguments.

We are not aware of a rigorous argument why © should not depend on x,
but in our experience this rarely happens. Hence, it appears natural to impose
the restriction 6 = O(t,0) or equivalently to add the determining equations
®, = 0. This considerably simplifies concrete computations and in some cases
makes them feasible at all.

For the infinitesimal approach, we write the ansatz (7) as

V=¢€E(t,%x,0) 0x +¢(t,x,0) - D (13)
with its first prolongation given by
VO =V 4+ eD(t,x,0,%,0) - 05 + ¢ (t,x,0,%,0) - 9 (14)
where the coefficients possess the explicit representation
€V =€ +Ex+ €00, (15a)
¢ =¢, + ¢k + 0. (15b)

The infinitesimal symmetry condition (8) takes now the form

v (x—f(¢ 0 =0 16
(x —f(t,x,u,0)) e, om0~ O (16a)
v(e =0 16b
( )|X:f(t,x,u,9), 6=0 ’ ( )
Vh(t,x,u,0) =0. (16¢)



The second equation is easy to evaluate: it yields the partial differential equation
¢ (%, £(t,x,1,0),0) = ¢, + ¢y £(t,x,1,0) = 0. (17)

If a control system (10) admits continuous symmetries preserving the out-
put, then it cannot be locally identifiable, as infinitely many solutions yield
the same output. These solutions form a continuous family and thus cannot
even locally be distinguished. Thus, the existence of such symmetries implies
unidentifiability. The absence of such symmetries guarantees structural local
identifiability [46, Cor. 3.1]. In the case of a finite group of discrete symmetries,
only finitely many solutions lead to the same output. The system is then locally
identifiable, as in a sufficiently small neighbourhood only one appropriate solu-
tion exists, but not globally. Following [29, 8, 24], we use the acronym SLING
for a parameter that is Structurally Locally Identifiable, but Not Globally.

4 Formal Analysis of Determining Systems

Even the linear determining system for infinitesimal symmetries is in practise
difficult to solve explicitly for systems of ordinary differential equations (the sit-
uation is fairly different for partial differential equations where such determining
systems are routinely solved by computer algebra packages relying on a com-
bination of heuristics and systematic theory). The finite determining systems
will be explicitly solvable only in exceptional cases. However, a formal analysis
of the determining system is possible much more often. “Formal” has here two
meanings: it implies that firstly one only works with the differential equations
themselves, trying for example to bring them into a suitable normal form, andy
that secondl one considers only formal power series solutions (see [38] for a more
extensive discussion).

In our context, one of the most important information is the size of the
solution space: if there is more than one solution, then non-trivial symmetries
exist and the given system is not observable. There are methods for formally
counting solutions (or more precisely freely choosable Taylor coefficients of for-
mal solutions) — see e.g. [17, 18, 35] — and for the infinitesimal determining
system such a counting was already proposed by Schwarz [33].

In this letter, we concentrate only on distinguishing between infinitely many
and only finitely many solutions corresponding to the distinction between not
even locally observable and locally but not globally observable. For this purpose,
it suffices to bring the determining system into a kind of normal form. For the
linear infinitesimal determining system, Janet bases provide such a normal form
[38, 39]; in the nonlinear case, one needs the Thomas decomposition [30].

As the infinitesimal determining system has always the zero solution and
the finite determining system has always the identity map as trivial solutions,
determining systems can never be inconsistent. If the infinitesimal determining
system has more solutions than only the zero solution, then it has automatically
infinitely many solutions implying local non-observability. This is easy to detect
from a Janet basis, as the basis becomes trivial, if only the zero solution exists.

The analysis of nonlinear systems is more involved. The first difference is
that one cannot simply transform the given system into a normal form, but must
perform case distinctions so that the decomposition actually consists of a finite
number of so-called simple systems which have to be studied separately. We



have infinitely many solutions, if at least one of these simple systems contains
an equation which is still a differential equation, i.e. in which still a derivative
appears. Indeed, in this case one can choose freely at least one Taylor coefficient
of the formal solution.

The simplest case for a finite solution space arises, if each simple system
admits exactly one solution (in this case, the simple system contains for each
unknown function one linear equation determining it uniquely). Then the total
number of solutions is just the number of simple systems. Generally, a simple
system may also contain algebraic equations of higher degree. If we define the
degree of a simple system as the product of the degrees of all the equations
contained in it, then the number of solutions is exactly this degree. The total
number of solutions of the determining system is then the sum of the degrees of
the arising simple systems, as the theory of the Thomas decomposition asserts
that the solutions spaces of the simple systems are disjoint (this is an important
difference to an alternative decomposition method due to Boulier et al. [4, 5]
where solution spaces can intersect).

5 Examples

We present four different examples. In the first one, a simple linear compart-
mental model from physiology, only discrete symmetries appear (hence all pa-
rameters and states are at least locally structural identifiable). As they consist
of a simple permutation, they could have been guessed by a direct inspection
of the system. The main advantage of our systematic approach is that it guar-
antees that there are indeed no further symmetries (continuous or discrete). In
what follows, if a simple system does not include an equation for a transformed
variable, it is understood to admit the trivial identity transformation.

Example 5.1. The 4-compartmental mammillary model from [23, Ex. 7] con-
sists of the linear control system:

&1 = —(ko1 + k31 + kay + ko1)z1 +
kioxo + k1373 + k1aws +u,

To = ko171 — k1272,

T3 = k3171 — k1373,

Tg = ka171 — k1474,

Yy=2x1.

By direct inspection, one easily identifies an invariance under an action of the
finite group S3 (the symmetric group for sets with three elements) containing six
elements: if we form the three triples (k12, k13, k14), (Ko1, k31, ka1), (22, z3,24)
and perform on them simultaneously the same permutation of the indices 2, 3, 4,
then the system (18) remains unchanged. Setting up the finite determining
system and applying the Thomas decomposition reveals that this is indeed the
complete solution space. Each of the six arising simple systems admits exactly
one solution representing one of the transformations described above. Among
these simple systems, one is provided here as a representative example:

Tg = X3, T3 = Ty, T4 = T2, k12 = k13, k13 = k14,

kig = k1o, ko1 = ka1, ks1 = ka1, ka1 = Koy



Hence we can conclude that in this example all states are at least locally ob-
servable and all parameters are at least locally identifiable. But globally, only
x1 and kg1 are observable or identifiable, respectively.

Our second example is a well studied model from biology with a more com-
plex finite solution space, demonstrating the rise of multiple solution from a
single simple system.

Example 5.2. We consider the Goodwin oscillator [13]

X =gz - X,

V=X kY

: > (19)
Z=kY —kZ,

y=X

in a non-dimensional form. With a Hill coefficient m = 4, the finite determining
system decomposes into six simple systems of purely algebraic equations. Two
of them involve quadratic equations in k; and the remaining systems are linear,
thus the discrete symmetries form a group of order 8. It is not difficult to identify
it as the commutative group Cy x Co (the product of two cyclic groups). The
generator for the subgroup Cj is given as the single solution of the simple system

Y:Y+/€£1(k2_k3)’ ko = ks, k3 = ko. (20)
It is easy to see that this transformation does not affect the first equation of
the system and is a symmetry of the other two equations. The existence of this
subgroup implies that the state Y is only locally observable and the parameters
ko, k3 are SLING. As generator of the subgroup Cy, one can take any of the two
solutions of the simple system

Z=—-=27 k=K (21)

13}

3

These transformations leave both the Hill function in the first equation and the
complete third equation invariant. However, they are biologically not relevant,
as they lead to negative or even complex values for k1 and Z. Thus, from a
biological point of view Z is globally observable and k; globally identifiable. One
can verify by direct computation that for an arbitrary Hill coefficient m € IN
one always finds the commutative group C,, x Cs as a discrete symmetry group
and we conjecture that there are no other symmetries.

Our next example is a classical model from the control theory literature.
It also possesses an easy to find permutation symmetry, but in addition also a
continuous symmetry group.

Example 5.3. The following model stems from [19]:

T1 = —01x1 + Oou,

To = —0329 + O4u, (22)
i3 = —(01 + 03)x3 + (Baz1 + O2z2)u,

y=u1x3.



Direct inspection yields again a discrete So symmetry: if we form the three
pairs (61,03), (02,04), (z1,22) and simultaneously swap their elements, then
the system (22) remains unchanged. However, this time the symmetry group
is larger. The Thomas decomposition of the finite determining system consists
of two simple systems, each comprising a set of algebraic equations and an
identical set of differential equations for 64, indicating the presence of infinitely
many solutions. Solving for 64 reveals that the infinite part of the solution space
can be parametrized by a single function of the form

= 90(91792, 03,04, (—x122 4 x3) exp [t(61 + 93)}) -

This result implies that the model is invariant under a Lie group consisting of
two connected components. The component containing the identity is given by
the transformations

I .

T = ——, T2 = —(/,
¥ 04
0204

51:6‘17 5227, 9~3:037 é4:(p
¥

(the identity is obtained by choosing ¢ = 64). The second connected component
is given by the transformations

b myp
L1 = —) 1”2*@,
020,

0, =03, 5227, 05 =01, 01=¢

(the second permutation mentioned above arises by choosing ¢ = 65). Thus the
symmetry analysis reveals that only the two parameters 1 and 63 are locally
identifiable though not globally, whereas all other states and parameters are not
even locally observable or identifiable.

Our last example is an epidemiological model where the appearing discrete
symmetry group operates in a highly non-trivial way and where it appears
impossible to guess the form of the symmetries by a simple inspection of the
control system.

Example 5.4. In [49], the authors augmented a classical SEIR model for an
epidemic by a quarantine compartment, which is also the output, leading to the
input-free system:

S =—BSI,

E =BSI —vE,

[=vE—pl—(1-y)l, (23)
Q=9I -1Q,

R=(1-¢)yI+4Q,

y=@Q.

Here, not only direct inspection fails, but even the application of our approach
reaches its (computational) limits. Hence, we applied certain simplifications to
the finite determining system. The dynamics of the state R in (23) is indepen-
dent of the rest of the system and does not affect the output. An infinitesimal



analysis reveals that only R admits continuous symmetries. Considering only
a reduced system, obtained by removing the equation for R, simplifies the de-
termining system. Furthermore, we adopt our heuristic that the transformed
parameters are independent of x and assume that v remains invariant. The re-
sulting determining system then decomposes into two simple systems: one cor-
responding to the identity transformation and the other yielding a non-trivial
symmetry:

g vsh—1) JA Ce)
=7y —9¢—-7) V*W ’
5o U@ =Dy =gl +v(E+D))(y -
(=7 - ) — 1) ’
5_By—v) TV
=gy P =T

Due to our simplifications, we cannot exclude the existence of further discrete
symmetry transformations. Nevertheless, we can make statements about the
identifiability and observability. While the state R is not even locally observ-
able, the states S, E/, I are locally but not globally observable. In addition, the
parameters 3, v, are SLING. No statement about + is possible. The explicit
form of the non-trivial symmetry allows us furthermore to conclude that the
found discrete symmetry is biologically not relevant: biologically meaningful
values of v and v lie between 0 and 1 and normally + is larger than v; applying
the above transformation then leads to negative values of 1[1 and I which are
biologically meaningless.

6 Conclusions

In this paper, we have presented an approach to study the structural identifiabil-
ity and observability (SIO) of nonlinear dynamic models using discrete symme-
tries. It is known that continuous symmetries are sources of non-identifiability
and/or non-observability, i.e., a single input-output trajectory is compatible
with an infinite number of parameter or state variable values. This fact has al-
ready been exploited by several authors [46, 22, 1, 25, 6], who introduced meth-
ods to analyse SIO by searching for continuous symmetries. However, said meth-
ods can only distinguish between non-identifiability and (at least) local identifi-
ability (and similarly observability). In contrast, here we have exploited the fact
that the existence of purely discrete symmetries does not lead to non-identifiable
parameters, but to parameters that are structurally locally identifiable, but not
globally (SLING). Thus, by determining the discrete symmetries in a model we
obtain a more precise SIO analysis, which can distinguish between SLING and
globally identifiable parameters. Here, we have presented a methodology to per-
form this analysis. The code that implements the method and reproduces the
results can be accessed at: https://doi.org/10.5281/zenodo.16410656. Key
elements in our procedure are obtaining the finite determining system, analysing
it using the Thomas decomposition, and finding the number of solutions. Ad-
mittedly, our method seems to be computationally less efficient than some differ-
ential algebraic algorithms currently available [14, 9]. However, it provides more
information, since it can fully characterize the form of the symmetries in which

10



the parameters and state variables are involved. This information is valuable
for the purposes of finding all possible solutions and reparameterizing the model
[25, 20]. A future line of work is to improve the computational efficiency of our
method. Additionally, we envision its extension to systems of partial differential
equations, for which comparatively few techniques for structural identifiability
analysis exist.
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