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Abstract

Using techniques coming from the theory of marked bases, we develop new
computational methods for detection and construction of Cohen-Macaulay,
Gorenstein and complete intersection homogeneous polynomial ideals. Due
to the functorial properties of marked bases, an elementary and effective proof
of the openness of arithmetically Cohen-Macaulay, arithmetically Gorenstein
and strict complete intersection loci in a Hilbert scheme follows, for a non-
constant Hilbert polynomial.
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Introduction

Marked bases are special sets of generators of polynomial ideals in enough
generic position. They have nice theoretical and computational properties
which are similar to those of Gröbner bases. However, in contrast to Gröbner
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bases, they are able to provide an open cover of Hilbert schemes (see [2, 12]
and the references therein). Among other properties, this feature has already
been applied to investigate problems in Commutative Algebra and Algebraic
Geometry (see [9], for instance).

Inspired by the article [45], we use techniques coming from the theory of
marked bases to develop constructive characterizations of Cohen-Macaulay,
Gorenstein and complete intersection homogeneous polynomial ideals by con-
ditions on the coefficients of the polynomials of the marked bases of their
Artinian reductions. These conditions even characterize the coefficients of
the polynomials of the marked bases we consider due to the procedure that
is used to obtain the Artinian reductions (see Proposition 3.5).

Among the important roles of these ideals in several contexts, it is rele-
vant that they satisfy some openness conditions, such as the Cohen-Macaulay
locus and the Gorenstein locus in a Hilbert scheme are open subsets ([22,
Théorème (12.2.1)(vii)] and [46]) and the family of (strict) complete inter-
section curves in P3 is an open subset which may not be closed (for example,
see [24, Exercises 1.3 and 1.4]). Moreover, the Nagata criterion holds for
Gorenstein and complete intersection properties in rings (see [21] and [31]
for a module version).

By means of our constructive characterizations, we obtain an elementary
proof of the openness of the three loci of points in a Hilbert scheme corre-
sponding to either arithmetically Cohen-Macaulay schemes or arithmetically
Gorenstein schemes or strict complete intersection schemes, for every non-
constant Hilbert polynomial, also providing an explicit representation via
suitable equations and inequalities. Up to our knowledge, in this generality,
these results are a novelty.

For a presentation of Cohen-Macaulay, Gorenstein and complete inter-
section rings and corresponding closed projective schemes, we refer to [23, 4,
28, 35, 29, 17, 38].

Concerning constructive approaches to the study of these objects, general
structure theorems of Gorenstein ideals are given in [11] in codimension 3
and discussed in [42] for a generalization to codimension 4. Some explicit
constructions of Gorenstein ideals are given in specific cases (for example,
see [10, 39, 19]). See also [1, 43] and the references therein for some recent
related interesting investigations and open problems. Nevertheless, in an
affine framework, a study of general constructions of Gorenstein and complete
intersection ideals can be found in [33, 34] by means of properties of border
bases and border schemes, whose relations with marked bases and marked
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schemes are investigated in [6].
In our paper, we develop general constructions in every codimension and

every polynomial ring on a field in terms of marked bases. Here is an outline
of the content.

After recalling the main features of marked bases and marked schemes and
their relations with Hilbert schemes, which we will refer to when necessary
(see Sections 1 and 2), the first relevant step consists in observing that, up
to a deterministic linear change of variables, marked schemes over quasi-
stable ideals that are Cohen-Macaulay parameterize all the Cohen-Macaulay
homogeneous polynomial ideals (see Theorem 3.3 and Corollary 3.4). We also
provide a method to recognize Cohen-Macaulay ideals among those having
a marked basis over a truncation of any saturated quasi-stable ideal (see
Algorithm 4.4 and Theorem 4.5).

In a marked scheme over a Cohen-Macaulay quasi-stable ideal, a Goren-
stein ideal can be recognized by the dimension of the socle of its Artinian
reduction even in terms of marked bases. Hence, thanks to Theorem 5.2, we
obtain a new constructive method for Gorenstein homogeneous ideals by a
characterization of Artinian Gorenstein homogeneous ideals in terms of the
shape of their marked bases (see Corollary 5.3). Moreover, for a non-constant
Hilbert polynomial, the openness of the arithmetically Gorenstein locus in a
Hilbert scheme follows (see Corollary 5.5).

Regarding complete intersection ideals, we first focus on the process of
distinguishing such ideals using the expected number of their minimal gen-
erators. We propose a solution that performs minimization of marked bases
of homogeneous Artinian ideals by linear algebra only (see Section 6). This
minimization procedure is developed using the notion of border basis in the
homogeneous framework of our paper. Like for the arithmetically Gorenstein
property, an explicit characterization of complete intersection Artinian ho-
mogeneous ideals follows (see Corollary 6.17), together with an elementary
proof of the openness of the strict complete intersection locus in a Hilbert
scheme, for a non-constant Hilbert polynomial (see Corollary 6.18). Then,
we focus on the more general task to construct a regular sequence contained
in a given polynomial ideal. For this task we obtain a qualitative answer,
adapting to marked bases a result of Eisenbud and Sturmfels, which has been
developed in [18] for Gröbner bases (see Theorem 7.4).

Throughout the paper, we recall the definitions that are needed and give
examples and applications of the computational methods that arise from our
results.
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1. Preliminaries on marked bases

Let R := K[x0, . . . , xn] be the polynomial ring over a field K in n+1 vari-
ables ordered as x0 < x1 < · · · < xn, and T = {xα0

0 xα1
1 . . . xαn

n : (α0, . . . , αn) ∈
Zn

≥0} be the set of its terms. For every term xα := xα0
0 xα1

1 . . . xαn
n ̸= 1 we

denote by min(xα) := mini=0,...,n{xi : αi ̸= 0} the minimum variable that
appears in xα with a non-null exponent. Analogously, we set max(xα) :=
maxi=0,...,n{xi : αi ̸= 0}. Given a term xα, a variable xi is called a multiplica-
tive variable of xα if xi ≤ min(xα), otherwise it is called a non-multiplicative
variable of xα.

An ideal J is said a monomial ideal if it is generated by terms. The
minimum set of generators of a monomial ideal J made of terms is denoted
by BJ . The sous-escalier of J is the set N (J) made of the terms outside J .

For every Noetherian K-algebra A, we set RA := A ⊗ R = A[x0, . . . , xn]
and consider the standard grading for which deg(xi) = 1, for every i ∈
{0, . . . , n}, and deg(a) = 0 for every a ∈ A. The degree of a term xα is
|α| =

∑
i αi.

For every set N of homogeneous polynomials in RA, we denote by (N)
the ideal generated by N and by ⟨N⟩A the A-module generated by N over
A. Moreover, for every integer t, we denote by N≥t the set of the homoge-
neous polynomials of degree ≥ t of N and by Nt the set of the homogeneous
polynomials of N of degree t.

For a homogeneous ideal I ⊂ RA, we continue to write I≥t even to denote
the ideal (I≥t) and It to denote the A-module ⟨It⟩A. The Hilbert function
HRA/I is the function HRA/I : Z → Z such that HRA/I(t) is the number of
generators of a A-basis of (RA/I)t, being (RA/I) a free module. For t ≫ 0,
HRA/I(t) assumes the same value of a numerical polynomial p(z) that is called
Hilbert polynomial.

A monomial ideal J is said quasi-stable if for every term xτ ∈ J and every
non-multiplicative variable xk > min(xτ ) of xτ there exists an exponent sk
such that the term xτ

min(xτ )
xsk
k belongs to J .

A monomial ideal J is quasi-stable if and only if there is a (unique)
finite set of generators PJ of J made of terms such that, for every term
xτ ∈ J \ PJ , there exists a unique term xσ ∈ PJ so that xτ = xδxσ with
max(xδ) ≤ min(xσ). The set PJ , which is called the Pommaret basis of J ,
contains BJ . When PJ is equal to BJ , the ideal J is said a stable ideal. Every
Artinian monomial ideal is quasi-stable.

For any homogeneous ideal I ⊆ R we denote by sat(I) its satiety, which
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is the minimum integer s such that Is is equal to the homogeneous part of
degree s of the saturation Isat := {f ∈ R| ∀i ∈ {0, . . . , n} ∃ki ∈ N : xki

i f ∈ I}
of I. The satiety of a quasi-stable ideal J coincides with the maximum degree
of a term divisible by the last variable in the Pommaret basis of J .

A marked polynomial f is a polynomial together with a given term xα

that appears in f with coefficient equal to 1A and which is said head term
of f and denoted by Ht(f). Usually we will write fα to denote a marked
polynomial with head term equal to xα.

Definition 1.1. A PJ-marked set H = {hα}xα∈PJ
is a set of homogeneous

marked polynomials such that, for every term xα ∈ PJ , there exists a unique
polynomial hα ∈ H such that every term other than Ht(f) = xα that appears
in hα with a non-null coefficient belongs to N (J). A PJ -marked set H is said
a PJ-marked basis if (RA)t = (H)t ⊕ ⟨N (J)t⟩A, for every degree t.

When we say that an ideal I has a marked set (resp. basis) over a quasi
stable ideal J we mean that I is generated by a PJ -marked set (resp. basis).

For every PJ -marked set H and for every integer t we consider

H(t) := {xδhα : hα ∈ H, xδ = 1 or max(xδ) ≤ min(xα), deg(xδxα) = t}.
(1.1)

If a polynomial xδhα belongs to H(t) we say that xδxα is its head term.

Definition 1.2. Given a PJ -marked set H = {hα}xα∈PJ
, for every integer t

we denote by−→H(t) the transitive closure of the relation f −→H(t) f−λxδhα,
where f is a polynomial, xδhα belongs toH(t) and xδxα is a term that appears
in f with coefficient λ. We will write f −→+

H(t) g if f −→H(t) g and g belongs
to ⟨N (J)⟩A.

The relation −→H(t) gives rise to a rewriting procedure that, for every
polynomial f , provides the following unique standard representation

f =
∑
h∈H

Phh+ g, (1.2)

where Ph is a linear combination of terms made of powers of multiplicative
variables of Ht(h) and g belongs to ⟨N (J)⟩A (see [2, Proposition 4.11]). The
polynomial g is denoted by RfI(f) and called the reduced form of f by I.

By Definition 1.1 a PJ -marked set H is a PJ -marked basis if and only
if for every polynomial f there is a unique polynomial p ∈ I such that
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f − p ∈ ⟨N (J)⟩A. In this case the reduced form of f is called the normal
form of f by I = (H) and denoted by NfI(f).

It will be useful to collect the “coefficient polynomials”Ph of a standard
representation (1.2) in a vector that we denote by Sr(f − g), given an order
for the polynomials in H.

The relation −→H(t) is Noetherian, and even confluent (see [2, Proposi-
tions 4.8 and 4.11]) thanks to the uniqueness of standard representations.
This property also implies the additivity of −→H(t) , for which Sr(f + f ′) =
Sr(f) + Sr(f ′), for every two polynomials f, f ′.

Theorem 1.3. [2, Corollary 4.15 and Theorem 4.18] Let H = {hα}xα∈PJ
be

a PJ-marked set. The following conditions are equivalent:

(i) H is a PJ-marked basis.

(ii) (H)t = ⟨H(t)⟩A, for every t ≤ reg(J) + 1.

(iii) It ∩ ⟨N (J)t⟩A = {0}, for every t ≤ reg(J) + 1.

(iv) xihα −→+
H(t) 0, for every hα ∈ H, xi > min(xα) and deg(xix

α) = t.

A fundamental syzygy Sα,i of a PJ -marked basis H is a syzygy obtained
by rewriting a polynomial xihα using the procedure of Definition 1.2, where
hα belongs to H and xi is a non-multiplicative variable of the head term xα of
hα. The components of Sα,i are the coefficients Ph from the standard repre-
sentation xihα =

∑
Phh guaranteed by Theorem 1.3(iv) and Formula (1.2).

It is noteworthy that the set of the fundamental syzygies generate the
module of syzygies of H [2, Theorem 6.5]. Hence, a polynomial hβ ∈ H
depends on H \ {hβ} if and only if there exists a fundamental syzygy of H
with a constant non-null element corresponding to the polynomial hβ.

The following result is a generalization of [15, Corollary 2.3] to quasi-
stable ideals.

Proposition 1.4. Let I be the ideal generated by a PJ-marked set H ⊆ R.

(i) The codimension of I is higher than or equal to the codimension of J .

(ii) If H is a PJ-marked basis, then the codimension of I is equal to the
codimension of J .
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Proof. For item (i), by the standard representation (1.2) we have R = I +
⟨N (J)⟩K , hence dimK Is ≥ dimK Js, for every s ≥ 0 and the degree of the
Hilbert polynomial of R/I is lower than or equal to the degree of the Hilbert
polynomial of R/J .

For item (ii), it is enough to observe that by the definition of marked
basis we have R = I ⊕ ⟨N (J)⟩K .

2. Marked functor and Hilbert scheme

The set of ideals I having a PJ -marked basis is called the PJ-marked fam-
ily and can be parametrised by an affine scheme which represents a functor
from the category of Noetherian K-Algebras to that of Sets. We briefly recall
the definition of this functor and the construction of the representing affine
scheme.

The marked functor from the category of Noetherian K-algebras to the
category of sets

MfJ : Noeth K−Alg −→ Sets

associates to any Noetherian K-algebra A the set

MfJ(A) := {(H) ⊂ RA | H is a J-marked basis}

and to any morphism of K-algebras σ : A → A′ the map

MfJ(σ) : MfJ(A) −→ MfJ(A
′)

(H) 7−→ (σ(H)) .

Note that the image σ(H) under this map is indeed again a PJ -marked
basis, as we are applying the functor −⊗A A′ to the decomposition (RA)s =
(H)s ⊕ ⟨N (J)s⟩A for every degree s.

Remark 2.1. Generalising [36, Proposition 2.1] to quasi-stable ideals, we
obtain {(H) ⊂ RA | H is a PJ -marked basis} = {I ⊂ RA ideal | RA =
I ⊕ ⟨N (J)⟩A}.

The functor MfJ is represented by the affine scheme MfJ that can be
explicitly constructed by the following procedure. We consider the K-algebra
K[C], where C denotes the finite set of variables

{
Cαη | xα ∈ PJ , x

η ∈
N (J), deg(xη) = deg(xα)

}
, and construct the PJ -marked set H ⊂ RK[C]

consisting of the following marked polynomials

hα = xα −
∑

xη∈N (J)|α|

Cαηx
η (2.1)
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with xα ∈ PJ . According to (1.1), we consider H (t), for every integer t.
Then, by the Noetherian and confluent reduction procedure given in Def-

inition 1.2, for every term xα ∈ PJ and every non-multiplicative variable xi

of xα, like in (1.2) we compute a polynomial gα,i ∈ ⟨N (J)|α|+1⟩A such that
xihα − gα,i ∈ ⟨H (t)⟩A, for some integer t.

We denote by U the ideal generated in K[C] by the x-coefficients of the
polynomials gα,i. Hence, we have MfJ = Spec(K[C]/U ) (see [12, Remark
6.3] and [2, Theorem 5.1]), thanks to Theorem 1.3.

If J is in particular a saturated quasi-stable ideal, then x0 does not divide
any term of BJ and R/J has positive Krull dimension. For every integer t,
J≥t is quasi-stable too, so that we can consider MfJ≥t

.

Let p(z) be the Hilbert polynomial of R/J and Hilb
p(z)
Pn be the Hilbert

scheme that describes flat families of closed subschemes of Pn having Hilbert
polynomial p(z). Then, MfJ≥t

embeds in Hilb
p(z)
Pn , for every integer t, like

a locally closed subscheme (see [8, Proposition 6.13]). This result can be
refined in the following way.

If PJ does not contain any term divisible by x1, we set ρJ := 1. Otherwise,
we set ρJ := max{deg(xα) | xα ∈ PJ is divisible by x1} = sat

( (J,x0)
(x0)

)
.

Proposition 2.2. [8, Corollary 6.11, Proposition 6.13(ii)] With the above
notation,

1. for every t ≥ ρJ − 1, MfJ≥t
∼= MfJ≥t+1

;

2. for every t ≥ ρJ − 1, MfJ≥t
is an open subscheme of Hilb

p(z)
Pn
K
.

3. Cohen-Macaulay conditions by marked bases

Let I ⊂ R = K[x0, . . . , xn] be a homogeneous ideal such that the Krull-
dimension dim(R/I) of R/I is d, with K any field. If we denote by M
the graded R-module R/I, the codimension (or height) of I is codim(I) =
dimR− dimM .

For any (graded) R-module M we only take M -regular sequences that
are made of homogeneous polynomials. All the maximal M -regular se-
quences have the same length, which is called the depth of M and denoted
by depth(M). In general, the inequality depth(M) ≤ dim(M) holds.

Definition 3.1. A graded R-module M is called a Cohen-Macaulay (CM
for short) module if and only if depth(M) = dim(M). If M = R/I, then
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the ideal I is said CM if and only if M is CM. Analogously, we will say that
the closed projective scheme defined by I is arithmetically Cohen-Macaulay
if and only if Isat is CM (see [38]).

The arithmetically Cohen-Macaulay locus in a Hilbert scheme is the subset
of points corresponding to arithmetically Cohen-Macaulay schemes.

From now we assume M := R/I. If R/I is Artinian then it is CM.
If ℓ is a linear non-zero divisor onM , thenM is CM if and only ifM/(ℓ)M

is CM. If ℓ0, . . . , ℓd−1 is a maximal M -regular sequence made of linear forms,
then the module M/(ℓ0, . . . , ℓd−1)M is called an Artinian reduction of M
and, analogously, I/(ℓ0, . . . , ℓd−1)I ≃ (I + (ℓ0, . . . , ℓd−1))/(ℓ0, . . . , ℓd−1) is an
Artinian reduction of I. Up to a linear change of variables, we can assume
that x0, . . . , xd−1 is a maximal M -regular sequence.

Our first aim is to explore effective methods to check if a homogeneous
ideal I is CM exploiting the features of marked bases only. Hence, from now
we assume that I ⊂ R is a homogeneous ideal generated by a PJ-marked
basis H = {h1, . . . , ht} and d is the Krull dimension of M = R/I.

Recall that the variables of the polynomial ring R = K[x0, . . . , xn] are
ordered as x0 < x1 < · · · < xn and J ⊂ R is a quasi-stable ideal.

By the properties of quasi-stable ideals, the sequence x0, . . . , xd−1 is a
generic sequence on R/J in the sense that xi is not a zero-divisor on the
ring R/(J, x0, . . . , xi−1)

sat, for every i ∈ {0, . . . , d − 1}. Then, the sequence
x0, . . . , xd−1 is a R/J-regular sequence if and only if R/J is CM (see [44,
Proposition 2.20]). Hence, R/J is CM if and only if J is generated by terms
in K[xd, . . . , xn].

Generally, it can happen that J is not CM even if I is CM, as the following
example shows (differently from what happens when J is the initial ideal of
I with respect to the degrevlex order).

Example 3.2. Let I be the ideal (x2
2, x1x2 + x2

0) ⊂ K[x0, x1, x2], with null
characteristic and x0 < x1 < x2. The ideal I is CM and, for every term
order, its initial ideal is (x2

2, x1x2, x
2
0x2, x

4
0). If ≺ is the degrevlex term order,

then gin(I) = (x2
2, x1x2, x

3
1) is a CM ideal. If ≺ is the deglex term order, then

gin(I) = (x2
2, x1x2, x

2
0x2, x

4
1) is a quasi-stable and non-CM ideal, on which the

image of I by a generic change of variables has a marked basis.

On the other hand, if J is CM then I is CM, as the following result shows.
This has already been stated in [8, Corollary 3.9] with a hint for its proof.
Here we give a proof in terms of the properties of quasi-stable ideals only.
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Theorem 3.3. Let I be an ideal generated by a PJ-marked basis. If J is CM
then I is CM.

Proof. Since J is CM, dim(R/J) = depth(R/J). Since the ideal I is gener-
ated by a PJ -marked basis, d = dim(R/I) = dim(R/J). The free resolution
of the quasi-stable ideal J induced by its Pommaret basis is generally non
minimal, but its length is the projective dimension of R/J (i.e. minimization
does not affect the length of the resolution) implying pd(R/J) = n + 1 − d
[44, Theorem 8.11]. By [2, Corollary 6.8], pd(R/I) ≤ pd(R/J) = n + 1 −
d. A strict inequality would imply, by the Auslander-Buchsbaum formula,
depth(M) > d, which is not possible since depth(M) ≤ dim(R/I) = d.
Hence, pd(R/I) = n+ 1− d and we conclude that I is CM, too.

Recall that zero-dimensional projective schemes are always arithmetically
Cohen-Macaulay. Thus, Hilbert schemes corresponding to constant Hilbert
polynomials are made of arithmetically Cohen-Macaulay schemes.

For Hilbert polynomials of positive degree we can now recover the result
that the arithmetically Cohen-Macaulay locus in the corresponding Hilbert
scheme is an open subset, in terms of marked schemes.

Corollary 3.4. [8, Remark 3.10] The arithmetically Cohen-Macaulay locus
in a Hilbert scheme with a non-constant Hilbert polynomial coincides with
the union of the open subschemes MfJ , with J CM quasi-stable ideal, and of
their images by linear changes of variables.

Proof. Since the ideal J is CM, then ρJ = 1, and hence MfJ ≃ MfJ≥t

for every integer t ≥ 0. So, thanks to Proposition 2.2, MfJ is an open
subscheme of the corresponding Hilbert scheme, for every J CM, and it is
made of Cohen-Macaulay schemes, by Theorem 3.3. On the other hand,
if K is a CM ideal defining a Cohen-Macaulay scheme in a certain Hilbert
scheme, we can find a deterministic change of variables g (see [26]) such that
g(K) has a quasi-stable CM ideal J as initial ideal with respect to the degree
reverse lexicographic order. So, up to a suitable change of variables the ideal
K belongs to MfJ(K).

The use of changes of coordinates in Corollary 3.4 is unavoidable, because
MfJ(K) can contain CM ideals even if J is not CM, as we have already high-
lighted in Example 3.2. Thus, the following question arises: if we consider
MfJ with J non-CM, how can we detect I ∈ MfJ(K) such that Isat is CM,
using the features of marked bases only?
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In Section 4 we will give an answer to this question in the particular
situation that J = (Jsat)≥m and consequently I = (Isat)≥m, for a suitable
integer m (see [8, Corollary 3.7]). This is the situation that allows us to
embed marked schemes in Hilbert schemes, in the further hypothesis that
the Krull-dimension of R/J is d ≥ 1, as recalled in Section 2.

Finally, the following refinement of the result of Theorem 3.3 gives us a
suitable construction of Artinian reductions.

Proposition 3.5. Let I be an ideal generated by a PJ-marked basis. If
x0, . . . , xd−1 is a R/J-regular sequence, then

(i) x0, . . . , xd−1 is a R/I-regular sequence too, and

(ii) the polynomials obtained from the PJ-marked basis of I setting x0 =
· · · = xd−1 = 0 form a marked basis of the Artinian reduction of I over
the quotient (J + (x0, . . . , xd−1))/(x0, . . . , xd−1).

Proof. If x0, . . . , xd−1 is a R/J-regular sequence, then J is CM and I is
CM too by Theorem 3.3. Then, item (i) follows by applying recursively [8,
Theorem 3.5].

Item (ii) follows from the fact that, being every hyperplane section of I
saturated because I is Cohen-Macaulay, the differences of its Hilbert func-
tion coincide with the Hilbert function of the hyperplane sections. Then we
conclude by Theorem 1.3(ii).

4. Marked schemes over a truncated quasi-stable ideal

We here focus on the identification of Cohen-Macaulay ideals generated
by a PJ -marked schemes in the particular situation J = (Jsat)≥m−1 and then
I = (Isat)≥m−1, where m ≥ ρJ .

First we recover a technical lemma which concerns hyperplane sections.
Recall that if Isat has a PJsat-marked basis then (Isat)≥t has a P(Jsat)≥t

-
marked basis, but the converse is not always true (see [8, Example 3.8]).

Lemma 4.1. [7, Lemma 9.4] Let J ⊂ R be a saturated quasi stable ideal such

that d = dim(R/J) > 0, J ′ :=
( (J,x0)

(x0)

)sat
and ρ be the satiety of (J, x0)/(x0) ⊂

K[x1, . . . , xn]. For every m ≥ ρ, if I belongs to MfJ≥m−1
(K), then

(
(I,x0)
(x0)

)
≥m

belongs to MfJ ′
≥m

(K).
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Recall that x0, . . . , xd−1 is a generic sequence for every quasi-stable ideal
H with R/H of Krull-dimension d.

Lemma 4.2. If J = (Jsat)≥m−1 and I = (Isat)≥m−1 with m as in Lemma 4.1,
then x0, . . . , xd−1 is a generic sequence on R/Isat.

Proof. By [8, Theorem 3.5], x0 is generic on R/I. If d = 1 we have finished.

Otherwise, by Lemma 4.1 and with the same notation,
(

(I,x0)
(x0)

)
≥m

belongs

to MfJ ′
≥m

(K) and we can repeat the same argument on
(

(I,x0)
(x0)

)
≥m

obtaining

that x0, x1 is a generic sequence on R/(Isat)≥m. Then we repeat the same
argument until we obtain the thesis observing that Isat = ((Isat)≥m+d−2)

sat.

We have already observed that every quasi-stable ideal H with R/H of
Krull-dimension d is CM if and only if x0, . . . , xd−1 is a R/H-regular sequence.
This result can be extended to any ideal generated by a marked basis over the
truncation of a quasi-stable ideal, under the same hypothesis of Lemma 4.2.

Proposition 4.3. If J = (Jsat)≥m−1 and I = (Isat)≥m−1 with m like in
Lemma 4.1, then the ideal Isat is CM if and only if x0, . . . , xd−1 is a regular
sequence on R/Isat.

Proof. If x0, . . . , xd−1 is a regular sequence on R/Isat then Isat is CM by def-
inition. Conversely, recall that x0, . . . , xd−1 is a generic sequence on R/Isat,
by Lemma 4.2. Since Isat is CM by hypothesis, then its generic linear sections
are saturated too and hence x0, . . . , xd−1 is a R/Isat-regular sequence.

In the same hypotheses of Proposition 4.3, we give the following compu-
tational strategy to check if Isat is CM.

Algorithm 4.4. Let J = (Jsat)≥m−1 be a quasi-stable ideal and I = (Isat)≥m−1

be an ideal in MfJ≥m
(K) with m ≥ sat

( (J,x0)
(x0)

)
. Let d := dim(R/J). The

following instructions allow to check if Isat is CM or not.

(1) Compute Isat and set k := 1.

(2) Compute a marked basis of the ideal N :=
( (I,xk−1)

(xk−1)

)
≥m−1

and then

compute its saturation N sat.

12



(3) If the first difference of the Hilbert function of Isat does not coincide
with the Hilbert function ofN sat, then Isat is not CM and the procedure
ends. Otherwise, if d = 1 then Isat is CM and the procedure ends, if
d > 1 then reset d := d − 1, k := k + 1, I := N (hence Isat = N sat),

m := max
{
m, sat

( (J,x0,...,xk−1)

(x0,...,xk−1)

)}
, and go to step (2).

Proof. For what concerns item (1), we observe that the equality Isat = (I :
x∞
0 ) holds thanks to [8, Theorem 3.5] and we will give a method to compute

it by marked bases in next Theorem 4.5.
For what concerns item (2), the ideal N :=

( (I,xk−1)

(xk−1)

)
≥m−1

belongs to

Mf (J,x0)
(x0) ≥m−1

(K) due to Lemma 4.1 and we can compute a marked basis

of N . Moreover, we can compute N sat thanks to next Theorem 4.5 because
N sat = (N : x∞

k ) by [8, Theorem 3.5] again.
For what concerns item (3), it is enough to observe that the check on

the Hilbert functions is equivalent to check if x0, . . . , xd−1 is a R/Isat-regular
sequence, and hence that Isat is CM by Proposition 4.3.

The strategy of Algorithm 4.4 is pretty standard, except for the computa-
tional method that we now propose for the saturation of the ideals involved
in the strategy. Indeed, by arguments analogous to those we use in Section 5,
we obtain the following description of Isat = (I : x∞

0 ).

Theorem 4.5. Let J and I be ideals in R such that, for some m ≥ ρ,
J = (Jsat)≥m−1 and I = (Isat)≥m−1, and I is generated by the PJ-marked
basis H.

Let H0 = {hα1 , . . . , hαr} ⊆ H be the set made of the marked polynomials
in H with head term divisible by x0. For every polynomial hαi

∈ H0, let
hαi

= h′
αi,k

+ h′′
αi,k

be the decomposition of hαi
such that the terms in h′

αi,k

are divisible by xk
0 and the terms in h′′

αi,k
are not divisible by xk

0. Let S be the
set

S =

{
r∑

i=1

cαi,k

h′
αi,k

xk
0

: xk
0 | Ht(hαi

), cαi,k ∈ K,

r∑
i=1

cαi,kh
′′
αi,k

= 0

}
k=1,...,m−2

Then, we have the following (graded) decomposition:

(I : x∞
0 ) = I ⊕ ⟨S⟩K .

13



Proof. Since (I : x∞
0 ) ⊇ I, to obtain a first inclusion it is sufficient to prove

that (I : x∞
0 ) contains any polynomial in S.

Consider g ∈ S: g =
∑r

i=1 cαi,k

h′
αi,k

xk
0
, with

∑r
i=1 cαi,kh

′′
αi,k

= 0. So, we can

write

xk
0g =

r∑
i=1

cαi,kh
′
αi,k

+
r∑

i=1

cαi,kh
′′
αi,k

=
r∑

i=1

cαi,khαi
.

This proves that g belongs to (I : xk
0).

In order to prove the other inclusion, under the current hypotheses on
J and I, first we note that every polynomial in H0 has degree m − 1 by [8,
Lemma 3.4].

Consider f ∈ (I : x∞
0 ). By using the PJ -marked basis H, we obtain the

writing f =
∑

hα∈H Pαhα + f̃ , where the support of f̃ is contained in N (J).

If f̃ = 0, then f belongs to I. Otherwise, we consider the smallest
exponent k such that xk

0f ∈ I. Again by [8, Lemma 3.4], xk
0f has degree

m − 1. Furthermore, xk
0 f̃ belongs to I too, hence we can rewrite it by the

polynomials in H.
Let τ be a term in supp(f̃) such that xk

0τ ∈ J . Hence, there is xα ∈
PJ such that xk

0τ = xδxα with max(xδ) ≤ min(xα). By [8, Lemma 2.7
(iv)], min(xα) = x0 and being deg(xα) = m − 1 = k + deg(f̃), we have
that xk

0 divides xα. Hence in the rewriting procedure on xk
0 f̃ we use only

polynomials in H0 whose head term is divided by xk
0, and every new term

that is introduced by a rewriting step belongs to the sous-escalier of J and
hence it is not rewritable.

Then we can write:

xk
0 f̃ =

r∑
i=1

cαi,khαi
=

r∑
i=1

cαi,kh
′
αi,k

+
r∑

i=1

cαi,kh
′′
αi,k

.

This is possible if and only if
∑

cαi,kh
′′
αi,k

= 0, where the coefficients cαi,k

belong to K.

Example 4.6. In the ring K[x0, x1, x2, x3] with x0 < · · · < x3, consider the
saturated quasi-stable but not CM ideal J = (x2

3, x2x3, x
2
1x3, x

4
2) with ρ = 3.

The Krull dimension of the quotient over J is 2. We take m = 4 and the
truncation J≥3 = (x3

3, x2x
2
3, x

2
2x3, x1x

2
3, x1x2x3, x0x

2
3, x

2
1x3, x0x2x3, x

4
2) and the

ideal I generated by the following PJ≥3
-marked basis

{x3
3, x2x

2
3, x2

2x3 + x3
2 + 2x1x

2
2 + x2

1x2, x1x
2
3, x1x2x3 + x1x

2
2 + 2x2

1x2 + x3
1,
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x0x
2
3, x

2
1x3 − x3

2 − 4x1x
2
2 − 5x2

1x2 − 2x3
1, x0x2x3 + x0x

2
2 +2x0x1x2 + x0x

2
1,

x4
2 + 4x1x

3
2 + 6x2

1x
2
2 + 4x3

1x2 + x4
1}.

By [7, Lemma 9.4], in K[x1, x2, x3], we compute the marked basis of N :=(
(I,x0)
(x0)

)
≥3

on
(

(J,x0)
(x0)

)
≥3

= {x3
3, x2x

2
3, x

2
2x3, x1x

2
3, x1x2x3, x

2
1x3, x

4
2}, obtaining

H = {h1 = x3
3, h2 = x2x

2
3, h3 = x2

2x3 + x3
2 + 2x1x

2
2 + x2

1x2, h4 = x1x
2
3,

h5 = x1x2x3 + x1x
2
2 +2x2

1x2 + x3
1, h6 = x2

1x3 − x3
2 − 4x1x

2
2 − 5x2

1x2 − 2x3
1,

h7 = x4
2 + 4x1x

3
2 + 6x2

1x
2
2 + 4x3

1x2 + x4
1}

and applying Theorem 4.5 with x1 in place of x0

N sat = N ⊕ ⟨x2
3, x2x3 + x2

2 + 2x1x2 + x2
1⟩K = (x2

3, x2x3 + x2
2 + 2x1x2 + x2

1).

The Hilbert function of Isat is 1 4t and its first derivative is 1 3 4 4 . . . . Since
the Hilbert function of N sat is 1 3 4 4 . . . too, we can conclude that Isat is
CM.

In order to give some more details of the computation of N sat, consider
H1 = {h4 = x1x

2
3, h5 = x1x2x3+x1x

2
2+2x2

1x2+x3
1, h6 = x2

1x3−x3
2−4x1x

2
2−

5x2
1x2 − 2x3

1}.
For k = 1 the condition in Theorem 4.5 is:
c4,1x

2
3 + c5,1(x2x3 + x2

2 + 2x1x2 + x2
1) + c6,1(x

2
1x3 − 4x1x

2
2 − 5x2

1x2 − 2x3
1)

such that c6,1x
3
2 = 0, which implies c6,1 = 0 and c4,1, c5,1 ∈ K.

For k = 2 the condition in Theorem 4.5 is:
c6,2(x3 − 5x2 − 2x1)

such that c6,2(−x3
2 − 4x1x

2
2) = 0, which implies c6,2 = 0.

Example 4.7. This example is inspired from [7, Example 9.10]. Consider
the saturated quasi-stable but not CM ideal J = Jsat = (x2x4, x

2
4, x1x3x4,

x2x
2
3, x

3
3, x

2
3x4) in K[x0, . . . , x4], with m = ρ = 3 and x0 < · · · < x4. Ob-

serve that J≥2 coincides with J . The saturated ideal Isat = I = (x2x4 −
x2
3 − x3x4, x

2
4, x1x

2
3 + x1x3x4, x2x

2
3, x

3
3, x

2
3x4) coincides with I≥2 and is gen-

erated by a PJ≥2
-marked basis. By [7, Lemma 9.4], in K[x1, . . . , x4] we

can compute the basis of
(

(I,x0)
(x0)

)
≥3

that is marked on the Pommaret ba-

sis of
(

(J,x0)
(x0)

)
≥3

= (x3
4, x3x

2
4, x2x

2
4, x1x

2
4, x2x3x4, x

2
2x4, x

2
3x4, x2x

2
3, x

3
3, x1x2x4,

x0x2x4, x0x
2
4, x1x3x4) and obtain N := (x3

4, x3x
2
4, x2x

2
4, x1x

2
4, x2x3x4, x

2
2x4,

x2
3x4, x2x

2
3, x

3
3, x1x2x4 − x1x

2
3, x1x

2
3 + x1x3x4), and applying Theorem 4.5

N sat = (x3
4, x

2
4, x2x3x4, x

2
3x4, x2x

2
3, x

3
3, x2x4 − x2

3, x
2
3 + x3x4).
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The Hilbert function of Isat is 1 5 t2+4t+1 and its first difference is 1 4 8 2t+3,
but the Hilbert function of N sat is different, being 1 4 2t + 3. Hence, Isat is
not a CM ideal.

5. Gorenstein conditions by marked bases

In a polynomial ring over a field K, the study of Gorenstein homogeneous
ideals can be reduced to the study of Artinian homogeneous ideals, like for
CM ideals.

Indeed, a Cohen-Macaulay ideal I is Gorenstein if and only if its Artinian
reduction is Gorenstein or, equivalently, the socle of its Artinian reduction
has dimension 1 as a K-vector space or, equivalently, the last module of
its minimal free resolution has rank 1 (see [17, Proposition 21.5 and Corol-
lary 21.16]). If I ⊆ R is a Gorenstein ideal, we say that R/I is a Gorenstein
ring. It is noteworthy that the Hilbert function of every Artinian graded
Gorenstein K-algebra is symmetric.

A closed projective scheme defined by a homogeneous polynomial ideal I
is arithmetically Gorenstein if and only, if Isat is Gorenstein.

The arithemtically Gorenstein locus in a Hilbert scheme is the subset of
points corresponding to arithmetically Gorenstein schemes.

Thanks to Proposition 3.5, if J is a CM quasi-stable ideal with d as Krull
dimension of R/J and I is an ideal with a PJ -marked basis, then the quotient
(I +(x0, . . . , xd−1))/(x0, . . . , xd−1) is an Artinian reduction of I with marked
basis over the Artinian quasi-stable ideal (J + (x0, . . . , xd−1))/(x0, . . . , xd−1).
Hence, I is Gorenstein if and only if (I + (x0, . . . , xd−1))/(x0, . . . , xd−1) is
Gorenstein.

Remark 5.1. Recall that a monomial ideal is Gorenstein if and only if it is
a complete intersection (see [5], for example). The ideal I in Example 3.2
is Gorenstein and is generated by a PJ -marked basis, where J is a non-
Gorenstein quasi-stable ideal. On the other hand, in Example 7.1 we will
find a Gorenstein quasi-stable ideal J and a PJ -marked basis H generating
an ideal which is not Gorenstein.

We now aim to describe the non-trivial elements of the socle of an Artinian
ideal generated by a PJ -marked basis. To this end, we adapt a method for
socle computation due to Seiler [45, Theorem 5.4] (slightly corrected in [41,
Satz 63]) which is valid for Artinian ideals generated by Pommaret (Gröbner)
bases with respect to the degree reverse lexicographic term order. We use
the following notation.
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Let I be an Artinian homogeneous ideal generated by a PJ -marked basis
H = {h1, . . . , ht} and let H0 = {hα1 , . . . , hαr} be the subset of H made of the
polynomials with head term divisible by x0. For every polynomial h ∈ H0,
let h = h′ + h′′ be the decomposition of h such that h′ is divisible by x0 and
h′′ is linear combination of terms that are not divisible by x0.

For each k ∈ {1, . . . , n}, we associate to H the square matrix Ak(H) ∈
Kr×r whose entry in row i and column j is the constant term of the coef-
ficient polynomial Phαi

in the standard representation xkhαj
=

∑
h∈H Phh

(see (1.2)).

Theorem 5.2. Let I be an Artinian homogeneous ideal generated by the PJ-
marked basis H, with associated matrices Ak := Ak(H) for k = 1, . . . , n. Let
m be the irrelevant maximal ideal in K[x0, . . . , xn]. Then the ideal quotient
(I : m) is a direct sum of K-vector spaces as follows:

(I : m) = I ⊕ ⟨
{ r∑

i=1

ci
h′
αi

x0

: ci ∈ K,
r∑

i=1

cih
′′
αi

= 0, Akc = 0, ∀ k = 1, . . . , n
}
⟩K.

Proof. If f is a polynomial in (I : m), then in particular x0f belongs to I
and we can represent x0f by the rewriting procedure with H:

x0f =
∑
h∈H

Phh.

Recalling that the terms of x0f are all divisible by x0, observe that x0τ
belongs to J if and only if there exists h ∈ H such that x0τ = xℓ

0x
δHt(h),

where xδ is not divisible by x0 and max(xδ) ≤ min(Ht(h)). Two cases can
now occur:

(a) ℓ > 0, and hence at least one term in Ph is divisible by x0

(b) ℓ = 0, and hence Ht(h) is divisible by x0; thus, x
δ = 1 and x0τ = Ht(h).

In case (a) every new term that is introduced by the rewriting procedure is
divisible by x0. In case (b) every new term that is introduced by the rewriting
procedure belongs to the sous-escalier of J and so it is not rewritable.

Hence we can write:

x0f =
∑
x0|P̄h

P̄hh+
∑

P̄αi=ci∈K

P̄αi
hαi

=
∑
x0|P̄h

P̄hh+
∑

P̄αi=ci∈K

P̄αi
h′
αi
+

∑
P̄αi=ci∈K

P̄αi
h′′
αi
,
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and this is possible if and only if
∑

cih
′′
αi

= 0.
As a consequence, we obtain

f =
∑
x0|P̄h

P̄h

x0

h+
∑

ci
h′
αi

x0

.

and for every k > 0 we now have:

xkf =
∑
x0|P̄h

P̄h

x0

xkh+ xk

∑
ci
h′
αi

x0

.

Hence, xkf belongs to I if and only if xk

∑
ci

h′
αi

x0
belongs to I. This is

equivalent to having the standard representation

xk

∑
ci
h′
αi

x0

=
∑
h∈H

Qhh

and hence
xk

∑
cih

′
αi

=
∑
h∈H

x0Qhh

which is a standard representation too, as the variable x0 is multiplicative
for every term (see (1.2)). This implies that the components of the standard
representation of xk

∑
cih

′
αi

are free of constant terms, for which we use the
following notation:

Sr(xk

∑
cih

′
αi
)0 = 0, (5.1)

where Sr(xk

∑
cih

′
αi
) is the vector of the coefficient polynomials of the stan-

dard representation of xk

∑
cih

′
αi
, as already set in Section 1.

Recall that
∑

cih
′′
αi

= 0. Using the additivity of standard representations
and (5.1) we now deduce

0 = Sr(xk

∑
cih

′
αi
)0 + Sr(0)0 = Sr(xk

∑
cih

′
αi
+ xk

∑
cih

′′
αi
)0

= Sr(xk

∑
cihαi

)0.
(5.2)

Observe that also the opposite implication holds true, because every term
in h′

αi
is divisible by x0. Moreover, (5.2) is equivalent to the conditions

Akc = 0, for every k ∈ {1, . . . , n}, because the possible non-null coefficients
of the polynomials h ∈ H \ H0 must be divisible by x0 by construction.
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Let ΣH denote the system of homogeneous linear equations given by the
conditions describing the socle (I : m)/I of I in Theorem 5.2, in the r
variables c1, . . . , cr. Then, we obtain the following.

Corollary 5.3. Let J be an Artinian monomial ideal.

(i) An ideal I generated by a PJ-marked basis H is Gorenstein if and only
if the associated matrix of coefficients of ΣH has rank r − 1.

(ii) The arithmetically Gorenstein locus in MfJ is an open subset GJ

of MfJ .

Proof. Recall that the ideal I is Gorenstein if and only if the K-dimension of
the socle of I is equal to 1, that is the vector space of solutions of the linear
system Σ has dimension 1, thanks to Theorem 5.2. Being r the number of
variables in Σ, we obtain item (i).

Now, consider the PJ -marked basis H ⊆ RK[C] as described in Section 2,
modulo the ideal U defining the marked scheme MfJ . By item (i), Goren-
stein ideals inMfJ are obtained if and only if at least a minor of order r−1 of
the associated matrix of coefficients of the linear system ΣH does not vanish.
We conclude recalling that the socle of a proper homogeneous ideal H is not
null, because it contains the part of degree s− 1 of the quotient R/H, when
s is its regularity.

Remark 5.4. Since the number r of variables of a linear system ΣH is bounded
from above by the cardinality of the sous-escalier N (J), the linear system Σ
has a number of equations of order O(|N (J)| · n) in r ≤ |N (J)| variables.

Corollary 5.5. The arithmetically Gorenstein locus in a Hilbert scheme with
a non-constant Hilbert polynomial is an open subset.

Proof. Recall that every homogeneous ideal can be transformed into an ideal
with a marked basis over a quasi-stable ideal by a certain linear change of
variables, like suggested in [26] and already done in the proof of Corollary
3.4. Hence, let I be the homogeneous ideal generated by the marked basis
H ⊂ RK[C] over a Cohen-Macaulay quasi stable ideal J , modulo the ideal
U defining the marked scheme MfJ (see Section 2). Being the Hilbert
polynomial of J non-constant by hypothesis, then ρJ = 1 andMfJ is an open
subscheme in the corresponding Hilbert scheme, thanks to Proposition 2.2.

In this particular situation, setting to zero the variables x0, . . . , xd−1 in
the polynomials of the marked basis H , we obtain the marked basis H ′ of
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an Artinian reduction I ′ of I over the Artinian reduction J ′ of J . Recalling
that an ideal is Gorenstein if and only if its Artinian reduction is Gorenstein,
we now consider on the polynomials of H the conditions on the common
coefficients of the polynomials of H ′ that define the open subset GJ ′ of
MfJ ′ of Corollary 5.3, obtaining an open subset GJ of MfJ .

Hence, the arithmetically Gorenstein locus in Hilbert schemes with non-
constant Hilbert polynomials coincides with the union of the open subsets
GJ of MfJ , with J CM quasi-stable ideal, and of their images by linear
changes of variables.

Example 5.6. Let us consider J = (x2, y2) ⊂ K[x, y] with x < y. The
Pommaret basis of J is PJ = {x2, y2, x2y}. For every constant value of the
parameters d1,1, d2,2 the following polynomials form a PJ -marked basis:

h1 = x2 + d1,1xy, h2 = y2 + d2,1xy, h3 = x2y.

We have H0 = {h1, h3} and h′′
1 = h′′

3 = 0. By the rewriting procedure we find
yh1 = (1− d11d2,1)h3+ d1,1xh2 and yh3 = x2h2− d2,1xh3, so the matrix A1 is(

0 0
1− d1,1d2,1 0

)
.

The system Σ in the two variables c1, c2 is only made by the equation (1 −
d1,1d2,1)c1 = 0 and its associated matrix has rank 1 if and only if 1−d1,1d2,1 ̸=
0. Under this condition, for every ideal I = (h1, h2, h3), the socle (0 : m) ⊂
R/I is generated by [xy] ∈ R/I. For example, the ideal I = (x2 + xy, y2 −
xy, x2y) is Gorenstein.

Example 5.7. The quasi-stable ideal J = (x2
2, x

2
1, x

2
0) is Artinian in the ring

K[x0, x1, x2] (x0 < x1 < x2) and its Pommaret basis is PJ = {x2
2, x

2
1, x

2
0, x

2
0x1,

x2
0x2, x

2
1x2, x

2
0x1x2}. The following polynomials form the PJ -marked set H:

h1 = x0
2 + d1,1x0x1 + d1,2x0x2 + d1,3x1x2,

h2 = x1
2 + d2,1x0x1 + d2,2x0x2 + d2,3x1x2,

h3 = x2
2 + d3,1x0x1 + d3,2x0x2 + d3,3x1x2, h4 = x0

2x1 + d4,1x0x1x2,

h5 = x0
2x2 + d5,1x0x1x2, h6 = x1

2x2 + d6,1x0x1x2, h7 = x0
2x1x2.

(5.3)

The marked set H is a PJ -marked basis if and only if the coefficients di,j
satisfy the equations listed in (A.1).
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We have H0 = {h1, h4, h5, h7} and h′′
1 = d1,3x1x2, while h

′′
4 = h′′

5 = h′′
7 = 0.

Hence, we need to set c1(d1,3x1x2) = 0 in order to compute the socle, so that
d1,3c1 = 0 is one of the equations of the system ΣH. There are 6 more non-
null equations in the system ΣH, obtained from the matrices A0, A1, A2 as
in Theorem 5.2. The complete coefficient matrix of ΣH can be seen at (A.2).
The complete list of equations describing the non-Gorenstein locus in the
marked scheme defined by J can be found at (A.3). They are the minors
of order 3 of the matrix of the system ΣH. Indeed, these equations describe
the loci were the socle of the ideal (H) has not dimension 1, as stated in
Corollary 5.3.

6. Complete intersection conditions by marked bases

Referring to [35], recall that a proper ideal I in a Noetherian ring is
called a complete intersection if the length of the shortest system of minimal
generators of I is equal to the height (or codimension) of I. A proper ideal
I that is generated by a regular sequence in a Noetherian ring is a complete
intersection and the converse holds if the ring is Cohen–Macaulay, like a
polynomial ring over a field.

A closed projective scheme defined by a homogeneous polynomial ideal I
is a (strict or global) complete intersection if and only if Isat is a complete
intersection (see [23, Exercise 8.4, chapter II]).

The strict complete intersection locus in a Hilbert scheme is the subset of
points corresponding to strict complete intersection schemes.

In this section we describe and use a method to identify Artinian com-
plete intersection ideals among the ideals generated by marked bases using
minimization in terms of linear algebra only.

The strategy that we propose here is inspired by the minimization method
of Gröbner bases that has been described in [14, Section 3] based on an in-
terpretation of [37, Lemma 13.1] in terms of linear algebra only. The setting
is that of zero-dimensional schemes which well fits with our problem. In-
deed, we can consider Artinian ideals only, because complete intersections
are preserved by general linear sections, as well.

Given an Artinian monomial ideal J , the main tool is the notion of bor-
der ∂O of the order ideal N (J), from which the concept of ∂O-marked basis
arises (see [37, 40] where a ∂O-marked basis is called a border basis). In [6] a
comparison between a ∂O-marked basis and a PJ -marked basis is described.
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Here we develop our strategy referring to [6] for definitions and features re-
lated to ∂O-marked bases and their relations with PJ -marked bases, although
in [6] both PJ -marked bases and ∂O-marked bases are not necessarily homo-
geneous.

Here we deal with homogeneous PJ -marked bases, implying that also
the corresponding ∂O-marked bases must be homogeneous, thanks to [6,
Theorem 1].

Definition 6.1. Let J be an Artinian ideal. The border of J is

∂O := {xix
τ : xτ ∈ N (J) and i ∈ {0, . . . , n}} ∩ J.

If H := {hα}α is a PJ -marked basis generating an ideal I, the following
set of homogeneous marked polynomials

B := {bτ := xτ − NfI(x
τ ) : xτ ∈ ∂O}

is the (homogeneous) ∂O-marked basis of I (see [6, Theorem 1]), being
NfI(x

τ ) the normal form of xτ by I as defined in (1.2), and xτ the head
term of the polynomial bτ . Indeed, the additional condition of homogeneity
that we consider here does not forbid the application of [6, Theorem 1].

Analogously to (1.1), for every ∂O-marked basis B and for every integer t
we set

B(t) := {xδbτ : bτ ∈ B, xδ = 1 or max(xδ) ≤ min(xτ ), deg(xδxτ ) = t}. (6.1)

If xδbτ belongs to B(t) we say that xδxτ is its head term. Observe that H(t)

is contained in B(t) for every integer t. We highlight that two polynomials
belonging to B(t) can have the same head term, differently from H(t).

Definition 6.2. Given a ∂O-marked basis B = {bτ}τ∈∂O, for every integer t
we denote by −→B(t) the transitive closure of the relation f −→B(t) f−λxδbτ ,
where f is a polynomial, xδxτ is a term that appears in f with coefficient λ
and xδbτ ∈ B(t). We will write f −→+

B(t) g if f −→B(t) g and g ∈ ⟨N (J)⟩A.

Lemma 6.3. If xτ is a term that belongs to ∂O \ PJ , then it is a multiple
of another term in the border by a multiplicative variable.

Proof. Let xτ = xum, with m ∈ N (J), and let xk := min(xτ ). Then xτ/xk

belongs to J , otherwise xτ ∈ PJ . So xu ̸= xk and xu
m
xk

belongs to ∂O,

because m
xk

belongs to N (J).
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Lemma 6.4. Let xδm be a term that belongs to J \ ∂O with m ∈ N (J).
Then, for every term xγ ∈ ∂O and term xη such that xδm = xηxγ and
max(xη) ≤ min(xγ), xη <lex xδ.

Proof. With the same notation of the statement, if xγ belongs to PJ , then
we refer to [2, Lemma 3.4(vi)].

Otherwise, there exist m′ ∈ N (J) and a variable xℓ such that xγ =
xℓm

′, where xℓ > min(xγ) because xγ does not belong to PJ . By Lemma
6.3, xγ = xkx

σ, where xσ ∈ ∂O and xk := min(xγ). If xσ ∈ PJ then
xηxk <lex xδ thanks to [2, Lemma 3.4(vi)] and hence xη <lex xδ, because
xk = min(xγ). Otherwise we repeat the same argument on xσ until we find
a term xσ′

belonging to PJ such that xγ = xϵxσ′
with max(xηxϵ) ≤ min(xσ′

)
and we conclude as before because xηxϵ <lex xσ′

by [2, Lemma 3.4(vi)] and
max(xη) ≤ min(xϵ) by construction.

Proposition 6.5. The relation −→B(t) is Noetherian and confluent.

Proof. We show that the rewriting procedure given by the relation −→B(t)

ends after a finite number of steps when applied to any term.
Let xδxα any term that belongs to J \ ∂O, with xα ∈ ∂O. Then there

exist a term xγ ∈ ∂O and a term xη such that max(xη) ≤ min(xγ) and
xδxα = xηxγ.

Hence the first step of the rewriting procedure consists in computing
xδxα − xηbγ, in which every term that appears with a non-null coefficient is
of type xηm, with m ∈ N (J). If xηm belongs to J \ ∂O then we can apply
Lemma 6.4 and conclude.

For confluency, it is now enough to observe that for every g ∈ R, by
Noetherianity there exists h ∈ ⟨N (J)⟩ such that g −→B(t) h. Then h −
NfI(g) ∈ I ∩⟨N (J)⟩, but the latter is {0} since I is generated by the marked
basis H. Hence h = NfI(g).

Remark 6.6. In terms of reduction structures [13], B and the terms that allow
the definition of B(t) give a substructure of the border reduction structure
considered in [32]. The difference is that in [32] the authors admit multi-
plication of polynomials in B by any term. The polynomial reduction of
Definition 6.2, being Noetherian, proves that the border reduction structure
of [32] is weakly Noetherian [13, Definition 5.1].

Proposition 6.7. If H is a PJ-marked basis then, for every integer t, for
every bτ ∈ Bt−1 and for every non-multiplicative variable xi of x

τ , we have the
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following decompositions, where Lb is a linear form of multiplicative variables
of the head term of b and ch ∈ K:

xibτ =
∑

b∈Bt−1

Lbb+
∑
h∈Ht

chh, (6.2)

if xix
τ = xkx

γ, with xk multiplicative variable of xγ ∈ ∂O,

xibτ − xkbγ =
∑

b∈Bt−1

Lbb+
∑
h∈Ht

chh, (6.3)

if xix
τ = xkx

γ, with xk non-multiplicative variable of xγ ∈ ∂O \ {xτ}.

Proof. If H is a PJ -marked basis then f −→+
B(t) 0 for every polynomial f ∈ I

because It ∩ ⟨N (J)t⟩A = 0, for every t ≤ reg(J) + 1.
Let p := xibτ − xkbγ in both cases that are considered in the statement.
If xix

τ = xkx
γ with xk multiplicative variable of xγ then xibτ −→B(t) p =

xibτ − xkbγ.
We now observe that in any case the terms appearing with a non-null

coefficient in the polynomial p = xibτ −xkbγ are multiples of a term in N (J)
by a variable, i.e. they are of type xℓm, with m ∈ N (J). Hence, they belong
to either N (J) or ∂Ot.

If xℓm belongs to N (J) then xℓm −→+
B(t) xℓm.

If xℓm belongs to PJ , then there is µ ∈ K such that p −→B(t) p− µ bxℓm.
Otherwise, if xℓm belongs to ∂O \ PJ then xℓm = xℓxhm

′, where xh =
min(xℓm),m′ = m/xh ∈ N (J) and xℓm

′ ∈ ∂O. Hence, p −→B(t) p−µ xhbxℓm′

for some µ ∈ K, because xh is multiplicative variable of xℓm
′ .

We can conclude by repeating the above argument.

The following result is a version of [30, Definition 20 and Proposition 21]
in terms of multiplicative and non-multiplicative variables (see [27] for a
careful study of syzygies of ∂O-marked bases).

Lemma 6.8. The couples of distinct terms xτ and xγ in ∂O such that either
xix

τ = xγ ∈ PJ or xix
τ = xkx

γ = xixkm, with m ∈ N (J) and either xi

non-multiplicative of xτ or xk non-multiplicative of xγ, give rise to a set of
syzygies of type [. . . , xi, . . . ,−1, . . . ] and [. . . , xi, . . . ,−xk, . . . ], respectively,
of ∂O which generate the first module of syzygies of ∂O.
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Proof. The statement holds without the request on the variables thanks to
[37, Lemma 13.1 and Corollary 13.2], because ∂O is a Gröbner basis for
J , being J a monomial ideal. Then it is enough to observe that xi and
xk cannot be both multiplicative otherwise they both should coincide with
min(xixkm).

Theorem 6.9. A polynomial hβ of H depends on H\ {hβ} if and only if hβ

appears with a non-null constant coefficient in a representation of type (6.2)
or (6.3).

Proof. We recall that the family of all ∂O-marked bases is flat. This fact can
be proved observing for example that the family of all ∂O-marked bases is
isomorphic to the family of PJ -marked bases (see [6, Corollary 2]), which is
flat.

Letting B = ∂O, the syzygies arising from (6.2) and (6.3) generate the
first module of syzygies of the border (see Lemma 6.8). Then, for any ∂O-
border basis B, the corresponding syzygies of B that are obtained from them
by −→B(t) generate the first module of syzygies of B, thanks to the criterion
of Artin for flat morphisms (see [3, Corollary to Proposition 3.1]).

Now we can conclude observing that in a representation of type (6.2) and
(6.3) only proper multiples of polynomials of Bt−1 and polynomials of Ht

appear.

Proposition 6.10. Let I be the ideal generated by a PJ-marked basis H. Let
xσ be a term in ∂Ot−1 and xi a variable. If NfI(x

σ) =
∑

mj∈N (J)t−1
cjmj,

then
NfI(xix

σ) =
∑

mj∈N (J)t−1

cjNfI(ximj). (6.4)

Proof. By construction, the polynomial xσ−NfI(x
σ) = xσ−

∑
mj∈N (J)t−1

cjmj

belongs to I, hence xix
σ −

∑
mj∈N (J)t−1

cjximj belongs to I, as well.

Since
∑

mj∈N (J)t−1
cjximj−

∑
mj∈N (J)t−1

cjNfI(ximj) belongs to I too, we
have

xix
σ −

∑
mj∈N (J)t−1

cjNfI(ximj) ∈ I.

Being xix
σ − NfI(xix

σ) a polynomial of I and It ∩ ⟨N (J)t⟩A = 0, then
NfI(xix

σ) =
∑

mj∈N (J)t−1
cjNfI(ximj) and we conclude.

Corollary 6.11. Formula (6.4) allows a recursive computation of the poly-
nomials in Bt \ H, for every t, knowing the polynomials of Ht.
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Proof. With the same notation of Proposition 6.7, if ximj belongs to ∂O\PJ ,
then ximj = xkx

α for a suitable term xα ∈ ∂O and a variable xk <lex xi,
thanks to Lemma 6.3.

Hence, the polynomials of Bt with head term of type x0x
σ must belong to

H. For the polynomials of Bt with head term of type x1x
σ, we can apply the

formula of Proposition 6.7 in which only polynomials of Bt with head term
divisible by x0 are involved. And so on.

Remark 6.12. In [37, Appendix], the analog of formula (6.4) for Gröbner
bases is called a FGLM-formula (see [20]) and its use for the computation of
the polynomials in a border basis is reported referring to a discussion with
Marie-Françoise Roy.

For every t higher than the initial degree of I and lower than or equal to
reg(J) + 1, we consider the matrix Mt constructed in the following way.

A first block of rows correspond to the terms of degree t that are multi-
plicative multiples of the terms in ∂Ot−1 and to the terms of degree t in PJ ,
in increasing order with respect to the degrevlex order. A second block of
rows correspond to the terms of N (J)t.

The columns of Mt are arranged in three blocks. The first block is made
by the vectors of the coefficients of the polynomials that are multiples of the
polynomials of Bt−1 by a multiplicative variable of the corresponding head
term and by the vectors of the coefficients of the polynomials ofHt, ordered so
that their head terms are in increasing degrevlex order (like the first block of
rows). The second block are the vectors of the coefficients of the polynomials
xibτ that fit the case (6.2). The third block of columns are the vectors of the
coefficients of the polynomials xibτ − xkbγ that fit the case (6.3).

It is noteworthy that, thanks to the features of quasi-stable ideals, the
columns in the first block have the coefficient 1 of the head term on pairwise
different rows, so that these coefficients will become the pivots of the first
block of columns in the completely reduced form of Mt and any division can
be avoided in the performance of the reduction.

Remark 6.13. If we denote by a := min{t : It ̸= 0} the initial degree of I,
the matrix Ma is made of the coefficients of the polynomials of degree a of
the PJ -marked basis of I only, which are independent by construction. For
this reason we do not need to consider Ma.

Remark 6.14. For every degree t, both the number of rows and the number
of columns of a matrix Mt are of order O((n+ 1)2 |N (J)t−2|).
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Example 6.15. Let us take the Artinian quasi-stable ideal J := (x2
1, x

2
0) ⊆

K[x0, x1] with x0 < x1. The following polynomials
h1 = x2

0 + d1x0x1,
h2 = x2

1 + d2x0x1,
h3 = x2

0x1

form a PJ -marked basis, for every choice of the value of the parameters d1, d2.
The multiples of the polynomials h1 and h2 by the multiplicative variables
of the respective head terms are:

x0h1 = x3
0 + d1x

2
0x1,

x0h2 = x0x
2
1 + d2x

2
0x1,

x1h2 = x3
1 + d2x0x

2
1

and the multiples of the polynomials h1 and h2 by the non-multiplicative
variables of the respective head terms are:

x1h1 = x2
0x1 + d1x0x

2
1.

Here is the matrix M3, where the first row gives labels to the columns by
the corresponding polynomials and the first column gives labels to the rows
by the corresponding terms. The second block of rows is empty because
N (J)3 = ∅. Also the third block of columns is empty.

x0h1 h3 x0h2 x1h2 x1h1


1 0 0 0 0 x3
0

d1 1 d2 0 1 x2
0x1

0 0 1 d2 d1 x0x2
1

0 0 0 1 0 x3
1

(6.5)

The following result follows by standard linear algebra.

Proposition 6.16. Let H be a PJ-marked basis, Mt the matrix constructed
above for a certain degree t and M ′

t the complete reduced matrix of Mt.
A polynomial hβ of degree t depends on H \ {hβ} if and only if there is

a non-null element in at least a crossing of one of the columns of M ′
t of the

second or third block and the row corresponding to the head term of hβ.

Corollary 6.17. Let J be an Artinian monomial ideal. The strict complete
intersection locus in MfJ(K) is an open subset CIJ of MfJ .

Proof. Let U ⊆ K[C] be the ideal defining the scheme MfJ and H ⊆ RK[C]

be the PJ -marked basis modulo U as decribed in Section 2. For every
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t ≤ reg(J), the polynomials in the corresponding ∂O-marked basis Bt can
be computed by H , like described in Corollary 6.11. Hence, the elements of
the matrices Mt are polynomials in the parameters C.

Let M ′
t be the completely reduced form of Mt, which can be obtained

without divisions, thanks to the shape of the matrix Mt. Thus, the open
subset CIJ of MfJ parametrizing the complete intersections is defined by
the non-vanishing of the elements corresponding to polynomials of H in the
second or third block of columns of M ′

t , in every combination and number
that is sufficient in order to have no more than c minimal generators for the
ideal generated by H , modulo U .

Corollary 6.18. The strict complete intersection locus in a Hilbert scheme
with a non-constant Hilbert polynomial is an open subset.

Proof. Thanks to Corollary 6.17, it is enough to argue analogously to the
proof of Corollary 5.5.

Example 6.19. We go back to Example 6.15 where we considered the Ar-
tinian quasi-stable ideal J := (x2

1, x
2
0) ⊆ K[x0, x1] with x0 < x1. The ideal J

is a complete intersection. Hence, the subscheme of MfJ(K) parameterizing
the complete intersections defined by a PJ -marked basis is non-empty. In
order to apply our strategy to compute such subscheme, we now continue to
study the matrix M3 already constructed in the previous example.

By a complete reduction process, starting from the matrix M3 as in (6.5)
we get: 

1 0 0 0 0
0 1 0 0 1− d1d2
0 0 1 0 d1
0 0 0 1 0


We highlight the second row, which corresponds to the head term of h3,
and the last column, which belongs to the second block of columns of M3.
We focus on the element 1 − d1d2. By Proposition 6.16, if this element is
non-null, then h3 depends on H \ {h3}. Hence, from the last column we
obtain x1h1 = (1− d1d2)h3 + d1x0h2 and so the syzygy [−x2, d1x1, 1− d1d2].
Thus h3 is dependent if and only if 1 − d1d2 ̸= 0, i.e. an ideal generated by
a PJ -marked basis of the given type is a complete intersection if and only if
(1−d1d2) ̸= 0. Note that in this case, being the codimension 2, the property
to be a complete intersection is equivalent to the property to be Gorenstein.
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Remark 6.20. In Examples 6.15 and 6.19 the matrix M3 does not have rows
corresponding to terms in N (J) because N (J)3 is empty.

However, to our aims we do not need the rows corresponding to terms of
N (J) because the non-null constants which we are interested in are elements
of other rows, in which the pivots appear, by construction and by Proposi-
tion 6.7. Hence, the second block of rows can be avoided in the construction
of the matrices Mt, for every t.

7. Construction of complete intersections inside a given ideal

In this section, we focus on the problem of constructing a complete inter-
section contained in a given polynomial ideal I, with the same height of I,
even if I is not a complete intersection. Indeed, every ideal I in a Noetherian
ring has a set of generators containing a complete intersection with the same
height of I, even if I is not a complete intersection.

A classical proof of this statement is in [35, Chapter VI, Proposition 3.5],
for example, but it does not give an efficient constructive method. The prob-
lem is that the knowledge of a primary decomposition is required. For this
reason, it is noteworthy that very recently an efficient method to recognize
complete intersections has been given in the paper [25].

In [18, Section 1] the authors gave a computational method to construct
a regular sequence in I of length equal to the codimension of I, for every
polynomial ideal I. However, this method requires a further step to check
that some suitable given polynomials are a regular sequence.

In [45, Proposition 5.1] the author shows that every Pommaret (Gröbner)
basis contains a complete intersection with the same height of the ideal that
the Pommaret basis generates, explicitly exhibiting the complete intersection
without the necessity of any computation. Indeed, the polynomials that gen-
erate the complete intersection are those in the Pommaret basis with initial
term equal to one of the powers of the variables contained in the Pommaret
basis of the initial ideal. Even in this case the properties of Gröbner bases
have a crucial role. Is there an analogous result for marked bases over a
quasi-stable ideal? The following example shows that an analogous result
does not hold for marked bases.

Example 7.1. Consider the quasi-stable ideal J = (x2
2, x

2
1) ⊆ K[x0, x1, x2]

with x0 < x1 < x2 and the PJ -marked basis H = {h1 := x2
2 − x2x1 − x2x0 +

x1x0, h2 := x2
1−x2x1, h3 := x2x

2
1− 2x2x1x0+2x1x

2
0}. We have (x2+x0)h2 =
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−x1h1 ∈ (h1), hence h2 is a zero-divisor on K[x0, x1, x2]/(h1) and so h1, h2

is not a regular sequence, although their head terms are powers of variables.
Note that H is not a Gröbner basis with respect to any term order because
x2x1 > x2

1 and the polynomial h2 is marked on the term x2
1. However, h1, h3

is a regular sequence because ((h1) : (h3)) = (h1) and the ideal generated by
H is not a complete intersection. Since it has codimension 2, it is also not
Gorenstein, indeed, thanks to a result of Serre (see [28] and the references
therein).

On the other hand, the different PJ -marked basis H′ = {h′
1 := x2

2 −
1/2x2x1−x2x0, h

′
2 := x2

1−1/2x2x1−x1x0, h
′
3 := x2x

2
1−2x2x1x0} satisfies the

expectation that h′
1, h

′
2 is a regular sequence. In this case the ideal generated

by H′ is a complete intersection and coincides with the ideal generated by
h′
1, h

′
2.

Example 7.2. We can also have the following situation. Given the quasi-
stable ideal J = (x2

3, x2x3, x
2
1x3, x

4
2) ⊆ K[x0, x1, x2x3] with x0 < · · · < x3,

consider the PJ -marked basis H = {h1 := x2
3, h2 := x2x3 + x2

2 + 2x1x2 +
x2
1, h3 := x2

1x3−x3
2−4x1x

2
2−5x2

1x2−2x3
1, h4 := x4

2+4x1x
3
2+6x2

1x
2
2+4x3

1x2+x4
1}.

The polynomials h1 and h4 give the expected regular sequence, but the ideal
generated byH is the complete intersection generated by the regular sequence
h1, h2.

Example 7.1 does not exclude that a marked basis contains a regular
sequence with the length equal to the codimension of the polynomial ideal I,
even when this regular sequence is not the expected one.

Hence, the following questions arise: Given a marked basis H, when does
H contain a regular sequence of length equal to the height of (H) and how
can we compute it? Is there a method to compute a regular sequence of
length equal to the height of (H) which is contained in (H)?

We will give a qualitative answer to the above questions in terms of
marked bases adapting [18, Theorem 1.3] to the setting of marked bases,
instead of Gröbner bases.

From now, let J ⊆ R = K[x0, . . . , xn] be a quasi-stable ideal of codi-
mension c and H = {h1, . . . , ht} be a PJ -marked basis. Let I be the ideal
generated by H.

Proposition 7.3. [18, Proposition 1.4] On an infinite field K, let F1, . . . ,Fc

be sets of polynomials in R such that, for every subset U ⊂ {1, . . . , c}, the
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set of polynomials ∪i∈UFi generates an ideal of codimension ≥ |U |. Then the
polynomials

f1 =
∑
f∈F1

r1,ff, . . . , fc =
∑
f∈Fc

rc,ff

generate an ideal of codimension c in R, for every values of ri,f varying in a
suitable non-empty Zariski open subset.

Theorem 7.4. There exists a non-empty subset K ⊆ H and a partition
K = K1 ∪ · · · ∪ Kc into non-empty subsets, such that the polynomials

f1 =
∑
f∈K1

r1,ff, . . . , fc =
∑
f∈Kc

rc,ff (7.1)

generate an ideal of codimension c in R for values of ri,f varying in a suitable
Zariski open subset.

Proof. Consider the subset F = {τ ∈ PJ : min(τ) ≥ n − c + 1} ⊆ PJ .
By construction F is the Pommaret basis of the quasi-stable ideal (F) ⊆ J .
Then, the set K := {h ∈ H : Ht(h) ∈ F} is a F -marked set and the codimen-
sion of the ideal generated by K is higher than or equal to the codimension
of the ideal generated by F thanks to Proposition 1.4(i). Observe that the
codimension of (F) is equal to c, by construction.

Following [45, Remark 5.2], let Fj := {τ ∈ PJ : min(τ) = xn−j+1} ⊂
(xn−j+1) and Kj := {h ∈ H : Ht(h) ∈ Fj}, for every j ∈ {1, . . . , c}.

Now, we have a partition F = F1 ∪ · · · ∪ Fc where the sets Fj satisfy the
hypothesis of Proposition 7.3. Indeed, for every subset U ⊂ {1, . . . , c}, the
set of terms ∪i∈UFi generates an ideal of codimension ≥ |U | thanks to the
fact that terms of types xαi

n−c+i belong to ∪i∈UFi, for every i ∈ U .
For every subset U ⊂ {1, . . . , c} consider the set of variables

XU := {xn−c+j : j ̸∈ U and j ≥ c}.

Then the image ∪i∈UFi in R/(XU) is the Pommaret basis of the ideal JU it
generates and the image of ∪i∈UKi is a marked set on this Pommaret basis.
Hence, thanks to Proposition 1.4, the codimension of the ideal (∪i∈UKi) is
higher than or equal to the codimension of (JU), that is |U | by construction
(see [16, Chapter 9, Section 1, Proposition 3] for an easy computation of the
codimension of a monomial ideal).

In conclusion, even the partition K = K1∪· · ·∪Kc satisfies the hypothesis
of Proposition 7.3 and the thesis is proved.
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Remark 7.5. It is clear that a PJ -marked basis H contains a complete in-
tersection of codimension c if Theorem 7.4 gives a regular sequence of type
(7.1) such that every coefficient in each polynomial fi is null, except one.

Remark 7.6. The partition K = K1 ∪ · · · ∪ Kc that has been constructed in
the proof of Theorem 7.4 satisfies the property that ∪i≤sKi is a marked set
which generates an ideal of codimension ≥ s, for every 1 ≤ s < c, and equal
to c if s = c.

In conclusion, together with the application of one of the already known
methods to check if a sequence of polynomials is a regular sequence, the
above results provide an algorithm to compute a regular sequence in I with
the same height of I, starting from a marked basis of I. This algorithm is
an adaptation to marked bases of an algorithm obtained for Gröbner bases
in the paper [18].

Although from the proof of [18, Proposition 1.4] it can be deduced that
a description of the non-empty Zariski open subset involved in Theorem 7.4
should need irreducible decomposition of varieties and thus is computation-
ally expensive, some examples can be worked out.

Example 7.7. Consider the quasi-stable ideal J = (x3
3, x2x

2
3, x

2
2x3, x1x

2
3,

x1x2x3, x0x
2
3, x

2
1x3, x0x2x3, x

4
2) ⊆ R[x0, . . . , x3] with x0 < · · · < x3 and the

ideal I generated by the following PJ - marked basis
H = {x3

3, x2x
2
3, x

2
2x3+x3

2+2x1x
2
2+x2

1x2, x1x
2
3, x1x2x3+x1x

2
2+2x2

1x2+x3
1,

x0x
2
3, x

2
1x3 − x3

2 − 4x1x
2
2 − 5x2

1x2 − 2x3
1, x0x2x3 + x0x

2
2 +2x0x1x2 + x0x

2
1,

x4
2 + 4x1x

3
2 + 6x2

1x
2
2 + 4x3

1x2 + x4
1}.

With the notation introduced in the proof of Theorem 7.4, we have:
K = {h1 = x3

3, h2 = x2x
2
3, h3 = x2

2x3 + x3
2 + 2x1x

2
2 + x2

1x2, h4 = x4
2 +

4x1x
3
2 + 6x2

1x
2
2 + 4x3

1x2 + x4
1}

K1 = {x3
3}, K2 = {x2x

2
3, x

2
2x3+x3

2+2x1x
2
2+x2

1x2, x
4
2+4x1x

3
2+6x2

1x
2
2+

4x3
1x2 + x4

1}.
Like we already observed in Remark 7.6, K = K1 ∪ K2 is a marked set on
the quasi-stable ideal J̄ = (x3

3, x2x
2
3, x

2
2x3, x

4
2), but it is not a marked basis.

Indeed, a reduced form of x3 · h3 by K is not 0, but x2
1x2x3 − 4x2

1x
2
2 − 2x3

1x2.
Moreover, we highlight that if a sequence of polynomials of I is a regular

sequence, then it is not necessarily characterized by the shape of the poly-
nomials given in (7.1). For example, h1 + h2, h4 is a regular sequence of I of
length equal to the codimension of I, but it does not have the shape of (7.1).
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Appendix A. Data for Example 5.7

The equations defining the marked scheme of J in Example 5.7 are the
following ones, where the di,js are the coefficients of the marked polynomials
of the set H listed in (5.3):

d1,1d2,1d4,1 + d1,1d2,2d5,1 − d1,1d2,3 − d1,3d6,1 + d1,2 − d4,1 = 0,

d1,3d2,1d3,1d4,1 + d1,3d2,2d3,1d5,1 − d1,2d3,1d4,1 − d1,2d3,2d5,1 + d1,3d2,3d3,1+

−d1,3d3,3d6,1 − d1,2d3,3 − d1,3d3,2 + d1,1 + d5,1 = 0,

−d2,1d2,3d3,1d4,1 − d2,2d2,3d3,1d5,1 + d2,2d3,1d4,1 + d2,2d3,2d5,1 + d2,3
2d3,1+

+d2,3d3,3d6,1 − d2,2d3,3 − d2,3d3,2 + d2,1 − d6,1 = 0.
(A.1)

The coefficient matrix of the system ΣH is the following one, where we are
omitting some zero rows:

d1,3 0 0 0
−d1,1d2,1 + 1 0 0 0
−d1,1d2,2 0 0 0

0
d2,1d4,1 + d2,2d5,1+
−d4,1d6,1 + d2,3

−d5,1d6,1 + 1 0

−d1,3d2,1d3,1 − d1,2d3,1 0 0 0
−d1,3d2,2d3,1 − d1,2d3,2 + 1 0 0 0

0 ∆7,2 ∆7,3 0


(A.2)

with
∆7,2 = −d2,1d3,1d

2
4,1 − d2,2d3,1d4,1d5,1 − d2,3d3,1d4,1 − d3,3d4,1d6,1 − d3,2d4,1 + 1,

∆7,3 = −d2,1d3,1d4,1d5,1−d2,2d3,1d
2
5,1−d2,3d3,1d5,1−d3,3d5,1d6,1+d3,1d4,1+d3,3.
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The matrix (A.2) of the system ΣH has the following five non-zero minors
of order 3:

(d1,1d2,1 − 1)
(
d22,1d3,1d

2
4,1d5,1 + 2d2,1d2,2d3,1d4,1d

2
5,1 + d22,2d3,1d

3
5,1+

2d2,1d2,3d3,1d4,1d5,1 + d2,1d3,3d4,1d5,1d6,1 + 2d2,2d2,3d3,1d
2
5,1 + d2,2d3,3d

2
5,1d6,1+

− 2d2,1d3,1d
2
4,1 − 2d2,2d3,1d4,1d5,1 + d22,3d3,1d5,1 + d2,3d3,3d5,1d6,1 + d3,1d

2
4,1d6,1+

d3,2d4,1d5,1d6,1 − d2,1d3,3d4,1 − d2,2d3,3d5,1 − 2d2,3d3,1d4,1 − d2,3d3,3 − d3,2d4,1+

−d5,1d6,1 + 1) ,

d1,1d2,2
(
d22,1d3,1d

2
4,1d5,1 + 2d2,1d2,2d3,1d4,1d

2
5,1 + d22,2d3,1d

3
5,1+

2d2,1d2,3d3,1d4,1d5,1 + d2,1d3,3d4,1d5,1d6,1 + 2d2,2d2,3d3,1d
2
5,1 + d2,2d3,3d

2
5,1d6,1+

− 2d2,1d3,1d
2
4,1 − 2d2,2d3,1d4,1d5,1 + d22,3d3,1d5,1 + d2,3d3,3d5,1d6,1 + d3,1d

2
4,1d6,1+

d3,2d4,1d5,1d6,1 − d2,1d3,3d4,1 − d2,2d3,3d5,1 − 2d2,3d3,1d4,1 − d2,3d3,3 − d3,2d4,1

−d5,1d6,1 + 1) ,

− d1,3
(
d22,1d3,1d

2
4,1d5,1 + 2d2,1d2,2d3,1d4,1d

2
5,1 + d22,2d3,1d

3
5,1 + 2d2,1d2,3d3,1d4,1d5,1+

+ d2,1d3,3d4,1d5,1d6,1 + 2d2,2d2,3d3,1d
2
5,1 + d2,2d3,3d

2
5,1d6,1 − 2d2,1d3,1d

2
4,1+

− 2d2,2d3,1d4,1d5,1 + d22,3d3,1d5,1 + d2,3d3,3d5,1d6,1 + d3,1d
2
4,1d6,1 + d3,2d4,1d5,1d6,1+

−d2,1d3,3d4,1 − d2,2d3,3d5,1 − 2d2,3d3,1d4,1 − d2,3d3,3 − d3,2d4,1 − d5,1d6,1 + 1) ,

− (d1,3d2,2d3,1 + d1,2d3,2 − 1)
(
d22,1d3,1d

2
4,1d5,1 + 2d2,1d2,2d3,1d4,1d

2
5,1+

d22,2d3,1d
3
5,1 ++2d2,1d2,3d3,1d4,1d5,1 + d2,1d3,3d4,1d5,1d6,1 + 2d2,2d2,3d3,1d

2
5,1+

d2,2d3,3d
2
5,1d6,1 − 2d2,1d3,1d

2
4,1 − 2d2,2d3,1d4,1d5,1 + d22,3d3,1d5,1 + d2,3d3,3d5,1d6,1+

d3,1d
2
4,1d6,1 + d3,2d4,1d5,1d6,1 − d2,1d3,3d4,1 − d2,2d3,3d5,1 − 2d2,3d3,1d4,1+

−d2,3d3,3 − d3,2d4,1 − d5,1d6,1 + 1) ,

− d3,1 (d1,3d2,1 + d1,2)
(
d22,1d3,1d

2
4,1d5,1 + 2d2,1d2,2d3,1d4,1d

2
5,1 + d22,2d3,1d

3
5,1+

+ 2d2,1d2,3d3,1d4,1d5,1 + d2,1d3,3d4,1d5,1d6,1 + 2d2,2d2,3d3,1d
2
5,1 + d2,2d3,3d

2
5,1d6,1+

− 2d2,1d3,1d
2
4,1 − 2d2,2d3,1d4,1d5,1 + d22,3d3,1d5,1 + d2,3d3,3d5,1d6,1 + d3,1d

2
4,1d6,1+

d3,2d4,1d5,1d6,1 − d2,1d3,3d4,1 − d2,2d3,3d5,1 − 2d2,3d3,1d4,1 − d2,3d3,3 − d3,2d4,1+

−d5,1d6,1 + 1) .

(A.3)
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