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Abstract. In this paper, following the approach by Dubé [6] and by applying the Hilbert series
method, we provide an efficient algorithm to compute the Macaulay constants of a monomial ideal
without computing any exact cone decomposition of the corresponding quotient ring. Then, based
on this construction and the method proposed by Mayr-Ritscher [18], a new upper bound for the
maximum degree of the elements of any reduced Gröbner basis of an ideal generated by a set
of homogeneous polynomials is given. The new bound depends on the Krull dimension and the
maximum degree of the generating set of the ideal. Finally, we show that the presented upper
bound is sharper than the bounds proposed by Dubé [6] and Mayr-Ritscher [18].

Mathematics Subject Classification (2010). 13P10.

Keywords. Polynomial ideals, Gröbner bases, Degree upper bounds, Hilbert series, Cone decom-
positions, Macaulay constants.

1. Introduction
Gröbner bases (as an efficient tool in working with polynomial ideals) together with the first algo-
rithm to compute them (known as Buchberger’s algorithm) were introduced in 1965, by Buchberger
in his PhD thesis, see [3, 4]. Due to the fact that these bases can be computed efficiently, they have
many applications in various domains, including mathematics, science, and engineering. For exam-
ple, some of these applications are in the ideal membership problem, computing the dimension of an
ideal, solving polynomial systems and so on. Presenting upper bounds for the degrees of the elements
of a reduced Gröbner basis is a challenging problem in the computer algebra community, because
finding an effective bound is applicable for predicting the practical feasibility of the computations as
well as for the complexity analysis of Gröbner bases computations, see [15].

Let us review some of the existing results in literature about degree upper bounds for Gröbner
bases. Let denote by R the polynomial ring K[x1, . . . , xn] where K is a field of characteristic zero
and by I ⊂ R an ideal generated by homogeneous polynomials of degree at most d. The first
doubly-exponential upper bounds for Gröbner bases were studied by Mayr, Meyer, Bayer, Möller,
Mora and Giusti, see [20, Chapter 38] for a comprehensive review of the subject. In 1982, Mayr
and Meyer [17] showed that the ideal membership problem has doubly exponential complexity. In
1984, Möller and Mora [19] established the degree upper bound (2d)(2n+2)n+1

for any Gröbner
basis of I. Then, Giusti [8] gave the upper bound (2d)2

n−2

for the degree of the reduced Gröbner
basis of I with respect to the degree reverse lexicographic ordering provided that I is in generic
position. In 1990, Dubé [6] by applying a constructive combinatorial argument proved the degree
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bound 2(d2/2+ d)2
n−2

. In 2013, Mayr and Ritscher [18] improved Dubé’s bound to the dimension-
dependent upper bound 2(1/2(dn−D + d))2

D−1

for every reduced Gröbner basis of I where D
stands for dim(I). Hashemi and Seiler [12] provided dimension and depth depending upper bounds
for the degrees of the elements of the reduced Gröbner basis of an ideal in generic position. Finally,
by giving a deeper analysis of the method due to Dubé, the authors improved (and correct) Dubé’s
bound to (d+ 1)2

n−2

, see [11].
One of the main ingredients in proving Dubé’s upper bound [6] is the construction of the

Macaulay constants of a given monomial ideal and then bounding this constants by using combi-
natorial arguments. This construction relies on an exact cone decomposition of the corresponding
quotient ring. In this paper, by using only the Hilbert series of a given monomial ideal, we describe
an effective method to calculate the Macaulay constants of the ideal without computing any exact
cone decomposition of the corresponding quotient ring. Then, by applying this construction and the
method proposed by Mayr-Ritscher [18] to bound the Macaulay constants, we give a new upper
bound for the maximum degree of the elements of any reduced Gröbner basis of an ideal generated
by a set of homogeneous polynomials (see Theorem 4.6). We conclude the paper by showing that
our new bound is sharper than the bounds proposed by Dubé [6] and Mayr-Ritscher [18].

The structure of the paper is as follows. Section 2 reviews the basic notations and terminologies
used throughout this paper. In Section 3, we describe our new method to compute the Macaulay
constants of a given monomial ideal by using only the Hilbert series of the ideal. Section 4 is devoted
to present our new degree upper bounds for Gröbner bases by applying the relations between the
Macaulay constants and Hilbert series developed in the previous section.

2. Preliminaries
In this section, we will briefly review some basic notations and background materials which are
used throughout the paper. Let R = K[X] be the polynomial ring over an infinite field K where
X = {x1, . . . , xn} is a an ordered set of variables. Furthermore, letM be the set of all monomials
in R (a monomial is a power product of the variables and is denoted by Xα with α ∈ Z≥0). We
consider a finite set F = {f1, . . . , fk} ⊂ R of homogeneous polynomials and the ideal I = 〈F 〉
generated by F . We denote the total degree of a polynomial f ∈ R by deg(f). The maximum
degree of the polynomials in F is denoted by d = deg(F ). The Krull dimension of the factor ring
R/I, denoted by D = dim(I), is the number of elements of any maximal set S ⊆ {X} such that
I ∩ K[S] = ∅. A total ordering onM is called a monomial ordering if,

1. for monomials Xα, Xβ , Xγ ∈M, Xα ≺ Xβ implies that XαXγ ≺ XβXγ .
2. for each monomial Xα ∈M it holds 1 ≺ Xα.

Let us fix a monomial ordering≺ onR. The leading monomial of a polynomial 0 6= f ∈ R, denoted
by LM(f), is the greatest monomial appearing in f with respect to ≺ and its coefficient is called
the leading coefficient of f , denoted by LC(f). The leading term of f is the product LT(f) =
LC(f)LM(f). For F ⊂ R, LM(F ) stands for {LM(f) | f ∈ F}. The leading monomial ideal of I
is the monomial ideal LM(I) = 〈LM(f) | 0 6= f ∈ I〉. A finite set G ⊂ I is called a Gröbner basis
for I with respect to ≺, if LM(I) = 〈LM(G)〉. The remainder of division f by Gröbner basis G
with respect to ≺, is denoted by NFG(f). For a Gröbner basis G, we let NI = {NFG(f) | f ∈ R}.
We refer to [5] for more details on the theory of Gröbner bases.

Let us recall definitions of Hilbert function, Hilbert polynomial, and Hilbert series of a ho-
mogeneous ideal. If f is an arbitrary polynomial in R, then f can be written as a finite sum of
homogeneous polynomials. These homogeneous polynomials are called the homogeneous compo-
nents of f . A subset S ⊂ R is called homogeneous if it is a K-vector space and for every f ∈ S,
each homogeneous component of f lies in S as well. Indeed, one sees that an ideal of R is homo-
geneous if it is a homogeneous set. Moreover, for an arbitrary ideal I ⊂ R, NI is a homogeneous
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set. For a homogeneous set S, the set of all homogeneous polynomials in S of degree i (includ-
ing zero for being a vector space) is denoted by Si. The Hilbert function of S at i is defined to
be HFS(i) = dimK(Si); the dimension of Si as a K-vector space. For a homogeneous ideal I,
Hilbert function HFI(i) (resp. HFNI (i)) from a certain value coincides with a unique polynomial
in i which is called the Hilbert polynomial of I (resp. NI) and is denoted by HPI (resp. HPNI ).
We have the equality dim(I) = deg(HPNI )+ 1, see [5, Theorem 12, page 494] and by Macaulay’s
theorem HFNI = HFNLT(I) , [5, Proposition 9, page 492]. Note that in the case that HPNI is
the zero polynomial, its degree is defined to be −1. The Hilbert series of S is the power series
HSS(t) =

∑∞
i=0 HFS(i)t

i. This series can be expressed as the quotient HSNI (t) = N(t)/(1− t)D
with a polynomial N ∈ Q[t] satisfying N(1) 6= 0 (see [7, Theorem 4.27, page 74]). In the next sec-
tion, we will provide a new representation of this series using the Macaulay constants. Recall that a
sequence of homogeneous polynomials f1, . . . , fk ∈ R is called regular if 〈f1, . . . , fk〉 6= R and fi
is a non-zero divisor on the ringR/〈f1, . . . , fi−1〉 for i = 2, . . . , k. It can be shown that the sequence
f1, . . . , fk is regular iff the Hilbert series of N〈f1,...,fk〉 is equal to

∏k
i=1(1− tdeg(fi))/(1− t)n (see

e.g. [14, Corollary 5.2.17, page 203]).
Let us now give a short review of Dubé’s method [6] and some results from [11, 18] which

entail degree upper bounds for Gröbner bases. For this, we first recall some basic definitions from
[6]. The notion indet(u) stands for the set of all variables appearing in the monomial u ∈M.

Definition 2.1. For a given set T ⊂ R, the sequence S1, . . . , St (possibly infinite) of subsets of
T is called a direct decomposition of T if every p ∈ T can be uniquely expressed of the form
p =

∑jr
i=j1

pi where pi ∈ Si and r ≤ t. This property is shown by T = S1 ⊕ S2 ⊕ · · · ⊕ St.

Example 2.2. As a simple example, the ideal I = 〈x1x2, x2x3〉 ⊂ K[x1, x2, x3] has a direct
decomposition x1x2 · K[x1, x2, x3]⊕ x2x3 · K[x2, x3].

Dubé in [6, Example 3] suggested the following construction to find a direct decomposition for
a given ideal: Let F = {f1, . . . , fk} be a homogeneous generating set for the ideal I ⊂ R. Then,
there exists the following decomposition for I:

I = 〈f1〉 ⊕
k⊕
i=2

fi ·N〈f1,...,fi−1〉:fi . (1)

Note that the decomposition R = I ⊕ NI is a direct decomposition for the whole ring R. For a
homogeneous polynomial h and the subset u ⊆ X , the set C(h, u) = {ah | a ∈ R and indet(a) ⊆
u} is called the cone generated by h and u.

Definition 2.3. Let h1, . . . , ht be a sequence of homogeneous polynomials in R, and u1, . . . , ut a
sequence of subsets of X . A finite set P = {C(h1, u1), . . . , C(ht, ut)} is a cone decomposition of
T ⊂ R if these cones form a direct decomposition for T .

For a cone decomposition P , the notion P+ signifies {C(h, u) ∈ P | u 6= ∅}. Furthermore,
we let denote by deg(P ) the maximum of deg(h) with C(h, u) ∈ P .

Definition 2.4. Let k be a non-negative integer and P a cone decomposition. Then, P is called
k-standard if the following conditions hold:

1. there is no cone C(h, u) ∈ P+ with deg(h) < k,
2. for each C(g, v) ∈ P+ and k ≤ d ≤ deg(g), there exists C(h, u) ∈ P+ with deg(h) = d and
|u| ≥ |v|.

By convention, if P+ is the empty set, then P is k-standard for all k.

Example 2.5. Let I = 〈x31, x1x2x3, x21x2〉 ⊂ K[x1, x2, x3]. Then C(1, {x2, x3})⊕C(x1, {x3})⊕
C(x1x2, {x2})⊕ C(x21, {x3}) is a 0-standard cone decomposition for NI .



4 Amir Hashemi, Hossein Parnian and Werner M. Seiler

Dubé [6] described the SPLIT algorithm to compute standard cone decompositions for a given
monomial ideal I as well as for NI .

Definition 2.6. A cone decomposition P is exact if it is k-standard for some k, and in addition for
each d, there exists at most one C(h, u) ∈ P+ with deg(h) = d.

For example, one observes that the 0-standard cone decomposition in Example 2.5 is not exact.
We shall notice that if I is a homogeneous ideal generated by homogeneous polynomials of degree
at most d then by [6, Lemma 5.1], I possesses a d-standard cone decomposition. Furthermore, for
any given d, NI has a d-standard cone decomposition. Dubé in [6, page 766] proposed the SHIFT
algorithm to convert any d-standard cone decomposition into a d-exact one.

Example 2.7. The decomposition C(1, {x2, x3})⊕C(x1, {x3})⊕C(x1x22, {x2})⊕C(x1x2, {})⊕
C(x21, {x3}) is a 0-exact cone decomposition for NI presented in Example 2.5.

Definition 2.8. The Macaulay constants of a d-exact cone decomposition P is defined to be:
bi = min{` ≥ d | ∀C(h, u) ∈ P ; |u| ≥ i =⇒ deg(h) < `}, i = 0, . . . , n+ 1.

We note as a simple observation that b0 ≥ b1 ≥ · · · ≥ bn+1 = d. In Example 2.7, the Macaulay
constants for NI are b0 = 4, b1 = 4, b2 = 1, b3 = 0 and b4 = 0. In [6, Lemma 7.1], it was proved
that the Macaulay constants b0, . . . , bn for S are uniquely determined provided that bn+1 is already
fixed. As an application of this theory, once we have found an exact cone decomposition and the
Macaulay constants of a homogeneous set then we are able to compute its Hilbert polynomial, see
below for more details.

Lemma 2.9 ([6, Lemma 6.1]). LetP be an exact cone decomposition, and b0, . . . , bn+1 the Macaulay
constants of P . Then for each i = 1, . . . , n and each number z with bi+1 ≤ z < bi, there is exactly
one cone C(h, u) ∈ P+ such that deg(h) = z and |u| = i.

Let P be an exact cone decomposition for a homogeneous set S and b0, . . . , bn+1 the Macaulay
constants of P . Based on Lemma 2.9, it is shown that (see [6, page 768]) the Hilbert polynomial of
S is equal to

HPS(z) =

(
z − bn+1 + n

n

)
− 1−

n∑
i=1

(
z − bi + i− 1

i

)
. (2)

As another application of introducing the Macaulay constants of NI (by fixing bn+1 = 0),
Dubé [6, Lemma 7.2] proved that b0 is an upper bound for the degree of polynomials in any reduced
Gröbner basis of I. Then, using the above construction of the Hilbert polynomial and applying the
decomposition (1), he found a new upper bound for the maximum degree of the elements of any
reduced Gröbner basis of an ideal.

Theorem 2.10 ([6, Theorem 8.2]). Let I ⊂ R be a homogeneous ideal that generated by a set
of homogeneous polynomials of degree at most d. Then, the degree of polynomials in any reduced
Gröbner basis for I is bounded above by 2(d2/2 + d)2

n−2

.

In 2013, by improving the Dubé construction, Mayr and Ritscher [18] presented a dimension-
depending degree upper bound for Gröbner bases. To review briefly their method, let us quickly
recall some well-known facts. Let I be generated by the homogeneous polynomials f1, . . . , fk ∈ R
with deg(f1) ≥ · · · ≥ deg(fk) and D = dim(I). One of the main topics discussed in [18] is to
embed a homogeneous regular sequence in I. For this end, they employed a result due to Schmid
[21, Lemma 2.2] (see also [18, Lemma 9]) according to which one is able to find a homogeneous
regular sequence g1, . . . , gn−D in I such that deg(gi) = deg(fi) for 1 ≤ i ≤ n − D. In the next
step, Mayr and Ritscher provided the following decomposition (see [18, Lemma 21])

I = 〈g1, . . . , gn−D〉 ⊕
k⊕
i=1

fi ·NJi−1:fi (3)
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where Ji = {g1, . . . , gn−D, f1, . . . , fi}. They applied this decomposition [18, Lemma 22] to show
that any 0-exact cone decomposition P of NI may be completed to a deg(f1)-exact cone decompo-
sitionQ ofNJ where J = 〈g1, . . . , gn−D〉 such that deg(P ) ≤ deg(Q). So, the Macaulay constant
a0 = deg(Q) + 1 of Q is an upper bound for the maximum degree of the polynomials in any re-
duced Gröbner basis of I. Based on this observation, they proved the next dimension-depending
upper bound.

Theorem 2.11 ([18, Theorem 33]). Let I ⊂ R be an ideal of dimension D generated by homoge-
neous polynomials f1, . . . , fk of degrees respectively d1 ≥ · · · ≥ dk. Then, the maximum degree of

the polynomials in any reduced Gröbner basis of I is bounded by 2
(1
2
(d1 · · · dn−D + d1)

)2D−1

.

By giving a deeper analysis of the method due to Dubé, we improved in [11] Dubé’s bound to
O(1)d2

n−2

. In addition, we pointed out and fixed a flaw in the proof of his main result [6, Lemma
8.1]. Below, we state the main result of [11].

Theorem 2.12 ([11, Theorem 4.7]). Let I ⊂ R be an ideal generated by a set of homogeneous
polynomials of degree at most d. Then, the maximum degree of the polynomials in any reduced
Gröbner basis of I is bounded above by (d + 1)2

n−2

if n > 2. If n = 1, 2, then the upper bound
becomes d, 2d, respectively.

3. Efficient computation of Macaulay constants
In this section, by studying the Hilbert polynomial and Hilbert series of a homogeneous set, we
describe an efficient algorithm to compute the Macaulay constants of the quotient of a monomial
ideal without computing any exact cone decomposition of the corresponding quotient ring.

Proposition 3.1. Let S be a homogeneous set,P an exact cone decomposition for S and b0, . . . , bn+1

the Macaulay constants of P . Then, the Hilbert series of S can be written as

HSS(t) =

∑n
i=1(1− t)n−i(tbi+1 + · · ·+ tbi−1) + (1− t)nB(t)

(1− t)n
(4)

for some B(t) ∈ Z[t].

Proof. From the assumption, it is clear that the Hilbert series of S (or equivalently the one of P ) is
equal to the sum of the Hilbert series of the cones in P , i.e.

HSS(t) =
∑

C(h,u)∈P

HSC(h,u)(t).

On the other hand, the Hilbert series of C(h, u) ∈ P is represented in terms of the quantities deg(h)
and dim(C(h, u)) := |u|. So, we can write

HSC(h,u)(t) =
tdeg(h)

(1− t)|u|
.

By applying Lemma 2.9, we can partition the set P into P =
⋃n
i=0Ai, where for 1 ≤ i ≤ n,

Ai = {C(h, u) ∈ P | bi+1 ≤ deg(h) < bi, |u| = i} and A0 = {C(h, u) ∈ P | |u| = 0}. Therefore,
the Hilbert series of S can be reformulated as follows

HSS(t) =

n∑
i=0

∑
C(h,u)∈Ai

HSC(h,u)(t). (5)
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In particular, we know that for each i = 1, . . . , n and degree z such that bi+1 ≤ z < bi, there is
exactly one cone C(h, u) ∈ P with deg(h) = z and |u| = i. Therefore, we get∑

C(h,u)∈Ai

HSC(h,u)(t) =
tbi+1 + · · ·+ tbi−1

(1− t)i
=

(1− t)n−i(tbi+1 + · · ·+ tbi−1)

(1− t)n
. (6)

For A0, we can write ∑
C(h,u)∈A0

HSC(h,u)(t) =
∑

C(h,u)∈A0

tdeg(h) =
(1− t)nB(t)

(1− t)n
(7)

where B(t) =
∑
C(h,u)∈A0

tdeg(h). By replacing the equalities (6) and (7) in (5), we obtain the
desired equality (4), ending the proof. �

Dubé in [6, Lemma 7.1] applied the Hilbert polynomial to prove the uniqueness of the Macaulay
constants. Below, we give an alternative proof of this fact by using Proposition 3.1.

Proposition 3.2. Let S be a homogeneous set and P a d-exact cone decomposition for S. If the
Macaulay constant bn+1 := d is fixed, then the Macaulay constants b0, . . . , bn+1 are unique.

Proof. Suppose that there is another exact cone decomposition P ′ for S such that a0, . . . , an+1 = d
are the Macaulay constants of P ′. We claim that b` = a` for 0 ≤ ` ≤ n. According to Proposition
3.1, the Hilbert series of S can be written of the forms

HSS(t) =

∑n
i=1(1− t)n−i(tbi+1 + · · ·+ tbi−1) + (1− t)nB1(t)

(1− t)n

=

∑n
i=1(1− t)n−i(tai+1 + · · ·+ tai−1) + (1− t)nB2(t)

(1− t)n
.

Thus, we have
n∑
i=1

(1− t)n−i(tbi+1 + · · ·+ tbi−1) + (1− t)nB1(t) = (8)

n∑
i=1

(1− t)n−i(tai+1 + · · ·+ tai−1) + (1− t)nB2(t).

The proof, to show that b` = a` for 1 ≤ ` ≤ n, proceeds by induction on `. We start with ` = n.
If in Equality (8), we put t = 1, then we get bn − bn+1 = an − an+1 and in consequence bn =
an. Now, assume that the claim is true for any i with ` < i ≤ n. We want to prove it for `. By
replacing the equalities bi = ai for ` + 1 ≤ i ≤ n in Equality (8) and by dividing both sides of
the new equality by (1− t)n−`, we obtain

∑`
i=1(1− t)`−i(tbi+1 + · · ·+ tbi−1) + (1− t)`B1(t) =∑`

i=1(1− t)`−i(tai+1 + · · ·+ tai−1) + (1− t)`B2(t). Again, if in the above equality, we put t = 1,
we get b` − b`+1 = a` − a`+1. By using induction hypothesis, it holds b` = a`. Now, it remains
to show that b0 = a0. If in Equality (8), we replace bi = ai for each i > 0 and simplify it, we
have B1(t) = B2(t). On the other hand, it follows from the proof of Proposition 3.1 that B1(t) =∑
C(h,u)∈A0

deg(h) and B2(t) =
∑
C(h,u)∈A′0

deg(h), where A0 = {C(h, u) ∈ P | |u| = 0} and
A′0 = {C(h, u) ∈ P ′ | |u| = 0}. Thus, from Definition 2.8, we have b0 = 1+max{b1−1,deg(B1)}
and a0 = 1 +max{a1 − 1,deg(B2)} and this shows b0 = a0, completing the proof. �

Based on this proposition, we are able to give the next definition.

Definition 3.3. Let S be a homogeneous set and b0, . . . , bn+1 a sequence of Macaulay constants of
S such that d := bn+1. Then b0, . . . , bn+1 are called the d-Macaulay constants of S.
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Using the fact that the Hilbert function of I is the same as that of LM(I), [1] (see also [9,
Algorithm 5.2.4]) described an effective method to compute the Hilbert series of NI using Gröbner
bases. On the other hand, If I is a homogeneous ideal, then HSI(t) = HSR(t)−HSNI (t), because
R = I ⊕ NI . In the following, based on Propositions 3.1 and 3.2, we present an algorithm to
compute the d-Macaulay constants of NI for a given d.

Algorithm 1 COMPUTINGMACAULAYCONSTANTS

1: Input: The Hilbert series HSNI (t) = Q(t)/(1− t)n for the homogeneous set NI ⊂ R and a
non-negative integer d

2: Output: The d-Macaulay constants of NI
3: bn+1 := d, bn := bn+1 +Q(1)
4: for i from n downto 2 do
5: P (t) := (Q(t)− (tbi+1 + · · ·+ tbi−1))/(1− t)
6: bi−1 := bi + P (1)
7: Q(t) := P (t)
8: end for
9: P (t) := (Q(t)− (tb2 + · · ·+ tb1−1))/(1− t)

10: b0 := 1 + max{b1 − 1,deg(P )}
11: return (b0, . . . , bn+1)

Theorem 3.4. The COMPUTINGMACAULAYCONSTANTS algorithm terminates in finitely many
steps and is correct.

Proof. The termination of the algorithm is ensured by the for-loop in the algorithm. To prove its
correctness, it follows from Proposition 3.1 that

Q(t) =

n∑
i=1

(1− t)n−i(tbi+1 + · · ·+ tbi−1) + (1− t)nB(t).

Therefore, Q(1) = bn − bn+1 and in turn bn = bn+1 +Q(1). On the other hand, one observes that
Q(t)− (tbn+1 + · · ·+ tbn−1) is divisible by (1− t) and we can write Q(t)− (tbn+1 + · · ·+ tbn−1) =
(1− t)P (t) with P (t) =

∑n−1
i=1 (1− t)n−i−1(tbi+1 + · · ·+ tbi−1) + (1− t)n−1B(t). Now, we have

P (1) = bn−1 − bn, and bn−1 = bn + P (1). By setting Q(t) := P (t) and repeating this process (in
the for-loop), we can compute bn−2, . . . , b1. Finally, for b0, from Definition 2.8, we know that b0 :=
1+max{b1−1,deg(B)}. At the end of the for-loop, we haveQ(t) = (tb2+· · ·+tb1−1)+(1−t)B(t).
Therefore, by setting P (t) := (Q(t) − (tb2 + · · · + tb1−1))/(1 − t), we have P (t) = B(t) and we
get the correct value for b0, as desired. �

Remark 3.5. We shall notice that the termination and correctness of this algorithm hold for any
homogeneous set which can be represented by an exact cone decomposition.

We illustrate the steps of this algorithm through a simple example.

Example 3.6. Let I = 〈x21, x1x2x3〉 ⊂ K[x1, x2, x3] and d = 2. The ideal I is a homogeneous set
and by using the function HILBERTSERIES of MAPLE, we have HSI(t) = −t2(t2 − t− 1)/(1− t)3.
Then, Q(t) = −t2(t2 − t − 1), b4 = 2, and b3 = b4 + Q(1) = 2 + 1 = 3. Next, we have
Q(t) − t2 = −t4 + t3 = (1 − t)t3 and in turn we obtain P (t) = t3 and Q(t) = t3. Furthermore,
we have b2 = b3 + Q(1) = 3 + 1 = 4. Since Q(t) − t3 = 0 then we set P (t) = 0, Q(t) = 0 and
b1 = b2 + Q(1) = 4 + 0 = 4. Finally, P (t) = 0 and b0 = 4. Note that we the degree of the zero
polynomial is defined to be −1.

Below, based on the next simple observation, we give more explicit formulas for the Hilbert
polynomial and Hilbert series of the quotient ring of an ideal in terms of its Macaulay constants.
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Lemma 3.7. Let I ⊂ R be an arbitrary ideal with D = dim(I). Further, let P be a d-exact cone
decomposition forNI and b0, . . . , bn+1 the Macaulay constants of P . Then for i = D+1, . . . , n+1
we have bi = d.

Proof. We know that if P an exact cone decomposition for NI , then D = dim(I) = max{|u| |
C(h, u) ∈ P}. Therefore according to the definition of the Macaulay constants, bi = d for i =
D + 1, . . . , n+ 1. �

Theorem 3.8. Let I ⊂ R be an arbitrary ideal with D = dim(I). Let P be a d-exact cone
decomposition for NI and b0, . . . , bn+1 the Macaulay constants of P . Then

1. HPNI (z) =
(
z−d+D
D

)
− 1−

∑D
i=1

(
z−bi+i−1

i

)
,

2. HSNI (t) =

∑D
i=1(1− t)D−i(tbi+1 + · · ·+ tbi−1) + (1− t)DB(t)

(1− t)D
where B(t) ∈ Z[t].

Proof. (1) By Lemma 3.7, we have bi = d for i = D + 1, . . . , n+ 1. By replacing these values in
Equality (2), we deduce that

HPNI (z) =

(
z − d+ n

n

)
− 1−

D∑
i=1

(
z − bi + i− 1

i

)
−

n∑
i=D+1

(
z − d+ i− 1

i

)

=

(
z − d+ n

n

)
−

n∑
i=D+1

(
z − d+ i− 1

i

)
− 1−

D∑
i=1

(
z − bi + i− 1

i

)
.

By using the combinatorial identity
(
n−1
t−1
)
=
(
n
t

)
−
(
n−1
t

)
, we have(

z − d+ n

n

)
−

n∑
i=D+1

(
z − d+ i− 1

i

)
=

(
z − d+D

D

)
.

and the Hilbert polynomial of NI can be formulated in the form

HPNI (z) =

(
z − d+D

D

)
− 1−

D∑
i=1

(
z − bi + i− 1

i

)
.

To prove (2), we can write
n∑
i=1

(1− t)n−i(tbi+1 + · · ·+ tbi−1) =

D∑
i=1

(1− t)n−i(tbi+1 + · · ·+ tbi−1)

+

n∑
i=D+1

(1− t)n−i(tbi+1 + · · ·+ tbi−1)

Since bD+1 = · · · = bn+1 = d, then P does not contain any cone C(h, u) with |u| = i and i > D.
Thus, it yields that

∑n
i=D+1(1− t)n−i(tbi+1 + · · ·+ tbi−1) = 0 and we conclude that

HSNI (t) =

∑D
i=1(1− t)n−i(tbi+1 + · · ·+ tbi−1) + (1− t)nB(t)

(1− t)n

=

∑D
i=1(1− t)D−i(tbi+1 + · · ·+ tbi−1) + (1− t)DB(t)

(1− t)D
.

�

We conclude this section by discussing two applications of this theorem. As a direct conse-
quence of this theorem, we prove first that the Macaulay constants of a regular sequence depend
only on the degree of elements of this sequence.
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Corollary 3.9. Let g1, . . . , gk and g′1, . . . , g
′
k be two regular sequences such that deg(gi) = deg(g′i)

for any i. Let J = 〈g1, . . . , gk〉 and J ′ = 〈g′1, . . . , g′k〉. Then, for any given d, the d-Macaulay con-
stants of NJ and of NJ ′ coincide. In particular, we can choose g′1 = x

deg(g1)
1 , . . . , g′k = x

deg(gk)
k .

Proof. We know that HSNJ (t) =
∏k
i=1(1 − tdeg(gi))/(1 − t)n and HSNJ′ (t) =

∏k
i=1(1 −

tdeg(g
′
i))/(1 − t)n. From the equality HSNJ = HSNJ′ and Proposition 3.2, it follows that the

sequence of the Macaulay constants of NJ and NJ ′ are equal. �

Finally, we give an alternative proof of the result about the dimension-depending upper bound
for the degree of a homogeneous ideal, see [2, Theorem 4.5]. Let us recall the definition of the degree
of an ideal.

Definition 3.10. [10, page 52] Let I ⊂ R be a homogeneous ideal with D = dim(I). If D > 0,
then the degree of I, denoted by deg(I), is (D − 1)! times the leading coefficient of the Hilbert
polynomial of NI . If D = 0, then deg(I) is defined to be the sum of the coefficients of HSNI (t).

As already mentioned, one of the main issues in the approach by Mayr and Ritscher [18]
is to embed a homogeneous regular sequence in a given homogeneous ideal. However, Lazard in
[16, Proposition 21] proved the next proposition which gives a stronger version of the result due to
Schmid [21, Lemma 2.2] (see also [18, Lemma 9]) and it can sharpen the bounds presented in [18].

Proposition 3.11. Let I ⊂ R be an ideal of dimension D generated by homogeneous polynomials
f1, . . . , fk of degrees d1, . . . , dk such that d2 ≥ · · · ≥ dk ≥ d1. Then, there is a regular sequence
g1, . . . , gn−D ∈ I such that deg(gi) = di.

In order to apply this proposition, from now on we consider the next assumption on the sorting
of the fi’s.

Notation 3.12. Let I ⊂ R be an ideal of dimension D generated by the homogeneous polynomials
f1, . . . , fk ∈ R of degrees d1, . . . , dk with d1 ≥ · · · ≥ dn−D−1 ≥ dn−D+1 ≥ · · · ≥ dk ≥ dn−D.

Under this assumption, we can conclude that there exists a regular sequence g1, . . . , gn−D ∈ I
of homogeneous polynomials of degrees d1 ≥ · · · ≥ dn−D.

Theorem 3.13 (Dimension-depending Bézout bound). With the above notations we have deg(I) ≤
d1 · · · dn−D.

Proof. From [13, page 173], we know that deg(I) = N(1) where HSNI (t) = N(t)/(1− t)D.
Let us consider the decomposition (3) for the ideal I. Then, it follows that HSI(t) = HSJ (t) +∑k
i=1 HSfi·NJi−1:fi

(t) where J = 〈g1, . . . , gn−D〉, Ji = {g1, . . . , gn−D, f1, . . . , fi}, and the
homogeneous polynomials g1, . . . , gn−D is a regular sequence lying in I with deg(gi) = di for
1 ≤ i ≤ n−D. By subtracting HSR(t) by both sides of this equality of Hilbert series, we get easily

HSNJ (t) = HSNI (t) +

k∑
i=1

HSfi·NJi−1:fi
(t). (9)

Now, by applying the algorithms SPLIT and SHIFT we can construct a 0-exact cone decomposition
Qi forNJi−1:fi for any i. It is easy to see that fi ·Qi is a di-exact cone decomposition of fi ·NJi−1:fi

for each i. On the other hand, due to the fact that J ⊂ Ji : fi, we have Di := dim(Ji : fi) ≤
dim(J ) = D for any i. Since J is generated by a regular sequence, HSNJ (t) =

∏n−D
i=1 (1 + · · ·+

tdi−1)/(1− t)D. It follows from Theorem 3.8 and the equality (9) that∏n−D
i=1 (1 + · · ·+ tdi−1)

(1− t)D
=

N(t)

(1− t)D
+

k∑
i=1

∑Di

j=1(1− t)Di−j(tbi,j+1 + · · ·+ tbi,j−1) + (1− t)DiBi(t)

(1− t)Di
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where bi,0, . . . , bi,Di
, bi,Di+1 = · · · = bi,n+1 are the Macaulay constants of fi ·NJi−1:fi for each i.

Since Di ≤ D, then D − Di ≥ 0 and by multiplying the numerator and denominator of the latter
fraction by (1− t)D−Di we obtain∏n−D

i=1 (1 + · · ·+ tdi−1)

(1− t)D
=

N(t)

(1− t)D
+

k∑
i=1

∑Di

j=1(1− t)D−j(tbi,j+1 + · · ·+ tbi,j−1) + (1− t)DBi(t)
(1− t)D

.

By multiplying both sides of this equality by (1− t)D, we have
n−D∏
i=1

(1 + · · ·+ tdi−1) = (10)

N(t) +

k∑
i=1

Di∑
j=1

(1− t)D−j(tbi,j+1 + · · ·+ tbi,j−1) + (1− t)DBi(t).

Now, for each i, two cases may arise: If Di = D, then the value of
∑Di

j=1(1− t)D−j(tbi,j+1 + · · ·+
tbi,j−1)+(1− t)DBi(t) at t = 1 is positive. Otherwise the value of

∑Di

j=1(1− t)D−j(tbi,j+1 + · · ·+
tbi,j−1) + (1− t)DBi(t) at t = 1 is zero. Hence, by evaluating both sides of Equality (10) at t = 1,
we get the desired inequality. �

Remark 3.14. With the notations of Theorem 3.13 and from the proof of this theorem, one sees that
in the case that f1 /∈ J (or equivalently there is some fi with fi /∈ J ) then D1 := dim(J : f1) =

dim(J ) and in consequence the value of
∑D1

j=1(1− t)D−j(tb1,j+1 + · · ·+ tb1,j−1)+ (1− t)DB1(t)

at t = 1 is positive. Thus, we have deg(I) < d1 · · · dn−D.

4. New upper bound for degree Gröbner bases
In this section, we use the results discussed in the previous section as well as the method presented
in [18] to give a new degree upper bound for Gröbner bases. Assume that I = 〈f1, . . . , fk〉 ⊂ R,
for each i, fi is a homogeneous polynomial of total degree di and D = dim(I) 6= n. In whole this
section, we follow the sorting on the fi’s presented in Notation 3.12. Note that in the case that the
generating set of I contains a linear polynomial f with the leading monomial xi, then to compute
a Gröbner basis for I, we can eliminate f from the generating set of I and xi from the variables
provided that for each j, we replace fj by its reduction with respect to f . Thus, without loss of
generality, we may assume that di ≥ 2 for each i and let d = max{d1, . . . , dk}. Also, let ≺ be a
monomial ordering onR.

The key idea of Dubé’s approach [6, Theorem 4.11] is that for any reduced Gröbner basis G of
I and for any given 0-standard cone decomposition P for NI we have deg(G) ≤ deg(P )+1 where
deg(G) denotes the maximum degree of the elements of G. Now, let a0, . . . , an+1 be the Macaulay
constants of P , then deg(G) ≤ a0. So, the main goal of [6] is to exploit combinatorial arguments to
find an upper bound for a0.

Now, let g1, . . . , gn−D ∈ I be a regular sequence of degrees d1, . . . , dn−D. As already dis-
cussed, we are sure about the existence of such a regular sequence. Let J = 〈g1, . . . , gn−D〉 ⊂ R
and b0, . . . , bn+1 be the Macaulay constants of NJ . Then, Mayr and Ritscher [18] proved that an
upper bound for max{b1, d1 + · · · + dn−D − n} remains a upper bound for the maximum degree
of the elements of any reduced Gröbner basis of I. In addition, they proved that, for this purpose,
instead of the ideal J , we can consider the simpler ideal L = 〈xd11 , . . . , x

dn−D

n−D 〉. However, we shall
note that, a drawback of their approach is that b0 has not been intervened in their bounds, see [18,
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Theorem 25] and its proof. By applying our investigation on Hilbert series in the previous section,
we are able to involve b0 and give an explicit formula for computing the bi’s. These allow us to
improve the Mayr and Ritscher upper bound. Let us start with the next lemma from [18].

Lemma 4.1 ([18, Lemma 22]). Keeping the above notations, any 0-standard cone decomposition P
of NI may be completed to a d-exact cone decomposition Q of NJ with deg(P ) ≤ deg(Q).

Proposition 4.2. With the above notations, let P is a 0-standard cone decomposition of NI . Then,
deg(P ) ≤ deg(S) where S is a d-exact cone decomposition of NL.

Proof. From Lemma 4.1, we can complete P into a d-exact cone decomposition Q of NJ with
deg(P ) ≤ deg(Q). On the other hand, from Corollary 3.9, it follows that the Macaulay constants of
Q and S are equal. Let b0, . . . , bn+1 be the common Macaulay constants of Q and S. Thus, we have
deg(S) = b0 − 1 = deg(Q) and in turn deg(P ) ≤ deg(S). �

Remark 4.3. If we compare Proposition 4.2 with [18, Theorem 25] then we see that our upper
bound for deg(P ) depends only on b0. Beside this, Mayr and Ritscher in the proof of [18, Theorem
25], are not able to show that the d-Macaulay constants of NJ and NL coincide completely.

Lemma 4.4. If b0, . . . , bn+1 are the d-Macaulay constants of NL and D > 0 then it holds b0 = b1.

Proof. Let us consider the following cone decomposition for NL

T = {C(h, u) | u = {xn−D+1, . . . , xn}, h = xα1
1 · · ·x

αn−D

n−D s.t. 0 ≤ αi < di}. (11)

It is easy to see that T is a 0-standard cone decomposition. Using [6, Lemma 3.1], for any d ∈ N
we can construct a d-standard cone decomposition Td for NL and according to the proof of this
lemma and using the assumption D > 0 we have deg(Td,0) < deg(Td) where Td,0 = {C(h, u) ∈
Td | u = ∅}. Furthermore, by applying the SHIFT algorithm [6, page 766], we can convert Td
into a d-exact cone decomposition Sd and by the structure of this algorithm deg(Sd,0) < deg(Sd)
where Sd,0 = {C(h, u) ∈ Sd | u = ∅}. Let d = bn+1. From the uniqueness property of Macaulay
constants (Proposition 3.2), we know that b0, . . . , bn+1 are the Macaulay constants of Sd and it
follows that b0 = b1. �

In the following, we present a recursive formula for calculating the d-Macaulay constants of
NL for a given d.

Theorem 4.5. Let b0, . . . , bn+1 be the d-Macaulay constants ofNL. Then b` = d for ` ≥ D+1 and

bD = d1 · · · dn−D + d (12)

bD−1 =
d1 · · · dn−D

2

(
d1 · · · dn−D + 2d+ n+ 1− (d1 + · · ·+ dn−D +D)

)
+ d

bD−k =

bD−k+1 +
(−1)k

k!

(
f (k)(1)−

D∑
i=D−k+1

[ (−1)D−ik!
(k −D + i)!

×
bi−1∑
j=bi+1

j!

(j − k +D − i)!
])

where k = 0, . . . , D − 1, f(t) =
∏n−D
i=1 (1 + · · ·+ tdi−1) and f (k)(t) is the k-th derivative of f .

Proof. Let P be a d-exact cone decomposition of NL. Since dim(L) = D, from Lemma 3.7 and
Theorem 3.8, we conclude that b` = d for D + 1 ≤ ` ≤ n+ 1 and in addition

HSNL(t) =

∑D
i=1(1− t)D−i(tbi+1 + · · ·+ tbi−1) + (1− t)DB(t)

(1− t)D
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for some polynomial B(t). Since xd11 , . . . , x
dn−D

n−D forms a regular sequence, we have HSNL(t) =∏n−D
i=1 (1 − tdi)/(1 − t)n =

∏n−D
i=1 (1 + · · · + tdi−1)/(1 − t)D. From the two latter equalities, it

results
n−D∏
i=1

(1 + · · ·+ tdi−1) =

D∑
i=1

(1− t)D−i(tbi+1 + · · ·+ tbi−1) + (1− t)DB(t). (13)

If in Equality (13), we put t = 1, then we get f(1) = d1 · · · dn−D = bD − d and in turn bD =
d1 · · · dn−D + d. For simplicity, we denote fi(t) = tbi+1 + · · · + tbi−1 and hi(t) = (1 − t)D−i.
To calculate bD−1, it is enough to take the derivative with respect to t of both sides of (13) and
to put t = 1. More precisely, some elementary calculus shows that the derivative of the left hand

side is f (1)(1) =
d1 · · · dn−D

2

(
d1 + · · · + dn−D − (n − D)

)
and the one of the other side is

f
(1)
D (1) + bD − bD−1. By replacing f (1)D (1) =

(bD − d)(bD + d− 1)

2
in this equality, we get

d1 · · · dn−D
2

(
d1 + · · ·+ dn−D − (n−D)

)
=

(bD − d)(bD + d− 1)

2
+ bD − bD−1. (14)

Replacing bD by d1 · · · dn−D + d in (14) and making some simplifications leads to

bD−1 =
d1 · · · dn−D

2

(
d1 · · · dn−D + 2d+ n+ 1− (d1 + · · ·+ dn−D +D)

)
+ d. (15)

Similarly, to calculate bD−k we shall proceed by taking k times derivative of both sides of (13),
i.e. f(t) =

∑D
i=1 hifi + (1 − t)DB(t) and putting t = 1 in it. Note that, in this computation,

(1− t)DB(t) can be ignored. Using elementary calculus, it is not hard to show that

f (k)(1) =

D∑
i=D−k

(hifi)
(k)(1)

(hifi)
(k)(1) =

k∑
j=0

(
k

j

)
h
(j)
i (1)f

(k−j)
i (1) =

(
k

D − i

)
h
(D−i)
i (1)f

(k−D+i)
i (1)

h
(D−i)
i (1) = (−1)D−i(D − i)! , f (k−D+i)

i (1) =

bi−1∑
j=bi+1

j!

(j − k +D − i)!
.

It is worth noting that to calculate (hifi)(k)(1), we use the well-known Leibniz formula and the fact
that if i 6= D − i then h(j)i (1) = 0. Therefore, we can write f (k)(1) as

=

D∑
i=D−k

[( k

D − i

)
(−1)D−i(D − i)!×

bi−1∑
j=bi+1

j!

(j − k +D − i)!
]

=

D∑
i=D−k+1

[ (−1)D−ik!
(k −D + i)!

×
bi−1∑
j=bi+1

j!

(j − k +D − i)!
]
+ (−1)kk!(bD−k − bD−k+1).

From this equality, we can find the value of bD−k as follows

bD−k+1 +
(−1)k

k!

(
f (k)(1)−

D∑
i=D−k+1

[ (−1)D−ik!
(k −D + i)!

×
bi−1∑
j=bi+1

j!

(j − k +D − i)!
])
.

�

We state now the main theorem of this paper.
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Theorem 4.6. Let I ⊂ R be an ideal generated by homogeneous polynomials f1, . . . , fk of de-
grees d1, . . . , dk (satisfying Notation 3.12) and D = dim(I). Then, the maximum degree of the
polynomials in any reduced Gröbner basis G of I is bounded by

2
(1
4
d1 · · · dn−D

(
d1 · · · dn−D + 2d1 + n+ 1− (d1 + · · ·+ dn−D +D)

)
+
d1
2

)2D−2

(16)

whenever D ≥ 2. In the case that D = 0, 1, the upper bound becomes d1 + · · · + dn − n + 1 and
d1 · · · dn−1 + d1, respectively.

Proof. Suppose that D ≥ 2. Let b0, . . . , bn+1 be the d1-Macaulay constants of NL with L =

〈xd11 , . . . , x
dn−D

n−D 〉. By Proposition 4.2, deg(G) ≤ b0. On the other hand, according to Theorem 4.4
b0 equals b1. To prove the desired bound we follow the approach due to Mayr and Ritscher in [18,
Lemma 31] by using the inequality bs−1 ≤ b2s/2. It was proved by proceeding an induction on
s = D, . . . , 2. However, unfortunately, they have not proved the base step of the induction, i.e.
bD−1 ≤ b2D/2. Note that to give the proof of this step, one needs the values of bD−1 and bD as given
in Theorem 4.5. Let us first complete the proof of this step. By applying Theorem 4.5 for d = d1
and Equality (14), we know that bD−1 = bD + (bD − d)(bD + d− 1)/2− d1 · · · dn−D

(
d1 + · · ·+

dn−D − (n−D)
)
/2. Thus, by replacing bD by d1 · · · dn−D + d in this expression (only where bD

has degree one), we can write

bD−1 =
b2D
2

+
−d2 + 2d

2
− d1 · · · dn−D

2

(
d1 + · · ·+ dn−D − (n−D + 1)

)
. (17)

Since d ≥ 2 then (−d2 + 2d)/2 ≤ 0. In addition, from di ≥ 2 for each i and n > D, it follows
that d1 + · · · + dn−D − (n − D + 1) ≥ 0 and in consequence bD−1 ≤ b2D/2, proving the base
step. Now, we can use the inequality bs−1 ≤ b2s/2 for 2 ≤ s ≤ D. Therefore, if D ≥ 2 then

bs ≤ 2
(
bD−1/2

)2D−s−1

for 1 ≤ s ≤ D − 1. From Theorem 4.4, we have

bD−1 =
1

2
d1 · · · dn−D

(
d1 · · · dn−D + 2d1 + n+ 1− (d1 + · · ·+ dn−D +D)

)
+ d1

and for D ≥ 2, we deduce that

deg(G) ≤ b0 = b1 ≤ 2
(1
4
d1 · · · dn−D

(
d1 · · · dn−D+2d1+n+1−(d1+· · ·+dn−D+D)

)
+
d1
2

)2D−2

.

Let us now discus the remaining cases D = 0, 1. If D = 1, then b1 = bD and deg(G) ≤ b0 = b1 =
bD = d1 · · · dn−1 + d1. For the case D = 0, any standard cone decomposition of NL is exact. So,
the set {C(h, {}) | h = xα1

1 · · ·xαn
n s.t. 0 ≤ αi < di} forms a d1-exact cone decomposition for

NL. From the definition of Macaulay constants, b0 is the maximum of d1 and one plus the maximum
degree of the cones in the above decomposition i.e. b0 = max{d1, (d1 − 1) + · · ·+ (dn − 1) + 1}.
From the fact that di ≥ 2, it yields that b0 = d1+· · ·+dn−n+1 and deg(G) ≤ d1+· · ·+dn−n+1,
completing the proof. �

Remark 4.7. To compare our new bound with the one presented in [18, Theorem 33], let us present

these bounds by 2(
1

4
A)2

D−2

and 2(
1

4
B)2

D−2

, respectively where A = d1 · · · dn−D
(
d1 · · · dn−D +

2d1 + n + 1 − (d1 + · · · + dn−D + D)
)
+ 2d1 and B = (d1 · · · dn−D + d1)

2. We claim that
B −A ≥ 2n−D(n−D − 1). Since n > D and di ≥ 2 for 1 ≤ i ≤ n−D, we can write

B −A = d21 − 2d1 + d1 · · · dn−D
(
d1 + · · ·+ dn−D − (n−D + 1)

)
≥ d1 · · · dn−D(n−D − 1) ≥ 2n−D(n−D − 1)

and this proves that our bound is sharper than the Mayr and Ritscher one. Since our bound depends
on the dimension of the ideal, then it is clear that our new bound is sharper than that of Dubé [6].
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Corollary 4.8. Let I ⊂ R be an ideal generated by a set of homogeneous polynomials of degree
at most d and dim(I) = D. Then, the maximum degree of the polynomials in any reduced Gröbner
basis of I is bounded by

2
(1
4

(
(dn−D + d)2 − d2 + 2d

))2D−2

if D ≥ 2. If D = 0, 1, then upper bound becomes nd− n+ 1 and dn−1 + d, respectively.

We end this section by extending Theorem 4.6 to non-necessary homogeneous ideals. It is
well-known that by considering a new variable xn+1, we can transform a given non-necessary ho-
mogeneous polynomial f into a homogeneous one, denoted by fh. Let I = 〈f1, . . . , fk〉 ⊂ R and
di = deg(fi) and dim(I) = D. We consider the sorting of the fi’s as presented in Notation 3.12.
Mayr and Ritscher applied [18, Lemma 35] to prove the upper bound

2
(1
2

(
(d1 · · · dn−D)2(n−D) + d1

))2D
for the degrees of the elements of any reduced Gröbner basis of I. In doing so, they exploited
the fact that the homogenization of I contains a homogeneous regular sequence of degree at most
(d1 · · · dn−D)2. The proof of [2, Theorem 4.19] entails that there are polynomials g1, . . . , gn−D ∈ I
such that gh1 , . . . , g

h
n−D is a regular sequence of degree at most d1 · · · dn−D. Based on this observa-

tion and Corollary 4.8, we can state the next theorem.

Theorem 4.9. Let I ⊂ R be an ideal generated by a set of non-necessary homogeneous polyno-
mials f1, . . . , fk of degrees d1, . . . , dk. Then the maximum degree of the polynomials in the reduced
Gröbner basis is bounded by

2
(1
4

(
(d

(n−D)2

1 + d1)
2 − d21 + 2d1

))2D−1

provided that D ≥ 1. If D = 0, then upper bound becomes (d1 · · · dn−1)n−1 + d1.
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[9] GREUEL, G.-M., AND PFISTER, G. A Singular introduction to commutative algebra. With contributions
by Olaf Bachmann, Christoph Lossen and Hans Schönemann. 2nd extended ed, 2nd extended ed. ed.
Berlin: Springer, 2007.

[10] HARTSHORNE, R. Algebraic geometry. Corr. 8rd printing, vol. 52. Springer, New York, NY, 1997.
[11] HASHEMI, A., PARNIAN, H., AND SEILER, W. M. Degree upper bounds for involutive bases. Mathe-

matics in Computer Science, to appear (2020).
[12] HASHEMI, A., AND SEILER, W. M. Dimension-dependent upper bounds for Gröbner bases. In Proceed-
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