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This is the first of two articles on an implementation of involutive bases tech-
niques in MuPAD. Whereas the computation of involutive bases in polynomial
algebras of solvable type is treated in the second part, we introduce here the
concept of an involutive division on multi indices, show how to complete a
given set to involution and present MuPAD domains for the two most impor-
tant involutive divisions, the Janet and the Pommaret division.

Introduction

Involutive bases are a special kind of non-reduced Gröbner bases. They have been introduced for polynomial ideals
by Gerdt and collaborators (see e.g. [3, 4]) based on ideas from the Janet-Riquier theory of differential equations.
Involutive bases are distinguished by special combinatorial properties and allow for a structural analysis of the
ideals they span; in particular, they define Stanley decompositions. For more details, the reader is referred to [1, 9]
and references therein.

The Janet-Riquier theory also motivated an explicit algorithm for the determination of involutive bases. It was first
implemented in REDUCE andC by Blinkov and Gerdt; there followed packages for MAPLE [8] and MATHEMAT-
ICA [2]. A highly competitive implementation of Janet bases inC++ using intricate data structures by Gerdt and
Yanovich [5, 6] could in many instances produce a Gröbner basis faster than traditional algorithms.

While not making full use of the above mentioned optimisation, the here presented implementation is the most
general so far. UtilisingMuPAD’s categories and domains capabilities, we can provide a completion algorithm
for so-called polynomial algebras of solvable type. This comprises, for example, rings of linear differential or
difference operators, the Weyl algebra or universal enveloping algebras of Lie algebras. We are going to look at the
definition of a algebra of solvable type (the “polynomial” case) and the completion of ideal bases to involutive bases
in the second part of this article; first, we want to explain the combinatorial ideas lying underneath by studying
involutive divisions on multi indices (the “monomial” case). The transfer will then be rather straightforward.
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The Idea behind Involutive Divisions

Involutive division were originally introduced for monomials, i. e. elements of the ringK[x1, . . . , xn]. But it
suffices, at first, to work only with the exponent vectors. Therefore, we consider multi indices of a fixed lengthn,
being elements of the Abelian monoid(Nn

0 ,+). Unfortunately, this leads to a slight confusion in terminology:
instead ofmultiplyinganddividing terms, we are now actuallyaddingandsubtractingmulti indices.

For two multi indicesµ = (µ1, . . . , µn) andν = (ν1, . . . , νn), we say thatµ|ν (µ dividesν), if µi ≤ νi for all i.
The setC(µ) = µ+Nn

0 of all multiplesof a given multi index is called itscone. For a finite setN = {µ1, . . . , µr}
its spanis the union〈N 〉 =

⋃
µi∈N C(µi) of all the cones of its elements. Of course, the cones ofN will always

overlap (Fig.11 on the left). If we desire a disjoint union of the span ofN , we have to restrict the directions in
which the cones stretch; this is exactly the task of an involutive division. In the following definition, letCN (µ),
therestricted coneof µ with respect toN ⊆ {1, . . . , n}, denote the setµ + {ν ∈ Nn

0 : νi = 0 for i 6∈ N}.

Definition 1. An involutive divisionL on Nn
0 is given by prescribing for each finite subsetN ⊂ Nn

0 and for each
multi indexµ ∈ N a setNL,N (µ) of multiplicative indicessuch that the following holds: (i) IfCL,N (µ) is used
as a shorthand forCNL,N (µ)(µ), then for allµ, ν ∈ N with CL,N (µ)∩CL,N (ν) 6= ∅ eitherCL,N (µ) ⊆ CL,N (ν)
or CL,N (ν) ⊆ CL,N (µ); (ii) if M⊂ N , then∀µ ∈M : NL,N (µ) ⊆ NL,M(µ).

CL,N (µ) is called theinvolutive coneof µ with respect toL andN . We denote the complement ofNL,N (µ) in
{1, . . . , n}, thenon-multiplicative indicesof µ, byN̄L,N (µ). Finally, for µ ∈ N andν ∈ Nn

0 we writeµ |L,N ν (µ
involutively dividesor is an involutive divisorof ν), if and only ifν ∈ CL,N (µ).

Let us rephrase the two conditions for an involutive divisionL in the definition above: The first one says that if
the involutive cones of two multi indices intersect, one cone must lie completely in the other one. The second
condition requires that if we remove a multi index fromN , there must be at least the same multiplicative indices
with respect toL for the remaining elements.

The right half of Fig.11 shows the situation for an involutive division where the multiplicative indices are{1} for
[2, 0] and{1, 2} for [0, 2]. Actually, these are exactly the multiplicative indices for both the Janet and the Pommaret
division, which will be defined below. Obviously, the two involutive cones do not intersect, but instead now we are
missing the half-line starting at[1, 2]. We will thus have tocompletethe set{[0, 2], [2, 0]}.
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Figure 11:Left: intersecting cones.Right: involutive cones.

Definition 2. LetL be an involutive division onNn
0 andN ⊂ Nn

0 a finite set.
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1. Theinvolutive spanofN is the union of the involutive cones of its elements:

〈N 〉L =
⋃

µ∈N
CL,N (µ) . (19)

2. The setN is (L-)involutively autoreduced, if CL,N (µ) ∩ CL,N (ν) = ∅ for all µ 6= ν ∈ N .

3. N is called weakly (L)-involutive, if 〈N 〉L = 〈N 〉 where〈N 〉 denotes the ordinary span ofN , i. e. the
monoid ideal〈N 〉 = N + Nn

0 .

4. A finite subsetN̂ ⊂ 〈N 〉 is called aweak involutive basisof 〈N 〉, if 〈 N̂ 〉L = 〈N 〉. If N̂ containsN , it
is a weak (L)-completionofN . If the setN̂ is furthermore autoreduced (i. e., no multi index is a multiple of
another one in the set), it is a(strong) involutive basisof 〈N 〉 or a (strong) completionofN , respectively.

5. An involutive divisionL is calledNoetherian, if every finite setN ⊂ Nn
0 of multi indices has a completion.

For an involutively autoreduced set the union in (19) is disjoint. It is a nice exercise to show that any weak
involutive basis contains a strong involutive basis as a subset. Only the two properties in Def.1 are needed for
this. The three multi indices{[0, 2], [1, 2], [2, 0]} are a strong involutive basis and a completion of the initial set
{[0, 2], [2, 0]} with respect to both the Janet and the Pommaret division.

The actual algorithm for the completion of a set of multi indices to involution is very similar to the Buchberger
algorithm for the construction of Gröbner bases. Buchberger’s criterion forS-polynomials is replaced by the
criterion of local involution: A setN of multi indices is calledlocally involutivewith respect to the involutive
divisionL, if for everyµ ∈ N andi ∈ N̄L,N (µ), there exists someν ∈ N with µ+1i ∈ CL,N (ν). That means, if
we go one step from a multi indexµ ∈ N into a non-multiplicative direction, we always arrive in the multiplicative
cone of another multi index. In [3], it is proved that local involution of a set implies its involution, provided the
involutive divisionL satisfies some rather technical property called continuity. For almost all involutive divisions
used in practice (especially the Janet and Pommaret divisions), this is the case.

Algorithm: Involutive completion inNn
0

Input: Finite subsetN ⊂ Nn
0 , involutive divisionL,

term order� onNn
0

Output: Involutive basis of〈N 〉

/1/ repeat
/2/ S ←

{
µ + 1i : µ ∈ N , i ∈ N̄L,N (µ), µ + 1i /∈ 〈N 〉L

}
/3/ N ← N ∪ {min� S}
/4/ until S = ∅
/5/ return InvAutoReduce L(N )

Figure 12: Completion inNn
0

The algorithm for the completion of a set of multi indices to completion is shown in Fig.12. For it to work, in
addition to continuity the involutive divisionL is required to be constructive (an even more complicated condition,
which can be read about in [3] but nevertheless is valid for all divisions we consider here). Notice the parallels
between this and the Buchberger algorithm: Instead of examiningS-polynomials of critical pairs, we investigate all
non-multiplicative multiples; instead of computing normal forms, we check whether the multiples can be obtained
multiplicatively. The polynomial algorithm, which will be formulated in the second part, will work in the same
way; then actually involutive normal forms will be computed. The choice of the next element to be treated in line
/3/ with respect to a term order is necessary for the proof of termination. Of course, the algorithm does in general
not terminate for a non-Noetherian involutive division.
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The Category of Involutive Divisions

Cat::InvolutiveDivision(n) contains the basic operations with involutive divisions. The parameter
n is the length of the multi indices the involutive divisions is defined on. The category is only a member of
Cat::BaseCategory . The following undefined entries must be provided by the domains representing the
different involutive divisions:

sepListMult(mu l) : returns a list of lists of the form[mu, mv s] giving for each multi indexmu in mu l
its multiplicative indicesmv s with respect to the involutive division and the multi indices inmu l .

sepListMultAdd(sep l,mu) : given a separation list (as returned bysepListMult ), the multi indexmuis
inserted intosep l ; the multiplicative indices of the multi indices in the new list are recomputed (with respect
to all elements).

sepListMultRem(sep l,mu) : same assepListMultAdd(sep l,mu) , only thatmu is removed from
sep l .

multDirs(mu l,mu) : returns the set of multiplicative directions for the multi indexmu with respect to the
multi indices inmu l .

For the following entries, default implementations are present in the category:

sepListNonMult , sepListNonMultAdd , sepListNonMultRem , nonMultDirs : same as the respec-
tive methods above, only for non-multiplicative indices.

isInvDivisor(mu,nu,mv s) : returnsnu−mu if nu lies in the cone restricted by the directions in the set
mv s and0 otherwise.

autoreduce(mu l) : returns an autoreduced list of multi indices with the same span as the multi indices in the
original listmu l .

invAutoreduce(mu l) : returns an involutively autoreduced list of multi indices with the same involutive span
as the multi indices in the original listmu l .

complete(mu l) : returns an involutively autoreduced list of multi indices with the same span as the multi
indices in the original listmu l , i. e., a (strong) involutive basis.

The Janet Division

At long last, we give the definition of the first of the two important involutive divisions most frequently en-
countered. As before, letN = {µ1, . . . , µr} denote a set of multi indices of lengthn; furthermore, we write
TN ,k(ν) = {µ ∈ N : µi = νi, k ≤ i ≤ n} for the subset ofN consisting of those multi indices ofN the lastk
indices of which coincide with those ofν. For the Janet divisionJ , we then have:

• n ∈ NJ ,N (ν), if νn = maxµ∈N {µn};

• n > m ∈ NJ ,N (ν), if νm = maxµ∈TN ,m+1(ν){µm}

This seemingly convoluted definition unfolds into a rather straightforward algorithm for computing the multiplica-
tive indices ofN with respect to the Janet division.
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Algorithm: Multiplicative Indices for the Janet Division
Input: list N = [µ1, . . . , µr] of pairwise different multi indices of lengthn,
Output: listM = [NN ,J (µ1), . . . , NN ,J (µr)] of multiplicative indices

/1/ N ← sort (N ,�ilex); ν ← N [1]; p1 ← n; N ← {1, . . . , n}; M[1]← N ;
/2/ for k from 2 to r do
/3/ p2 ← max{i : (ν −N [k])i 6= 0}; N ← N \ {p2};
/4/ if p1 < p2 then
/5/ N ← N ∪ {p1, . . . , p2 − 1};
/6/ end if ;
/7/ M[k]← N ; ν ← N [k]; p1 ← p2;
/8/ end for ;
/9/ return (M);

Figure 13:Multiplicative Indices for the Janet Division

We start by ordering the listN decreasingly inverse lexicographically. For the first multi index inN , obviously all
directions are multiplicative. We now proceed by comparing each element ofN with its successor. The position at
which they differ isp2, whilep1 holds the appropriate value from the last iteration. Clearly,N [k−1] andN [k] both
lie in TN ,p2−1, and because of the ordering and the definition of the Janet division,p2 must be non-multiplicative
forN [k]. If p2 > p1, the determination whether the indicesp1, . . . , p2 + 1 are multiplicative or not is not affected
byN [k − 1], so they must become multiplicative (if they have not been before).

The domainDom::JanetDivision(n) takes as optional argument a multi index of lengthn representing a
permutation exerted on all multi indices when computing the multiplicative indices. So if the permutation is given
by [π1, . . . , πn], a multi indexµ is transformed into[µπ1 , . . . , µπn ]. This is especially useful since different authors
define the Janet division differently (some start at the front, some at the back). The same holds for the Pommaret
division, and so this optional parameter is also valid there.

The algorithm of Fig.13 has the advantage that if a multi index is inserted (resp. removed) from a list of multi
indices for which the multiplicative indices are already known, a recomputation is only required from the position
of the new (resp. the removed) multi index in the list. The starting values forN andp1 are readily computed from
the preceding two multi indices.

The Pommaret Division

As a second domain for an involutive division,Dom::PommaretDivision(n) is implemented. The definition
of the Pommaret division is rather simple: For a multi indexµ, the classcls(µ) = min {i : µi 6= 0} is its leftmost
non-vanishing entry; we take as multiplicative indices forµ all those smaller than or equal tocls(µ). An important
difference to the Janet division is that the multiplicative directions of a multi index are fixeda priori and thus
independent of the setN currently considered. Such an involutive division is calledglobally defined. While this
property allows for a much simpler computation of multiplicative indices, the Pommaret division is unfortunately
not Noetherian. Completions exist only in special coordinate systems calledδ-regular (see [7, 9] for more details
and a constructive solution of this problem). The Pommaret division is of great theoretical importance for the
structure analysis of polynomial modules and also used in the hybrid geometric-algebraic completion algorithm
described in [7] and implemented as part of theMuPAD DETools-library.
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Let us finish with a simple example of how all these things work. We create domains for the Janet and the Pommaret
division and consider the situation of Fig.11. The completion is the same for both divisions.

MuPAD

>> JD:= Dom::JanetDivision(2): PD:= Dom::PommaretDivision(2): mu_l:= [[0,2],[2,0]]:
>> PD::complete(mu_l);

Output

[[2, 0], [0, 2], [2, 1]]

If we translate the multi indices of the starting set one step to the right, the multiplicative indices differ. Now there
does not exist a finite completion with respect to the Pommaret division anymore: infinitely many multi indices
would have to be added ([3, 1], [1, 3], [1, 4], [1, 5], . . .). The Janet division does not have any problems.

MuPAD

>> mu_l:= [[1,2],[3,0]]: PD::sepListMult(mu_l); JD::sepListMult(mu_l);
>> JD::complete(mu_l);

Output

[[[1, 2], {1}], [[3, 0], {1}]]
[[[1, 2], {1, 2}], [[3, 0], {1}]]

[[1, 2], [3, 0], [3, 1]]
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