
Janet Bases and Resolutions in CoCoALib

Mario Albert, Matthias Fetzer, and Werner M. Seiler

Institut für Mathematik, Universität Kassel, 34132 Kassel, Germany
{albert,fetzer,seiler}@mathematik.uni-kassel.de

Abstract. Recently, the authors presented a novel approach to com-
puting resolutions and Betti numbers using Pommaret bases. For Betti
numbers, this algorithm is for most examples much faster than the clas-
sical methods (typically by orders of magnitude). As the problem of
δ-regularity often makes the determination of a Pommaret basis rather
expensive, we extend here our algorithm to Janet bases. Although in δ-
singular coordinates, Janet bases may induce larger resolutions than the
corresponding Pommaret bases, our benchmarks demonstrate that this
happens rarely and has no significant effect on the computation costs.

1 Introduction

Computing resolutions represents a fundamental task in algebraic geometry and
commutative algebra. For some problems like computing derived functors one
needs indeed the full resolution, i. e. including the differential. For other appli-
cations, the Betti numbers measuring the size of the resolution are sufficient, as
they contain already important geometric and topological information.

Determining a minimal resolution is generally rather expensive. For a module
of projective dimension p, the costs correspond roughly to those of p Gröbner
bases computation. Theoretically, computing only the Betti numbers should be
considerably cheaper, as one does not need the differential. However, all imple-
mentations we are aware of read off the Betti numbers of the minimal resolutions
and thus in practice their costs are the same as for the whole resolution.

In the recent article [2], we presented a novel approach to computing reso-
lutions and Betti numbers based on a combination of the theory of Pommaret
bases [12], a special form of involutive bases, and algebraic discrete Morse the-
ory [15]. Within this approach, it is possible to compute Betti numbers without
first determining a whole resolution. In fact, it is even possible to determine
individual Betti numbers without the remaining ones.

While Pommaret bases are theoretically very nice, as they provide simple
access to many invariants [12], they face from a practical point of view the prob-
lem of δ-regularity, i. e. for positive-dimensional ideals they generally exist only
after a sufficiently generic coordinate transformation. There are deterministic ap-
proaches to the construction of (hopefully rather sparse) δ-regular coordinates
[8], but nevertheless the computation of a Pommaret basis is usually significantly
more expensive than that of a Janet basis (a more detailed analysis of this topic
will appear in the forthcoming work [3]).



Here, we show that the ideas of [2] also work Janet instead of Pommaret bases
and thus remove an important bottleneck in their application. As a by-product,
we show that the degree of a Janet basis can never be smaller than that of a
Pommaret basis. For the resolution induced by the Janet basis this implies that
in general it is longer than the minimal one and can extend to higher degrees.

2 Involutive Bases and Free Resolutions

Involutive bases are Gröbner bases with additional combinatorial properties.
They were introduced by Gerdt and Blinkov [5, 6] who combined Gröbner bases
with ideas from the algebraic theory of partial differential equations. Surveys over
their basic theory and further references can be found in [11] or [13, Chapts. 3/4].

Throughout this work, k denotes an arbitrary field and P = k[x1, . . . , xn] =
k[X ] the polynomial ring in n variables over k together with the standard grad-
ing. The standard basis of the free module Pt is denoted by {e1, . . . , et}. Our
conventions for the Janet division require that we define term orders always “re-
verse” to the usual conventions, i. e. we revert the ordering of the variables. In
the sequel, 0 6= U ⊆ Pt will always be a graded submodule and all appearing
elements f ∈ Pt are homogeneous.

The basic idea underlying involutive bases is that each generator f in a ba-
sis may only be multiplied by polynomials in a restricted set of variables, its
multiplicative variables X(f) ⊆ X . The remaining variables are called the non-
multiplicative ones X (f) = X \ X(f). Different involutive bases differ in the way
the multiplicative variables are chosen. We will use here only Janet bases.

For them, the assignment of the multiplicative variables depends not only on
the generator f , but on the whole basis. Given a finite set F of terms and a term
xµeα ∈ F , we introduce for each 1 ≤ k ≤ n and each 1 ≤ α ≤ t the subsets

(µk+1, . . . , µn)α = {xνeα ∈ F | νk+1 = µk+1, . . . , νn = µn} ⊆ F

and put xk ∈ XJ,F (xµeα), if µk = max
{
νk | xνeα ∈ (µk+1, . . . , µn)α

}
. For finite

sets F of polynomial vectors, we reduce to the monomial case via a term order
≺ by setting XJ,F,≺(f) = XJ,ltF (lt f).

Definition 1. A finite set of terms H ⊂ Pt is a Janet basis of the monomial
module U = 〈H〉, if as a k-linear space U =

⊕
h∈H k[XJ,H(h)]·h. For every term

contained in the involutive cone k[XJ,H(h)] · h, we call h an involutive divisor.
A finite polynomial set H ⊂ Pt is a Janet basis of the polynomial submodule
U = 〈H〉 for the term order ≺, if all elements of H possess distinct leading
terms and these terms form a Janet basis of the leading module ltU .

Every submodule admits a Janet basis for any term order [5, 11]. Arbitrary
involutive bases can be characterised similarly to Gröbner bases [5, 11]. The S-
polynomials in the theory of Gröbner bases are replaced by products of the
generators with one of their non-multiplicative variables. A key difference is the
uniqueness of involutive standard representations.



Proposition 2. [11, Thm. 5.4] The finite set H ⊂ U is a Janet basis of the
submodule U ⊆ Pt for the term order ≺, if and only if every element 0 6= f ∈ U
possesses a unique involutive standard representation f =

∑
h∈H Phh where each

non-zero coefficient satisfies Ph ∈ k[XJ,H,≺(h)] and lt (Phh) � lt (f).

Proposition 3. [11, Cor. 7.3] Let H ⊂ Pt be a finite set and ≺ a term order
such that no leading term in ltH is an involutive divisor of another one. The
set H is a Janet basis of the submodule 〈H〉 with respect to ≺, if and only if for
every h ∈ H and every non-multiplicative variable xj ∈ X J,H,≺(h) the product
xjh possesses an involutive standard representation with respect to H.

The classical Schreyer Theorem [10] describes how every Gröbner basis in-
duces a Gröbner basis of its first syzygy module for a suitable chosen term order.
If H = {h1, . . . ,hs} ⊂ Pt is a finite set with s elements and ≺ an arbitrary term
order on Pt, then the Schreyer order ≺H is the term order induced on the free
module Ps by setting xµeα ≺H xνeβ , if lt (xµhα) ≺ lt (xνhβ) or if these leading
terms are equal and β < α.

The Schreyer order ≺H depends on the ordering of H. For the involutive
version of the Schreyer Theorem, we assume that H is a Janet basis and order
its elements in a suitable manner. We associate a directed graph with H. Its
vertices are given by the elements in H. If xj ∈ X J,H,≺(h) for some generator
h ∈ H, then H contains a unique generator h̄ such that lt h̄ is an involutive
divisor of lt (xjh). In this case we include a directed edge from h to h̄. The
graph thus defined is called the J-graph of the Janet basis H. We require that
the ordering of H satisfies the following condition: whenever the J-graph of H
contains a path from hα to hβ , then we must have α < β. We then speak of a J-
ordering. One can show that such orderings always exist [12]. In fact, one easily
verifies that an explicit J-ordering is provided by any module order (applied to
the leading terms of H) that restricts to the lexicographic order when applied
to terms living in the same component of Pt.

Assume that H = {h1, . . . ,hs} is a Janet basis of the polynomial submod-
ule U ⊆ Pt. According to Proposition 3, we have for every non-multiplicative
variable xk of a generator hα an involutive standard representation xkhα =∑s
β=1 P

(α;k)
β hβ and thus a syzygy Sα;k = xkeα −

∑s
β=1 P

(α;k)
β eβ . Let HSyz be

the set of all these syzygies.

Lemma 4. [12, Lemma 5.7] If the finite set H ⊂ P is a J-ordered Janet basis,
then we find for all admissible values of α and k with respect to the Schreyer
order ≺H that lt Sα;k = xkeα.

Theorem 5. [12, Thm. 5.10] Let H be a J-ordered Janet basis of the submodule
U ⊆ Pt. Then HSyz is a Janet basis of the syzygy module Syz(H) for the Schreyer
order ≺H.

Like the classical Schreyer Theorem, we can iterate Theorem 5 and obtain
then a free resolution of the submodule U . However, in contrast to the classical
situation, the involutive version yields the full shape of the arising resolution



without any further computations. We present here a bigraded version of this
result which is obtained by a trivial extension of the arguments in [12]. It provides
sharp upper bounds for the Betti numbers of U .

Theorem 6. [12, Thm. 6.1, Rem. 6.2] Let the finite set H ⊂ Pt be a Janet

basis of the polynomial submodule U ⊆ Pt. Furthermore, let β
(k)
0,j be the number

of generators h ∈ H of degree j having k multiplicative variables and set d =

min {k | ∃j : β
(k)
0,j > 0}. Then U possesses a finite free graded resolution1

0 −→
⊕
P[−j]rn−d,j −→ · · · −→

⊕
P[−j]r1,j −→

⊕
P[−j]r0,j −→ U −→ 0

(1)
of length n− d where the ranks of the free modules are given by

ri,j =

n−i∑
k=1

(
n− k
i

)
β
(k)
0,j−i . (2)

For the proof, one shows that the Janet basis Hj of the jth syzygy module
Syzj(H) with respect to the Schreyer order ≺Hj−1

consists of the syzygies Sα;k
with an ordered integer sequence k = (k1, . . . , kj) where 1 ≤ k1 < · · · < kj ≤ n
and all variables xki are non-multiplicative for the generator hα ∈ H. These
syzygies are defined recursively. We denote for any 1 ≤ i ≤ j by ki the sequence
obtained by eliminating ki from k. Now Sα;k arises from the involutive standard

representation of xkjSα;kj : xkjSα;kj =
∑s
β=1

∑
` P

(α;k)
β;` Sβ;`. Here the second

sum is over all ordered integer sequences ` of length j − 1 such that for all
entries `i the variables x`i is non-multiplicative for the generator hβ ∈ H. Lemma

4 implies that lt Sα;k = xkjeα;kj and that the coefficient P
(α;k)
β;` depends only

on those variables which are multiplicative for the syzygy Sβ;`. If X J,H,≺(hα) =
{xi1 , xi2 , . . . , xin−k}, then we find for the first syzygies that XJ,HSyz,≺H(Sα;ij ) =
X \{xij+1

, . . . , xin−k}. Iteration yields the multiplicative variables for the higher
syzygies. The simple form of the leading terms yields via a simple combinatorial
computation the ranks ri,j of the modules in the resolution (1).

Corollary 7. Let H be a Janet basis of the submodule U ⊆ Pt. If we set again

d = min {k | ∃j : β
(k)
0,j > 0} and q = deg (H) = max {deg h | h ∈ H}, then the

projective dimension and the Castelnuovo-Mumford regularity of U are bounded
by pd (U) ≤ n− d and reg (U) ≤ q.

Proof. The first estimate follows immediately from the resolution (1) induced by
the Janet basis H. Furthermore, the ith module of this resolution is obviously
generated by elements of degree less than or equal to q + i. This observation
implies that U is q-regular and thus the second estimate. ut

Starting from an arbitrary Janet basis, more information cannot be obtained
in a simple manner. If, however, δ-regular coordinates are used, i. e. if the Janet

1 We use here the usual shift notation: (P[j])d = Pd+j .



basis is simultaneously a Pommaret basis (which is generically the case), then
stronger results hold: the resolution (1) is then always of minimal length, i. e.
pd (U) = n−d [12, Thm. 8.11] (which also implies by the Auslander-Buchsbaum
formula that d is nothing but the depth of the submodule U), and also the second
estimate becomes an equality: reg (U) = deg (H) [12, Thm. 9.2]. By contrast, for
a Janet basis the difference between the regularity and the degree of the basis
can become arbitrarily big, as the next example demonstrates.

Example 8. Consider the polynomial ring P = k[x1, x2, x3]. For a moment, we
switch to the standard conventions x1 � x2 � x3 and define I(d) as the ideal
generated by the lexsegment terminating at xd2 for an arbitrary degree d ∈ N.
Thus d = 3 yields for example

I(3) = 〈x31, x21x2, x21x3, x1x22, x1x2x3, x1x23, x32〉 .

The regularity of I(d) is of course independent of the used ordering of the vari-
ables. For the ordering x1 � x2 � x3, the above mentioned generating set is
both a Janet and a Pommaret basis. Thus we find reg I(d) = d.

For the ordering x1 ≺ x2 ≺ x3, the ideal I(d) possesses no Pommaret basis,
as it contains no term of the form xe3 for some e ∈ N which was necessary for
the existence of a Pommaret basis. We can write the lexsegment as the union of
the following two sets:

L1 =
{
xe1x

f
2 | e ≥ 0, f ≥ 0, e+ f = d

}
,

L2 =
{
xe1x

f
2x

g
3 | e > 0, f ≥ 0, 1 ≤ g ≤ d− 1, e+ f + g = d

}
.

Then the Janet basis of I(d) is given by

H(d) = L1 ∪ L2 ∪
{
xd2x

g
3 | 1 ≤ g ≤ d− 1

}
∪{

xe1x
f+f ′

2 xg3 | xe1x
f
2x

g
3 ∈ L2, f

′ > 0, f + f ′ < d
}
.

The degree of this basis is 2d − 1 and hence degH(d) − reg I(d) = d − 1 can
become arbitrarily large.

3 Free Resolutions with Janet Bases

Theorem 6 describes only the shape of the induced resolution; it provides no
information about the higher syzygies. In [2], it is shown how algebraic discrete
Morse theory allows an explicit determination of all differentials in the case of
a Pommaret basis. Now we will show here that this is also possible with Janet
bases. First we recall some of the material presented in [2] and then point out
where the crucial differences occur.



Definition 9. A graded polynomial module M ⊆ Pt has initially linear syzy-
gies, if M possesses a finite presentation

0 −→ ker η −→W =

s⊕
α=1

Pwα
η−→M −→ 0 (3)

such that with respect to some term order ≺ on the free module W the leading
module lt ker η is generated by terms of the form xjwα. We say that M has
initially linear minimal syzygies, if the presentation is minimal in the sense that
ker η ⊆ ms with m = 〈x1, . . . , xn〉 the homogeneous maximal ideal.

The construction begins with the following two-sided Koszul complex (F , dF )
defining a free resolution ofM. Let V be a k-linear space with basis {v1, . . . ,vn}
(with n still the number of variables in P) and set Fj = P ⊗k ΛjV ⊗kM which
obviously yields a free P-module. Choosing a k-linear basis {ma | a ∈ A} of
M, a P-linear basis of Fj is given by the elements 1 ⊗ vk ⊗ ma with ordered
sequences k of length j. The differential is now defined by

dF (1⊗ vk ⊗ma) =

j∑
i=1

(−1)i+1
(
xki ⊗ vki ⊗ma − 1⊗ vki ⊗ xkima

)
(4)

where ki denotes the sequence k without the element ki. Here it should be noted
that the second term on the right hand side is not yet expressed in the chosen
k-linear basis of M. For notational simplicity, we will drop in the sequel the
tensor sign ⊗ and leading factors 1 when writing elements of F•.

Under the assumption that the module M has initially linear syzygies via a
presentation (3), Sköldberg [15] constructs a Morse matching leading to a smaller
resolution (G, dG). He calls the variables

crit (wα) = {xj | xjwα ∈ lt ker η} ; (5)

critical for the generator wα; the remaining non-critical ones are contained in
the set ncrit (wα). Then a k-linear basis ofM is given by all elements xµhα with
hα = η(wα) and xµ ∈ k[ncrit (wα)]. We define Gj ⊆ Fj as the free submodule
generated by those vertices vkhα where the ordered sequences k are of length
j and such that every entry ki is critical for wα. In particular W ∼= G0 with an
isomorphism induced by wα 7→ v∅hα.

The description of the differential dG is based on reduction paths in the
associated Morse graph (for a detailed treatment of these notions, see [2, 9, 14])
and expresses the differential as a triple sum. If we assume that, after expanding
the right hand side of (4) in the chosen k-linear basis of M, the differential of
the complex F• can be expressed as

dF (vkhα) =
∑

m,µ,γ

Qk,α
m,µ,γvm(xµhγ) , (6)

then dG is defined by

dG(vkhα) =
∑
`,β

∑
m,µ,γ

∑
p

ρp
(
Qk,α

m,µ,γvm(xµhγ)
)

(7)



where the first sum ranges over all ordered sequences ` which consists entirely of
critical indices for wβ . Moreover the second sum may be restricted to all values
such that a polynomial multiple of vm(xµhγ) effectively appears in dF (vkhα)
and the third sum ranges over all reduction paths p going from vm(xµhγ) to
v`hβ . Finally ρp is the reduction associated with the reduction path p satisfying

ρp
(
vm(xµhγ)

)
= qpv`hβ (8)

for some polynomial qp ∈ P.
A key point for applying this construction in the context of involutive bases is

that any Janet basis has initially linear syzygies. Thus given a Janet basis we have
two resolutions available: (1) and the one obtained by Sköldberg’s construction.
The main result of this section will be that the two are isomorphic.

Lemma 10. Let H = {h1, . . . ,hs} be the Janet basis of the polynomial submod-
ule U ⊆ Pt. Then U has initially linear syzygies2 for the Schreyer order ≺H and
crit (wα) = X J,H,≺(hα), i. e. the critical variables of the generator wα are the
non-multiplicative variables of hα = η(wα).

The reduction paths can be divided into elementary ones of length two. There
are essentially three types of reductions paths [2, Section 4]. The elementary
reductions of type 0 are not of interest [2, Lemma 4.5]. All other elementary
reductions paths are of the form

vk(xµhα) −→ vk∪i(
xµ

xi
hα) −→ v`(x

νhβ) .

Here k∪ i is the ordered sequence which arises when i is inserted into k; likewise
k \ i stands for the removal of an index i ∈ k.

Type 1: Here ` = (k ∪ i)\j, xν = xµ

xi
and β = α. Note that i = j is allowed.

We define ε(i; k) = (−1)|{j∈k|j>i}|. Then the corresponding reduction is

ρ(vkx
µhα) = ε(i; k ∪ i)ε(j; k ∪ i)xjv(k∪i)\j

(xµ
xi

hα
)
.

Type 2: Now ` = (k ∪ i) \ j and xνhβ appears in the involutive standard

representation of
xµxj
xi

hα with the coefficient λj,i,α,µ,ν,β ∈ k. In this case, by
construction of the Morse matching, we have i 6= j. The reduction is

ρ(vkx
µhα) = −ε(i; k ∪ i)ε(j; k ∪ i)λj,i,α,µ,ν,βv(k∪i)\j(x

νhβ) .

These reductions follow from the differential (4): The summands appearing
there are either of the form xkivkima or of the form vki(xkima). For each of
these summands, we have a directed edge in the Morse graph ΓAF• . Thus for an
elementary reduction path

vk(xµhα) −→ vk∪i
(xµ
xi

hα
)
−→ v`(x

νhβ) ,

2 Note that we apply here Definition 9 directly to U and not to M = Pt/U , i. e. in
(3) one must replace M by U .



the second edge can originate from summands of either form. For the first form
we then have an elementary reduction path of type 1 and for the second form
we have type 2.

For completeness, we repeat some simple results from [2] which we need to
show that the free resolution G is isomorphic to the resultion induced by a Janet
basis H. Some of the proofs in [2] use the class of a generator in H, a notion
arising in the context of Pommaret bases. When working with Janet bases, one
has to replace it by the index of the maximal multiplicative variable.

Lemma 11. [2, Lemma 4.3] For a non-multiplicative index3 i ∈ crit (hα) let

xihα =
∑s
β=1 P

(α;i)
β hβ be the involutive standard representation. Then we have

dG(vihα) = xiv∅hα −
∑s
β=1 P

(α;i)
β v∅hβ.

The next result states that if one starts at a vertex vi(x
µhα) with certain

properties and follows through all possible reduction paths in the graph, one will
never get to a point where one must calculate an involutive standard represen-
tation. If there are no critical (i. e. non-multiplicative) variables present at the
starting point, then this will not change throughout any reduction path. In order
to generalise this lemma to higher homological degrees, one must simply replace
the conditions i ∈ ncrit (hα) and j ∈ ncrit (hβ) by ordered sequences k, ` with
k ⊆ ncrit (hα) and ` ⊆ ncrit (hβ).

Lemma 12. [2, Lemma 4.4] Assume that i ∪ supp(µ) ⊆ ncrit (hα). Then for
any reduction path p = vi(x

µhα) → · · · → vj(x
νhβ) we have j ∈ ncrit (hβ). In

particular, in this situation there is no reduction path p = vi(x
µhα) → · · · →

vkhβ with k ∈ crit (hβ).

In the sequel, we use Schreyer orders on the components of the complex G.
We define H0 as the Janet basis of dG(G1) ⊆ G0 with respect to the Schreyer
order ≺H induced by the term order ≺ on Pt and Hi as the Janet basis of
dG(Gi+1) ⊆ Gi for the Schreyer order ≺Hi−1

.

Lemma 13. Let H be a Janet basis. hβ is greater or equal than hα according
to the J-order if lt(hβ) is an involutive divisor of xµ lt(hα).

Proof. There is another way to compute the involutive divisor of xµ lt(hα):
We choose xi, such that degi(x

µ) 6= 0 and compute the involutive divisor of
xi lt(hα). Then xµ lt(hα) = xµ

xi
xν lt(hγ). Then we check if xµ

xi
xν contains a non-

multiplicative variable for lt(hγ). If not we are finished and lt(hγ) is an involutive
divisor of xµ lt(hα). In the other case we repeat the procedure above. This pro-
cedure must end after a finite number of steps. If this were not the case we have
found a cycle in the J-graph. But this is not possible [12].

To compute the involutive divisor of xµ lt(hα), we have constructed a chain
hα = hγ1 , · · · ,hγm = hβ above. Due to the procedure we see that hγi must

3 For notational simplicity, we will often identify sets X of variables with sets of the
corresponding indices and thus simply write i ∈ X instead of xi ∈ X.



be smaller than hγi+1
according to the J-order. Hence hα is smaller or equal

than hβ according to the J-order (in fact equality only happens when xµ is
multiplicative for hα). ut

Lemma 14. Let p = vi(x
µhα) → · · · → vj(x

νhβ) be a reduction path that ap-
pears in the differential (7) (possibly as part of a longer path). If ρp

(
vi(x

µhα)
)

=
xκvj(x

νhβ), then lt≺H1
(xκ+νvjhβ) �H1 lt≺H1

(xµvihα).

Proof. We prove the assertion only for an elementary reduction path p and the
general case follows by induction over the path length. If p is of type 1 we can
easily prove the assertion by using the same arguments as for the corresponding
lemma in the Pommaret case [2, Lemma 4.6].

If p is of type 2, there exists an index j ∈ supp(µ) (implying j ∈ ncrit(hα))
and thus j ∈ XJ,H,≺(hα), a multi index ν and a scalar λ ∈ k such that
ρp(vi(x

µhα)) = λvj(x
νhγ) where xνhγ appears in the involutive standard rep-

resentation of xµxi
xj

hα with a non-vanishing coefficient. Lemma 12 implies now

j ∈ crit(hγ). By construction, lt≺(xix
µ

xj
hα) � lt≺(xνhγ).

Here we have to distinguish between equality and strict inequality. If strict
inequality holds, then also lt≺(xix

µ) � lt≺(xjx
νhγ). Hence by definition of

the Schreyer order we get lt≺H1
xµvihα �H1

lt≺H1
(xκ+νvjhβ). In the case of

equality, we note that xν lt≺(hγ) must be an involutive divisor of xix
µ

xj
lt≺(hα).

Hence Lemma 13 guarantees that hα is smaller than hγ according to the J-order
and hence the claim follows for this special case. ut

For notational simplicity, we formulate the two decisive corollaries only for
the special case of second syzygies, but they remain valid in any homological de-
gree. They assert that there is a one-to-one correspondence between the leading
terms of the syzygies contained in the free resolution (1) and of the syzygies in
Sköldberg’s resolution, respectively.

Corollary 15. If i < j, then lt≺H1

(
dG(v(i,j)hα)

)
= xjvihα.

Proof. We assume that the elements of the given Janet basis are numbered
according to a J-order. Consider now the differential dG . We first compare the
terms xivjhα and xjvihα. Lemma 12 (or the minimality of these terms with
respect to any order respecting the used Morse matching) entails that there are
no reduction paths [vjhα  vkhδ] with k ∈ crit (hδ) (except trivial reduction
paths of length 0). By definition of the Schreyer order, we have xivjhα ≺H1

xjvihα.
Now consider any other term in the sum. We will prove xjvihα �H1

xκvihβ ,
where xκhβ effectively appears in the involutive standard representation of xjhα.
Then the claim follows from applying Lemma 14 with xjvihα �H1

xκvihβ �H1

lt≺H1

(
ρp(vix

κhβ)
)
.

We always have lt≺ (xjxihα) � lt≺ (xκxihβ). If this is a strict inequal-
ity, then xjvihα �H1 xκvihβ follows at once by definition of the Schreyer
order. So now assume lt≺ (xjxihα) = lt≺ (xκxihβ). By construction, xκ ∈



k[XJ,H(hβ)]. Again by definition of the Schreyer order, the claim follows, if
we can prove lt≺H0

(xjxiv∅hα) �H0 lt≺H0
(xκxiv∅hβ). Since j ∈ crit (hα) and

lt (xjhα) is involutively divisible by lt (hβ), we have α < β, by definition of a J-
ordering. As we have lt≺(xjhα) = lt≺(xκhβ), this implies lt≺H0

(xjxiv∅hα) �H0

lt≺H0
(xκxiv∅hβ) and therefore lt≺H1

(xjvihα) �H1
lt≺H1

(xκvihβ). ut

Corollary 16. The set
{
dG(vkhα) | |k| = 2; k ⊆ crit (wα)

}
is a Janet basis

with respect to the term order ≺H0 .

With Lemma 10 and these two corollaries, we are able to prove that Sköldberg’s
resolution is isomorphic to the resolution (1). The proof is essentially the same
as for a Pommaret basis, only the mentioned lemmata and corollaries must be
replaced by their Janet version.

Theorem 17. Let H = {h1, . . . ,hs} be the Janet basis of the polynomial sub-
module U ⊆ Pt, where H is a J-ordered Janet basis of U . Then the resolution
(G, dG) is isomorphic to the resolution induced by H.

4 Benchmarks

We describe now the results from a large set of benchmarks comparing our ap-
proach with standard methods. As already discussed in [2], we focus for this
comparison on the determination of Betti numbers, as currently our implemen-
tation is not yet competitive for computing minimal resolution because of the
rather naive minimisation strategy used. Indeed, an important aspect for the
performance of our approach is the size of the generally non-minimal resolution
(1). For a given ideal I, we call its length the projective pseudo-dimension ppd I
and the maximal degree of a generator appearing in it the pseudo-regularity
preg I. It follows from the results above that for the resolution induced by a
Janet basis ppd I is just the maximal number of non-multiplicative variables
and preg I the maximal degree of a generator. As the rough measure for the size
of the whole minimal solution, we define the Betti rank brk I as the sum of all
Betti numbers and similarly the Betti pseudo-rank bprk I.

We have implemented the algorithms explained above in the computer al-
gebra system CoCoALib [1]. The implementation is very similar to the one
based on Pommaret bases which we described in [2]. The main difference is that
we can no longer guarantee that preg I = reg I and ppd I = pd I. But it is
straightforward to accomodate for this effect. For comparison purposes, we used
as benchmark the implementations of the standard algorithms in Singular [4]
and Macaulay2 [7].

For many geometrical and topological applications, it is sufficient to know
only the Betti numbers; the differential of the minimal resolution is not required.
To our knowledge, all current implementations read off the Betti numbers from
a free resolution. By contrast, our method can determine Betti numbers without
computing a complete resolution. We briefly sketch our method described in
more details in [2].



Firstly, we compute only the constant part of the complex G•. If we perform
an elementary reduction of type 2 the degree of the map does not change. For
an elementary reduction of type 1, the degree increases by one. Thus we obtain
the constant part of G• by only applying reductions of type 2 on the constant
part of the complex F•. It follows from the explicit form (4) of the differential
dF that the left summand yields always elements of degree one and the right
summand elements of degree zero. Hence, by simply skipping the left summands,
we directly obtain the constant part of F•.

Because of the above proven isomorphy between the complex G• and the
resolution induced by the Janet basis, the bigraded ranks ri,j of the components
of the complex G• can be directly determined with (2). Then, as described above,
we construct (degreewise) the constant part of the matrices of dG . Subtracting
their ranks from the corresponding ri,j yields the Betti numbers bi,j . It should
be noted that this approach also allows to compute directly individual Betti
numbers, as the explicit expressions for the differentials in the complexes F• and
G•, resp., show that the submatrices relevant for the different Betti numbers are
independent of each other.

Our testing environment consists of an Intel i5-4570 processor with 8GB
DDR3 main memory. As operating system we used Fedora 20 and as compiler for
the CoCoALib gcc 4.8.3. The running times are given in seconds and we limited
the maximal time usage to two hours and the maximal memory consumption
to 7.5 GB. A * marks when we run out of time and ** marks when we run
out of memory. A bold line indicates that the given example is δ-singular, i. e.
that no Pommaret basis exists for it in the used coordinates. As benchmarks,
we took a number of standard examples given in [16]. As most of these ideals
are not homogeneous, we homogenised them by adding a new smallest variable.
Furthermore, we always chose k = Z/101Z as base field.

Singular and Macaulay2 apply the command res for computing a free
resolution at first. In a second step both systems extract the Betti numbers
from the resolution. Singular uses the classical Schreyer Theorem to compute
a free resolution, which is possibly not minimal, and then determines the graded
Betti numbers from it. Macaulay2 uses La Scalas method to compute a min-
imal free resolution and read off the graded Betti numbers. For Singular and
Macaulay2 we took as input the reduced Gröbner basis of the ideal; for our
algorithm the Janet basis. Because of our choice of a small coefficient field, the
time needed for the determination of these input bases is neglectable (for almost
all examples less than two seconds).

The benchmarks presented in Table 1 show that our approach is generally
much faster than the standard methods requiring a complete resolution (often
by orders of magnitude!). In particular, it scales much better when examples are
getting larger. Even for δ-singular ideals, we are in general much faster than the
standard methods. In fact, there is no obvious difference between δ-singular and
δ-regular examples.

In Table 2 we collect some data about the examples in Table 1. The following
list describes the columns:



Example Time Macaulay2 Time Singular Time CoCoALib

butcher8 126.25 19.92 1.20

camera1s 0.09 6.00 0.13

chandra6 0.64 8.00 0.13

cohn2 0.03 1.00 0.03

cohn3 1.47 5.90 0.32

cpdm5 14.71 5.05 0.64

cyclic6 0.99 1.26 0.37

cyclic7 1 093.66 * 37.42

cyclic8 * * 1663.00

des18 3 433.45 20.84 3.15

des22 24 * ** 52.19

dessin1 428.13 20.89 3.10

dessin2 * * 32.90

f633 591.08 7.70 49.06

hcyclic5 0.03 2.00 0.09

hcyclic6 11.00 47.12 7.41

hcyclic7 * * 3688.01

hemmecke 0.00 0.00 2.69

hietarinta1 443.15 170.29 4.12

katsura6 51.41 13.90 1.22

katsura7 ** 1 373.70 15.87

katsura8 * ** 412.90

kotsireas 51.89 17.84 0.83

mckay 0.84 3.20 0.38

noon5 0.13 6.00 0.27

noon6 15.14 5.07 5.25

noon7 6 979.40 821.64 122.61

rbpl 58.81 22.69 57.91

redcyc5 0.02 2.00 0.01

redcyc6 6.79 1.95 0.13

redcyc7 * * 8.26

redcyc8 * ** 207.02

redeco7 2.72 2.20 0.42

redeco8 355.30 11.83 5.01

redeco9 ** 312.49 84.89

redeco10 ** ** 2 694.05

reimer4 0.01 1.00 0.01

reimer5 1.39 5.00 0.35

reimer6 1 025.89 176.08 19.01

speer 0.20 3.00 0.13

Table 1. Various examples for computing Betti diagramms



Example: name of the example
#JB: number of elements in the minimal Janet basis
#GB: number of elements in the reduced Gröbner basis
#JB
#GB : the quotient of #JB and #GB
ppd: the projective pseudo-dimension
pd: the projective dimension
preg: the pseudo-regularity
reg: the regularity
bprk: the Betti pseudo-rank
brk: the Betti rank
bprk
brk : the quotient of bprk and brk.

In our test set there is only a very small subset of examples where the stan-
dard algorithms perform better than our new algorithm. For example, for hem-
mecke our method needs 2.69 seconds to compute the Betti diagram, whereas
Singular and Macaulay2 do not even need a measurable amount of time. If
we take a look at the size of the minimal Janet basis and the reduced Gröbner
basis in Table 2, we see immediately why this example is bad for our algorithm.
The reduced Gröbner basis consists of 9 elements, but the minimal Janet ba-
sis contains 983 elements.4 Therefore the Betti pseudo-rank is with 6 242 much
larger than the real Betti rank of 38. As a consequence, we must spend first much
time to compute the constant part of a large resolution and then even more time
for reducing it. In comparatively small examples like cyclic6 one notices in our
approach overhead effects because of the need to set up complex data structures.
In general, one observes that the larger the example (in particular, the larger
its projective dimension) the better our algorithm fares in comparison to the
standard methods.

It seems that the quotient #JB
#GB provides a good indication whether or not

our algorithm is fast relative to the standard methods. One could think that
the quotient bprk

brk is also a good indicator for efficiency. But in our test set we
cannot identify such a correlation. In fact, even if the factor is greater than 100,
somewhat surprisingly our algorithm can be faster (see redeco10 ).

There are two aspects which may explain this observation for redeco10. The
first one is that we only perform matrix operations over the base field, which are
not only much more efficient than polynomial computations but also consume
much less memory. The second one could be the relatively large projective dimen-
sion 10 of redeco10. Classical methods have to compute roughly pd I Gröbner
bases to determine the Betti numbers. Our approach requires always only one
Janet basis and some normal form computations.

Another interesting observation in Table 2 concerns the difference of the
projective pseudo-dimension and the pseudo-regularity to the true values pd I
and reg I for δ-singular ideals. In our test set only for two examples (hcylic5 and
mckay) the values differ and in only one of them (mckay) a significant difference
occurs. Thus it seems that in typical benchmark examples no big differences in

4 Although this example is not a toric ideal, it shares certain characteristic features of
toric ideals. It is well-known that for such ideals special techniques must be employed.



Example #JB #GB #JB
#GB

ppd pd preg reg bprk brk bprk
brk

butcher8 64 54 1.19 8 8 3 3 3732 2631 1.42

camera1s 59 29 2.03 6 6 4 4 863 337 2.56

chandra6 32 32 1.00 6 6 5 5 684 64 10.69

cohn2 33 23 1.43 4 4 7 7 179 67 2.67

cohn3 106 92 1.15 4 4 7 7 696 370 1.88

cpdm5 83 77 1.08 5 5 9 9 1 020 100 10.20

cyclic6 46 45 1.02 6 6 9 9 1 060 320 3.31

cyclic7 210 209 1.00 7 7 11 11 10 356 1 688 6.14

cyclic8 384 372 1.03 8 8 12 12 34136 6400 5.33

des18 3 104 39 2.67 8 8 4 4 8 132 2 048 3.97

des22 24 129 45 2.87 10 10 4 4 32 632 6 192 5.27

dessin1 104 39 2.67 8 8 4 4 8 132 2 048 3.97

dessin2 122 46 2.65 10 10 4 4 22 760 6 192 3.68

f633 153 47 3.26 10 10 3 3 17390 4987 3.49

hcyclic5 52 38 1.37 6 5 11 10 932 32 29.13

hcyclic6 221 99 2.23 7 7 14 14 9834 146 67.36

hcyclic7 1182 443 2.67 8 8 17 17 105957 1271 83.37

hemmecke 983 9 109.22 4 4 61 61 6242 38 164.26

hietarinta1 52 51 1.02 10 10 2 2 6402 3615 1.77

katsura6 43 41 1.05 7 7 6 6 1 812 128 14.16

katsura7 79 74 1.07 8 8 7 7 6 900 256 26.95

katsura8 151 143 1.06 9 9 8 8 27 252 512 53.23

kotsireas 78 70 1.11 6 6 5 5 1810 1022 1.77

mckay 126 51 2.47 4 4 15 9 840 248 3.39

noon5 137 72 1.90 5 5 8 8 1 618 130 12.45

noon6 399 187 2.13 6 6 10 10 9 558 322 29.68

noon7 1 157 495 2.34 7 7 12 12 56 666 770 73.59

rbpl 309 126 2.45 7 7 14 14 13834 1341 10.32

redcyc5 23 10 2.30 5 5 7 7 276 88 3.14

redcyc6 46 21 2.19 6 6 9 9 1060 320 3.31

redcyc7 210 78 2.69 7 7 11 11 10356 1688 6.14

redcyc8 371 193 1.92 8 8 12 12 32459 6973 4.65

redeco7 48 33 1.45 7 7 5 5 1 708 128 13.34

redeco8 96 65 1.48 8 8 6 6 6 828 256 26.67

redeco9 192 129 1.49 9 9 7 7 27 308 512 53.34

redeco10 384 257 1.49 10 10 8 8 109 228 1 024 106.67

reimer4 19 17 1.12 4 4 6 6 118 16 7.38

reimer5 55 38 1.45 5 5 9 9 694 32 21.69

reimer6 199 95 2.09 6 6 12 12 5 302 64 82.84

speer 49 44 1.11 5 5 7 7 359 133 2.70

Table 2. Statistics for examples from Table 1



the sizes of the induced resolutions for Janet and Pommaret bases, respectively,
occur, although we showed in Example 8 that theoretically the difference may
become arbitrarily large.
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