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Conservation laws are of great theoretical and practical interest. We describe a novel approach to
machine learning conservation laws of finite-dimensional dynamical systems using trajectory data.
It is the first such approach based on kernel methods instead of neural networks which leads to
lower computational costs and requires a lower amount of training data. We propose the use of an
“indeterminate” form of kernel ridge regression where the labels still have to be found by additional
conditions. We use here a simple approach minimising the length of the coefficient vector to discover
a single conservation law.

I. INTRODUCTION

Conservation laws of dynamical systems are of great
theoretical and practical interest. In physics, many fun-
damental principles take the form of a conservation law
with the conservation of energy probably the most promi-
nent example. But also in biological and chemical mod-
els, conservation of mass and other conservation princi-
ples play a prominent role. On a more theoretical side,
knowledge of a conservation law almost always provides
important insight into a system. Practically, conserva-
tion laws may e.g. allow for a model reduction, if certain
degrees of freedom can be expressed through others and
thus be eliminated from the model equations.

Recently, there have been some efforts in discover-
ing conservation laws of dynamical systems via machine
learning, see e.g. [1–10] and references therein. In these
works, quite different characterizations of conservation
laws and quite different techniques from machine learn-
ing are used. Some approaches identify only a single
conservation law, others try to find all of them. Most
approaches are based on trajectory data, i. e. they do not
require knowledge of the dynamical system (1) itself —
they are “model-agnostic”, as the authors of [7] call it
—, but [5] uses explicitly the dynamical system and no
trajectory data. Common to all these works is the use of
neural networks as basic technology and that only well-
known textbook examples of conservation laws have been
“discovered”. A conservation law is usually also found as
a neural network approximating it. Most of the cited
works then try in a subsequent symbolic regression step
to obtain a closed-form expression for the conservation
law. Judging from the presented examples, this seems to
work pretty well for conservation laws which are essen-

tially rational functions, but difficulties arise when tran-
scendental functions with non-trivial arguments appear.

In this article, we present a novel approach to machine
learning conservation laws using kernel methods, more
precisely kernel ridge regression [11–13]. On the down-
side, this implies that we can only discover conservation
laws living in the Hilbert space defined by the used ker-
nel. Our basic tool is the inhomogeneous polynomial ker-
nel meaning that we search mainly for polynomial con-
servation laws, but we will discuss how this restriction
can be relaxed by extending the feature vector. On the
upside, kernel methods always provide us with explicit
closed-form expressions for the discovered conservation
laws so that no subsequent symbolic regression is neces-
sary. We furthermore believe that such an approach is
not only computationally much more efficient than neu-
ral networks, it also requires much less training data.
This point becomes important, if one is not working with
synthetic numerical data (as we will do throughout this
paper), but with experimental data.

The paper is organized as follows: In Section II, we
briefly recall the basic properties of conservation laws of
dynamical systems. Section III introduces our concept of
an indeterminate regression, the key component of our
method. We explain the process of discovering a sin-
gle polynomial conservation law, discuss its implementa-
tion and possible validation strategies, and finally present
some examples. In Section IV, we extend our analysis to
the discovery of several, functionally independent conser-
vation laws and non-polynomial conservation laws. Sec-
tion V addresses some complexity considerations of our
method and Section VI explores further applications of
our method, including its applicability to discrete dy-
namical systems and implicitization problems. Finally,
some conclusions are given.
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II. CONSERVATION LAWS

In this work, we will be dealing with (continuous) D-
dimensional dynamical systems of the form

ẋd = fd(x) d = 1, . . . , D (1)

where the vector field f on the right hand side is assumed
to be at least once continuously differentiable (most dy-
namical systems in applications are at least smooth if
not even analytic). We will usually assume that (1) is
explicitly given, but for our basic approach this is not
necessary, as it only requires knowledge of finitely many
points on finitely many trajectories.

A conservation law or a conserved quantity or a first
integral is by definition a function Φ: RD → R which is
constant along each trajectory of the system (1). Assum-
ing that Φ is also at least once continuously differentiable
and using the Lie or orbital derivative along the vector
field f , this is equivalent to Φ satisfying the linear partial
differential equation

f1(x)
∂Φ

∂x1
+ · · ·+ fD(x)

∂Φ

∂xD
= 0 . (2)

As we will be interested only in differentiable conserva-
tion laws, equation (2) provides a simple rigorous vali-
dation criterion for candidate functions Φ (if the vector
field f is explicitly given).
Many dynamical systems in physics stem from a varia-

tional principle and their conservation laws are related to
variational symmetries via Noether’s theorem [14] which
often allows their explicit construction with symmetry
methods. By contrast, most biological models are of
a more phenomenological nature without an underly-
ing variational principle and for them it is much harder
to find conservation laws. While linear ones can often
be easily constructed with linear algebra (see Remark 5
below), nonlinear ones are rarely known. In principle,
methods based on (adjoint) Lie symmetries allow to con-
struct them systematically [15], but for ordinary differ-
ential equations it is usually very hard, if not impossible,
to find their Lie symmetries.

A first consequence of the above definition is that any
constant function Φ defines a conservation law. Obvi-
ously, such conservation laws are not useful and they are
called trivial. In the sequel, we will only be concerned
with non-trivial ones. The definition of a conservation
law also implies that if the system (1) admits one, it au-
tomatically admits infinitely many. Indeed, if Φ1, . . . ,ΦL

are some conservation laws, then any function of the form
g(Φ1, . . . ,ΦL) for an arbitrary function g is a conserva-
tion law, too. If one speaks about finding “all” conser-
vation laws, one actually means finding a maximal set
of functionally independent conservation laws. Differen-
tiable functions Φ1, . . . ,ΦL are functionally independent,
if and only if their Jacobian ∂Φ/∂x has almost every-
where maximal rank meaning that the gradient vectors
∇xΦ1, . . . ,∇xΦL are almost everywhere linearly inde-
pendent. In physics, a Hamiltonian system of dimension

D = 2d admitting d functionally independent conserva-
tion laws is called completely integrable [16]. A dynamical
system (1) may possess up to D−1 functionally indepen-
dent conservation laws; if this is the case, each trajectory
is uniquely determined by the values of these laws. A
Hamiltonian system with more than d conservation laws
is often called superintegrable [17].
We will be mainly concerned with polynomial conser-

vation laws, i. e. we will search for conservation laws
in the polynomial ring P = R[x1, . . . , xD]. If now
Φ1, . . . ,ΦL ∈ P are some conservation laws of (1), then
theR-algebraA = R[Φ1, . . . ,ΦL] contains all polynomial
conservation laws that can be constructed out of them.
We note that both P and A are infinite-dimensional R-
linear spaces equipped with a natural filtration by the
polynomial degree. If we truncate at a given degree q,
i. e. consider only polynomials up to this degree, then we
obtain finite-dimensional R-linear spaces P≤q and A≤q.
This linear structure will allow us at certain places to
apply methods from linear algebra.

III. INDETERMINATE REGRESSION

Our approach is based on the literal definition of a con-
servation law: a function Φ which is conserved, i. e. con-
stant, along trajectories. Like most approaches presented
in the literature, we therefore use numerical trajectory
data and not the dynamical system (1) itself. Given
finitely many points on a trajectory, any conservation
law Φ must evaluate to the same value at all these points.
As several trajectories may lie on the same level set of
Φ, we cannot assume that at points on different trajecto-
ries Φ must evaluate to different values. We consider this
situation as an indeterminate regression problem, i. e. a
regression problem where the labels are unknown at the
beginning and must be determined later by additional
conditions. For the core procedure – discussed in this
section – we need only the trajectory data. For certain
extensions or improvements – mainly discussed in the
next section – we also need the vector field f , i. e. an
explicit model of the dynamical system.

A. Discovering One Polynomial Conservation Law

We assume that we are given N points xm,n ∈ RD on
each of M trajectories Tm of the dynamical system (1).
One could easily work with a different number of points
on each trajectory. However, to avoid a bias in the re-
gression, we prefer to take always the same number of
points. Thus our indices always satisfy m ∈ {1, . . . ,M}
and n ∈ {1, . . . , N} and we have a total of MN data
points. In addition, we introduce M yet undetermined
labels ym and our regression problem consists of finding
a function Φ such that Φ(xm,n) = ym + ϵm,n with error
terms ϵm,n which are minimal in a suitable sense. Note
that the target value for Φ(xm,n) does not depend on n.
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This fact encodes that we search for functions which are
constant along trajectories and hence that the number
of labels is much smaller than the total number of data
points; it also leads to a much smaller search space. Ha
and Jeong [3] speak here of grouped data.
We use kernel ridge regression. Let K : RD ×RD → R

be the chosen kernel. We will throughout work with
the polynomial kernel Kc,q(x,x

′) = (x · x′ + c)q pa-
rameterised by a non-negative real number c ≥ 0 (set
in all our experiments to c = 1) and a degree q ∈ N,
although in principle any kernel would work. If K is
the corresponding kernel matrix of dimension MN de-
fined by Kmn,m̄n̄ = K(xm,n,xm̄,n̄), then the coefficients
of the unique solution of the regression problem can be
expressed in closed form as

α =
(
K + λ1MN

)−1
Y (3)

where 1MN denotes the MN -dimensional identity ma-
trix, λ the regularization parameter of the ridge regres-
sion and Y the label vector. Because of our grouped
data, the MN -dimensional label vector Y can be writ-
ten as the Kronecker product of an N -dimensional vector
1N consisting only of ones and an M -dimensional trajec-
tory label vector y: Y = 1N ⊗y. Here and in the sequel,
double indices m,n are always sorted first by the value
of m and then by the value of n. In other words, we
consider first all points on the first trajectory, then all
points on the second trajectory and so on. The solution
itself is given by the linear combination

Φ(x) =

M∑
m=1

N∑
n=1

αm,nφm,n(x) . (4)

of the base functions φm,n(x) = Kc,q(x,xm,n) spanning
an at most MN -dimensional subspace of the Hilbert
space defined by the kernel.

Because of the used of grouped data, the solution actu-
ally lies in a much smaller subspace. Consider the “com-
pressed” matrix K̂ ∈ RMN×M defined by

K̂ =
(
K + λ1MN

)−1 · (1M ⊗ 1N ) . (5)

Its first column is the sum of the first N columns of(
K + λ1MN

)−1
, its second column the sum of the next

N columns of this matrix and so on. It allows us to ex-
press the coefficients α directly through the trajectory
label vector y, namely α = K̂y. Defining M new base
functions κ(x) = K̂Tφ(x), we can finally write the solu-
tion (4) in a form emphasising the linear dependency on
the yet unknown trajectory labels y:

Φ(x) =

M∑
m=1

ymκm(x) . (6)

It also shows that – because of the grouped data – our
search space is not the whole space spanned by the base
functions φm,n(x), but only the at most M -dimensional

subspace spanned by the functions κm(x). Note, how-
ever, that while the base functions φm,n(x) are com-
pletely determined by the data, the functions κm(x) also
depend on the regularization parameter λ.
In a classical regression, the label vector Y is part of

the given data and the problem consists of finding a func-
tion Φ of the form (4) that fits the data as good as pos-
sible. In our indeterminate regression, the problem con-
sists of finding trajectory labels y such that (6) defines a
function Φ that is as constant as possible along the trajec-
tories. We propose the following solution: choose y such
that the coefficient vector α = K̂y has a minimal L2

norm. If we introduce the matrix A = K̂T K̂ ∈ RM×M ,
then this requirement is equivalent to minimizing

F (y) = yTAy . (7)

Since any kernel matrix K is symmetric and positive def-
inite, A is a symmetric and positive definite matrix, too.
Thus the function F possesses a unique global minimum
at y = 0. Since the zero function is a trivial conservation
law, it is of no use of us and we must avoid this solution.
To achieve this, we impose a linear constraint of the form

aTy = 1 (8)

with an arbitrary nonzero vector a ∈ RM . This side
condition can be satisfied by any conservation law Φ(x)
after a shift by a constant. Indeed, assume that Φ leads
to trajectory labels ȳ satisfying aT ȳ = c for some real
number c ̸= 1. Then the shifted conservation law Φ̃(x) =

Φ(x) + C with C = (1 − c)/
∑M

i=1 ai leads to trajectory
labels satisfying (8).
Thus for determining the trajectory labels y, we must

solve a quadratic program in M variables with a single
linear constraint:

min
y∈RM

yTAy

subject to aTy = 1 .
(9)

Such a quadratic program represents a classical problem
in optimization for which many numerical solution meth-
ods are available. In fact, it is not difficult to solve (9)
in closed form. A simple calculation yields its unique
solution to be

y =
A−1a

aTA−1a
(10)

which is obviously non-trivial for any vector a ̸= 0. But
in practise, it is more efficient and stable to use a numer-
ical method.
This approach emerges naturally from the general phi-

losophy of a ridge regression. Its loss function consists
of two terms – the root mean squared error and the L2

regularization – with the hyperparameter λ scaling the
relative strength of the regularization. For λ = 0, one
obtains the classical least squares solution which is of-
ten numerically unstable and prone to overfitting. In the
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limit λ → ∞, the solution α tends towards 0 severly
underfitting most functions. Comparing with Gaussian
process regression, the expression of the mean prediction
of a Gaussian model is identical to the prediction of a
ridge regression model with identical kernel function and
hyperparameters, if λ is identified as the (expected) vari-
ance of the noise of the training data labels. Therefore, λ
should be vanishingly small for virtually noise-free data.
In our results, this is always the case.

We avoid underfitting y by cross-validation and our
acceptance criteria (see below), which mandate a small
error on the validation sets. Large values of λ would
yield more significant errors on the validation set due
to overfitting. It is important to note that, while the
trajectory labels y are chosen solely from the L2 norm
of the model coefficients α, the prediction accuracy on
the validation set is used to choose which λ alongside its
specific trajectory labels y is chosen.

If the kernel model is unable to model the data ade-
quately, e. g. for a kernel function with compact support
which does not match the data distribution, the model
coefficients α become large, requiring strong regularisa-
tion. In the limit of the kernel function being so wide
that it is almost constant over the feature space of a
given data set, K has almost the same value in all en-
tries, such that all predictions approach 0, and the model
coefficients can only be reduced with strong regularisa-
tion. If the kernel function is too narrow such that almost
none of the data points in feature space interact (and,
consequently, almost all predictions are 0), K is approx-
imately the identity matrix, so α ≈ (1 + λ)−1Y ≈ Y.
This case again yields a large L2 norm of the model’s co-
efficient vector α. The coefficient vector of a model that
avoids both limit cases and is able to model the data
with predictive power thus has a smaller L2 norm. Since
the acceptance criterion for a conservation law tests for
predictive power on the validation sets, we only consider
models that can learn the trajectory data and, therefore,
have a coefficient vector α with a low L2 norm.

B. Practical Realization

Since we are working with grouped data, one has to
choose two parameters for determining the size of used
data set: the number M of trajectories and the num-
ber N of points on each trajectory. The total number
of points is thus MN . As generically each trajectory
provides information about a further level set of the con-
served quantity, we generally prefer larger values of M
and smaller values of N , but in most examples no big
difference is noticable. For a reasonable sampling of the
phase space, one should take M ≥ D with D the phase
space dimension. Furthermore, the parameters M and N
are chosen such that both the hold-out and the training
sets in a stratified five-fold cross-validation can be filled
with the same number of points (thus we typically choose
values such that MN is a multiple of 25).

If the vector field f is explicitly known and synthetic
numerical data are used, as we will do throughout this
paper, then the points on each trajectory should be about
equally spaced to avoid a sampling bias. This is achieved
by not integrating the system (1) in the given form, but
normalising f first. Thus we use as right hand side the
field f/∥f∥. This modification does not change the tra-
jectories, but only their time parametrization. If we now
take on each trajectory points at times separated by a
fixed time interval ∆t, they are automatically equally
spaced with respect to the arc length. The initial points
for the different trajectories are randomly picked inside
a rectangular cuboid and we integrate from each initial
point both forward and backward.

Once the data have been produced, the regularization
parameter λ and the trajectory labels y must be deter-
mined. Although they play very different roles – λ is the
hyperparameter of the kernel ridge regression and y rep-
resents the solution –, we compute them simultaneously.
For λ we use a grid search (first on a logarithmic grid for
getting the right order of magnitude and then on a linear
grid for refinement) and for y a 5-fold cross-validation.
We first put aside as hold-out set a stratified random
sample of 20% of the generated data points; stratified
means here that we randomly chose on each trajectory
20% of the points on it.

The remaining 80% of the data points are randomly
divided in five disjoint subsets which are again stratified,
i. e. each set contains the same number of points from
each trajectory. This yields five different splits where al-
ways four of the subsets are used as training set and the
remaining subset as test set. For each value of λ on our
grid, we determine the optimal trajectory labels yλ by
the condition that the mean value of the L2 norms of the
five coefficient vectors α

(i)
λ obtained for the five different

training sets is minimal. Since this choice is identical to
the loss function for the individual regressions, there is

no trade-off between λ and α
(i)
λ . For the actual computa-

tions, we first determine for each split and for the consid-

ered value of λ the matrix A
(i)
λ =

(
K̂

(i)
λ

)T
K̂

(i)
λ and then

solve the quadratic program (9) for A = 1
5

∑5
i=1 A

(i)
λ .

Each vector α
(i)
λ determines a function Φ

(i)
λ which we

evaluate on the test points of the ith split. The result
for each point is compared with the entry of the trajec-
tory label vector yλ corresponding to the trajectory on
which the test point lies. We then compute the root mean
squared error over all test points of all splits and choose
that value for λ which yields the minimal error (together
with the corresponding label vector yλ).

For the chosen values of λ and yλ, we determine the
final coefficient vector αλ using all data points outside
the hold-out set which then defines our final candidate
conservation law Φλ. The function Φλ is then evaluated
at all points in the hold-out set and the results are again
compared with the labels for the corresponding trajecto-
ries. We call the root mean squared error over all these
tests ϵgen and consider it as a measure for the general-
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FIG. 1: Flowchart of the indeterminate regression.

ization error of our final model. Figure 1 depicts the
complete procedure.

Entering the obtained trajectory labels y into (6)
yields a candidate conservation law Φ. Since we use
the polynomial kernel Kc,q, this candidate is a polyno-
mial written as a linear combination of the base func-
tions κm(x). As they are dense polynomials and not
convenient for a human reader, we explicitly rewrite Φ
as a distributed polynomial

Φ(x) =
∑

0≤|µ|≤q

aµx
µ (11)

where µ = (µ1, . . . , µD) denotes an exponent vector and
the aµ are numerical coefficients determined from y. To
normalize, we divide all aµ by the one with the largest
absolute value, but continue to call them aµ. In all our
examples, the results will be presented in this form.

Typically, most of the obtained coefficients aµ are close
to zero. As the largest coefficient is 1 after the normal-
ization, we consider all coefficients with an absolute value
several orders of magnitude smaller as numerical artifacts
and set them exactly zero. In our experience, a reason-
able threshold is often 10−5 or 10−6. As a “beautifica-
tion”, one may also think about rounding all coefficients
to the corresponding number of digits, as this often helps
to make coefficients exactly equal which differ only by a
very small amount. But we will present here in the next

section a more rigorous alternative.

C. Validation and Refinement

The above outlined procedure will always produce
some candidate function Φ, but this function does not
necessarily define a conservation law. In fact, the studied
dynamical system (1) might not possess any conservation
law at all – at least not within the Hilbert space defined
by the used kernel. Thus we need a validation procedure
for accepting or rejecting a candidate.
There are two fairly immediate possibilities for a purely

numerical validation. One verifies directly whether Φ is
constant along some trajectories which can be done in-
dependently of the dynamical system (1) or one uses the
equivalent characterization of conservation laws via the
partial differential equation (2) which, however, requires
explicit knowledge of the vector field f .
In the first approach, we need some grouped data not

used for the indeterminate regression. One could e. g.
take the data in the hold-out set or compute some points
on new random trajectories, if this is possible. We denote
these test data points by x′

m,n with m = 1, . . . ,M ′ and
n = 1, . . . , N ′. We then compute for each trajectory the
mean value Φ̄m of the candidate Φ evaluated at the data
points on this trajectory, i. e.

Φ̄m =
1

N ′

N ′∑
n=1

Φ(x′
m,n) (12)

and then consider the root mean squared relative devia-
tion of Φ from these mean values

∆1(Φ) =

√√√√ 1

M ′N ′

M ′∑
m=1

N ′∑
n=1

(
Φ(x′

m,n)− Φ̄m

)2
Φ̄2

m

(13)

We accept Φ as a conservation law, if ∆1(Φ) < ϵ1 for a
user determined validation threshold ϵ1 > 0.
Kernel methods provide us automatically with a can-

didate Φ in a symbolic form without any need for a sym-
bolic regression. Furthermore, it is easy to compute its
derivatives ∂Φ/∂x. Thus, assuming that the vector field f
is explicitly known, a direct symbolic validation via the
partial differential equation (2) seems possible. However,
as the coefficients in the representation (11) have been
determined numerically, we cannot expect that (2) is sat-
isfied exactly. Thus we resort instead again to a purely
numerical approach.
This time, there is no need to use grouped data. We

choose a random cloud of points x′
j ∈ RD with j =

1, . . . , J reasonably sampling some open subset of RD;
this is almost guaranteed, if we take J = 5D or J = 10D.
Then we evaluate the left hand side of (2) at all points x′

j

and consider the root mean squared error

∆2(Φ) =

√√√√ 1

J

J∑
j=1

( D∑
d=1

fd(x′
j)

∂Φ

∂xd
(x′

j)

)2

. (14)
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We accept Φ as a conservation law, if ∆2(Φ) < ϵ2 for
some prescribed threshold ϵ2.

From a mathematical point of view, these two ap-
proaches are equivalent and in experiments one indeed
observes a close correlation between the two computed
errors. ∆1(Φ) is easier to compute and as a relative vari-
ation easier to interpret which in turn makes it easier to
choose the threshold ϵ1. On the other hand, the fact that
the second approach uses a random cloud of points inde-
pendent of the given data is an important advantage, if
data is difficult or expensive to obtain. As this was no is-
sue in our examples, we always provide ∆1(Φ) computed
via the hold-out set.

If the vector field f is explicitly known, one can use
the symbolic evaluation of the partial differential equa-
tion (2) for a refinement of candidates having passed the
numerical validation. Our starting point is the represen-
tation (11) of Φ as an expanded polynomial – after all
very small coefficients have been set to zero. Let

Φ(x, δ) =
∑

0≤|µ|≤q
aµ ̸=0

(aµ + δµ)x
µ (15)

be a perturbed form of this representation with yet un-
determined perturbations δµ. As typically many coeffi-
cients aµ in (11) will be very small, we can expect that
the number of these perturbations will be much smaller
than the dimension nD,q =

(
D+q
q

)
of the vector space of

polynomials of degree at most q in D variables.

We assume now furthermore that our vector field f is
polynomial, too, with entries of degree at most qf . Enter-
ing (15) into the left hand side of the partial differential
equation (2) and expanding, we obtain a polynomial

D∑
d=1

fd(x)
∂Φ(x, δ)

∂xd
=

∑
0≤|ν|<q+qf

bν(δ)x
ν (16)

where the coefficients bν(δ) depend linearly on the per-
turbations δµ, since (15) is linear in them and (2) is a
linear differential equation. Any perturbation δ with
∆2

(
Φ(x, δ)

)
< ϵ2 is consistent with the used data (obvi-

ously, here using ∆2 is more natural than taking ∆1).

We compute the least-squares solution δ∗ of the linear
system bν(δ) = 0 for 0 ≤ |ν| < q + qf . Note that de-
spite its outer appearance this is an inhomogeneous lin-
ear system, as the coefficients bν(δ) usually contain con-
stant terms. Generally, we can expect this system to be
overdetermined, as the number of coefficients bν is larger
than the number of perturbations δµ for qf > 1 (i. e.
for a nonlinear dynamical system). However, depending
on the exact form of f and Φ, it may happen in excep-
tional cases that the system is underdetermined. Then
the least-squares solution is not unique and it is natural
to take the unique one of minimal norm. After possibly
rounding coefficients to a prescribed number of digits,
our final conservation law is then given by Φ(x, δ∗).

D. Examples

Most dynamical systems appearing in physics or biol-
ogy depend on parameters and these also show up in their
conservation laws. We will therefore always consider the
parameters as further state space variables with trivial
dynamics. Obviously, this approach increases the dimen-
sion D of the dynamical system – in biological systems
often significantly. Furthermore, one generally has now
to work with a kernel of higher degree q to accommodate
for the dependency on the parameters.

Example 1. A classical textbook example of a physi-
cal system with a conservation law is the Hénon-Heiles
system from astronomy:

q̇1 = p1 , q̇2 = p2 ,

ṗ1 = −q1 − 2q1q2 , ṗ2 = −q2 − q21 + q22 .
(17)

It is a Hamiltonian system and thus has as a conserved
quantity the total energy given by

E =
1

2
(p21 + p22 + q21 + q22) + q21q2 −

1

3
q32 . (18)

The trajectories are rather different for different values of
E. For E < 1/6, all trajectories are bounded and regular;
for E > 1/6 most trajectories show a chaotic behaviour.

FIG. 2: Correlation coefficients for the coefficients of
the Hénon-Heiles conservation law. Left: 200 data

points. Right: 250 data points.

We conducted some experiments on the Hénon-Heiles
system using different initial data sets, some composed
entirely of points on chaotic trajectories and some using
only points on regular trajectories. We were particu-
larly interested in estimating how many data points are
necessary to discover the conservation law using a cu-
bic polynomial kernel. It turned out that with 200 data
points no correct polynomial was learned, whereas with
250 data points good results were achieved (see Figure 2).
This number should be contrasted with the dimension
n4,3 = 21 of the space of polynomials of degree 3 in four
variables: we needed roughly ten times as many data
points as the number of coefficients to be determined. A
further increase of the number of data points did not lead
to notable improvements in the validation.
More precisely, the indeterminate regression returned

for the data condition (M,N) = (5, 50) and regular tra-
jectories the following approximate conservation law (co-
efficients rounded to six digits) Φ = q21q2 + 0.501708q21 −
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0.336153q32+0.501918q22+0.501854p21+0.501817p22 with a
generalization error of ϵgen = 1.9× 10−7 and a validation
error of ∆1(Φ) = 1.5 × 10−7. Our refinement procedure
produced here the exact expression for the energy, thus
eliminating all numerical errors in the coefficients.

While the basic results were very similar for data sets
consisting of regular or chaotic trajectories, respectively,
one could see some small differences in a closer analysis.
Under the same data condition as above, chaotic tra-
jectories yielded Φ = q21q2 + 0.500001q21 − 0.333334q32 +
0.500001q22+0.500002p21+0.500001p22, which is almost the
exact expression, with ϵgen = 3.9 × 10−8 and ∆1(Φ) =
1.5×10−8. It seems that for a fixed total number of data
points it is better in the chaotic case to use a smaller
number of trajectories with more points on each of them,
whereas in the regular case more trajectories with a lower
number of points work better. A possible explanation
could be that a chaotic trajectory has a higher fractal
dimension. On the one hand, it thus contains more in-
formation about the corresponding level set of the energy,
but on the other hand more data points are necessary to
extract this information.

Example 2. The non-dissipative Lorenz model is de-
scribed by the three-dimensional system

ẋ = σy , ẏ = −xz + rx , ż = xy (19)

with two parameters σ, r. In contrast to the better known
chaotic Lorenz model, it possesses two conservation laws:

Φ1 =
1

2
x2 − σz , Φ2 = rz − 1

2
y2 − 1

2
z2 . (20)

Considering the parameters as dynamical variables, both
are homogeneous quadratic polynomials and our search
space has the dimension n5,2 = 35.
Using the data condition (M,N) = (5, 10), we discov-

ered the conservation law

Φ = 1.487557× 10−3 (−rz + 0.500004 y2 + 0.500004 z2)

+ 5.455222× 10−3 (−σz + 0.499999x2) (21)

with a generalization error ϵgen = 1.411 × 10−8 and a
validation error ∆1(Φ) = 1.363 × 10−8. Obviously, it
represents in very good approximation a linear combi-
nation of Φ1 and Φ2. This time, the number of needed
data points is only a bit larger than the number of co-
efficients. Figure 3a shows the conservation error of Φ
along some newly computed random trajectories. Our
refinement procedure transformed Φ into the exact con-
servation law.

There is nothing special about the found linear com-
bination, but the data points simply select which one
suits them particularly well. We repeated the experiment
with new random trajectories and obtained this time ap-
proximately the linear combination 7.352196×10−4 Φ1+
5.643860 × 10−3 Φ2 with similar errors. Obviously, the
two linear combinations are linearly independent so that
in principle one could extract Φ1 and Φ2 out of them.

However, in general this way does not represent a useful
approach to discover several conservation laws. We will
discuss better methods below.

IV. EXTENSIONS

A. More General Conservation Laws

If H is the reproducing kernel Hilbert space uniquely
associated with the chosen kernel K, then our approach
searches for conservation laws only in the M -dimensional
subspace of H of all functions of the form (6). In the case
of an inhomogeneous polynomial kernel of degree d, we
can thus only find conservation laws which are polyno-
mials in x of maximal degree d.
If one has a priori knowledge which other, say tran-

scendental or rational, functions may appear in a conser-
vation law, it is rather easy to adapt our approach such
that also polynomials in these functions are discovered.
Assume we suspect that the functions η1(x), . . . , ηL(x)
might occur (in [6], this is called the “theorist setup”
with known “basis functions”). In our basic approach,
the feature vector for the kernel ridge regression coin-
cides with the coordinate vector x of the dynamical sys-
tem. Now, we simply extend the feature vector by the
expressions η1(x), . . . , ηL(x), before we start the kernel
ridge regression. Obviously, this will increase the dimen-
sion of the feature vector from D to D + L and thus the
computational costs. But this approach allows us to find
any conservation law that is polynomial in the variables x
and the chosen transcendental functions η(x) of maximal
degree d (here we have a slight difference to [6] where it
is assumed that a linear basis of the considered function
space is known).

Example 3. It is well-known that many Lotka–Volterra
systems admit conservation laws containing logarithmic
terms [18] (this is also very common in chemical reaction
networks, as the entropy is a logarithmic quantity [19]).
This is easily accommodated by extending the feature
vector: we add for each coordinate xd its logarithm lnxd,
i. e. we use

(
x, lnx

)
as feature vector for the regression.

For general dynamical systems, one might worry what
happens for negative xd. But most biological or chem-
ical models are positive and for them only the positive
orthant x ∈ RD

>0 is relevant as state space.
As a concrete example, we consider the following four-

dimensional Lotka–Volterra system

ẋ1 = x1(3− x2 − x3 − x4) , ẋ2 = x2(x1 − x3) ,

ẋ3 = x3(−1 + x1 + x2 − x4) , ẋ4 = x4(−2 + x1 + x3) ,
(22)

belonging to the class considered in [18, Ex. 7]. It pos-
sesses the logarithmic conservation law

Φ =

4∑
d=1

(xd − lnxd) . (23)
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As the conservation law Φ is linear in the variables x
and lnx, we can work with d = 1 and D = 8 and thus
have a search space of dimension n8,1 = 9. Nevertheless,
we needed 100 data points ((M,N) = (5, 20)) to discover
Φ with a generalization error ϵgen = 3.2×10−7 and a val-
idation error ∆1(Φ) = 1.1×10−7, whereas 50 points were
not sufficient. The differences between the numerical co-
efficients of the discovered conservation law and the exact
coefficients were of the order O(10−6); thus one may con-
clude that we discovered the exact conservation law. The
relative variation error is shown in Figure 3b.

Example 4. The discrete sine-Gordon equation in the
form

ẍℓ = k(xℓ+1 − 2xℓ + xℓ−1)− g sinxℓ (24)

describes a chain of pendula coupled by torsion springs
[20, pp. 42–44], which among other applications is some-
times used as a simple model to describe the mechanics
of DNA [21]. For simplicity, we restrict to periodic chains
and set xℓ+L = xℓ for some given chain length L ∈ N.
Rewriting (24) as a first-order system yields a system of
dimension 2L which is Hamiltonian and thus conserves
the energy

H =
1

2

L∑
ℓ=1

ẋ2
ℓ +

L∑
ℓ=1

[k
2
(xℓ+1−xℓ)

2+g(1−cosxℓ)
]
. (25)

As the differential equation (24) contains a trigonomet-
ric term, it is natural to expect that also its conservation
laws may depend on such terms. Hence, we extended
the feature vector by both sinxℓ and cosxℓ and thus ob-
tained a vector of dimension 4L. Since we also treated the
two parameters k, g as dynamical variables, we have here
D = 4L+2 and q = 3. We worked with a very small chain
with L = 3, so that n14,3 = 680. With 480 data points
we could not discover H, but with 600 ((M,N) = (8, 75))
which roughly equals the number of coefficients. With a
generalization error of ϵgen = 1.6× 10−5 and a validation
error of ∆1(Φ) = 9.6 × 10−6, we obtained the following
numerical conservation law:

Φ = −1.000029 g cosx1 − 1.000010 g cosx2 − g cosx3

+ 0.999992 kx2
1 − kx1x2 − 0.999997 kx1x3

+ kx2
2 − 1.000005 kx2x3 + 1.000002 kx2

3

+ 0.500002 ẋ2
1 + 0.500005 ẋ2

2 + 0.500002 ẋ2
3 . (26)

As one can see, the differences to the coefficients of the
exact conservation law are of O(10−5) and are easily re-
moved by our refinement procedure. Figure 3c shows the
relative conservation error along random trajectories.

B. Discovering More Conservation Laws

A dynamical system might possess several (function-
ally independent) conservation laws. A simple way to

discover these consists of an iteration of the approach
presented in Section IIIA following an idea proposed
by Wetzel et al. [2]. Assume that the validation has
confirmed the discovery of a first conservation law Φ1.
Then we generate new trajectory data such that all tra-
jectories lie on a level set of Φ1, i. e. we choose for the

trajectories initial data x
(i)
0 for i = 1, . . . ,M such that

Φ1(x
(1)
0 ) = · · · = Φ1(x

(M)
0 ). Applying our indetermi-

nate regression to this new data, we will obtain a new
candidate Φ2(x). As our ansatz ensures that Φ2 cannot
be constant on all data points, Φ2 must be functionally
independent of Φ1.
If validation confirms Φ2 as a conservation law, we pro-

duce again new trajectory data such that all trajectories
lie on common level set of Φ1 and Φ2. By the same
reasoning as above, the new candidate Φ3 must be func-
tionally independent of the already found conservation
laws Φ1 and Φ2. We continue in this manner, until the
validation rejects the last candidate.

Note that this approach does not need any a priori as-
sumption on the actual number of functionally indepen-
dent conservation laws. It automatically stops, when a
complete set has been found within the considered Hilbert
space. Furthermore, this approach allows for an easy inte-
gration of a priori known conservation laws: one simply
uses initial data such that all known conservation laws
are constant on all initial points.

Remark 5. Linear conservation laws are easy to com-
pute directly for almost any dynamical systems so that
there is no need to resort to machine learning for them.
Assume that (1) can be brought into the “pseudolinear”
form ẋ = Ng(x) with a constant matrix N ∈ RD×B

and a B-dimensional vector g of “building blocks”. Such
a structure appears e. g. naturally in chemical reaction
networks where N is the stoichiometric matrix and g
the vector of reaction rates [19, 22]. More generally, any
polynomial vector field is of this form with the vector g
consisting of all terms appearing in the vector field. One
can show with elementary linear algebra that for any vec-
tor v ∈ kerNT the linear function Φ(x) = v · x defines a
conservation law and that all linear conservation laws are
of this form – see e. g. [23]. Thus, one can precompute a
complete set of independent linear conservation laws and
then use machine learning only for discovering additional
nonlinear conservation laws functionally independent of
the linear ones.

We tested this approach on a number of examples and
it worked well. It is, however, only applicable, if one can
easily produce additional data points for arbitrary initial
conditions, and thus cannot be used with experimental
data. We will therefore describe now an alternative ap-
proach for discovering multiple conservation laws using
throughout the same given data set.

Assume that the given dynamical system possesses
L > 0 functionally independent, polynomial conserva-
tion laws. Out of these, we can build infinitely many
further polynomial conservation laws, by entering them
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(a) Non-dissipative Lorenz
system

(b) 4D Lotka-Volterra
system

(c) Discrete sine-Gordon
equation

(d) FPUT lattice with L = 5

FIG. 3: Relative variation of the discovered conservation law along random trajectories for different examples.

into non-vanishing polynomials. Given a degree bound
q > 0, all the polynomial conservation laws of degree at
most q form a finite-dimensional linear space. A linear
constraint of the form (8) defines within this linear space
an affine subspace of codimension one.

The given trajectory data induces the matrix A used to
define the function F via (7) and this function will have
a unique minimum on the affine subspace. One may say
that the corresponding conservation law is preferred by
the given data; another set of data might have another
preferred conservation law. Similarly, using a different
linear constraint will define another affine subspace and
might also lead to another preferred conservation law.
But it is difficult to assert anything about the relationship
between two so constructed conservation laws.

In the sequel, we assume that we are dealing exclu-
sively with analytic functions to avoid subtilities with the
concept of functional independence for smooth functions.
Since we work mainly with polynomials, this assumption
is trivially satisfied. If some functions Ψ1(x), . . . ,ΨL(x)
are functionally dependent, then their gradients ∇Ψℓ(x)
are linearly dependent (over a suitable ring of functions
of x) implying that at almost any point x̄ ∈ RD the gra-
dient vectors ∇Ψℓ(x̄) ∈ RD are linearly dependent over
the reals. This simple observation implies conversely that
if the gradient vectors ∇Ψℓ(x̄) are linearly independent
at a single point x̄ ∈ RD, then the analytic functions
Ψ1(x), . . . ,ΨL(x) must be functionally independent in
their complete common domain of definition. Indeed,
since rank is a lower semicontinuous function, the gra-
dients ∇Ψℓ(x) are then linearly independent in a whole
neighborhood of x̄ and in the case of analytic functions
this entails that they are linearly independent in their
complete common domain of definition.

The gradient vector of a function represented in the
form (6) is obviously given by

∇Φ(x) =

M∑
m=1

ym∇κm(x) . (27)

Since the functions κm(x) are explicitly known polyno-
mials with numerical coefficients, it is easy to determine
their gradients without costly techniques like automatic
differentiation.

Assume that we already know a set of functionally in-
dependent conservation laws Ψ1(x), . . . ,ΨL(x) – either

as a priori knowledge or from previous computations –
and denote their Jacobian matrix by JΨ(x). We now
choose random points x̄ ∈ RD, until we have found one
such that J̄Ψ = JΨ(x̄) ∈ RD×L has full rank, i. e. rank L.
Because of the assumed functional independence, almost
any point x̄ will work.
Analogously, we introduce the Jacobian Jκ(x) of the

functions κm(x) and the matrix J̄κ = Jκ(x̄) ∈ RD×M .
Recall that we always assume that M ≥ D. We assume
that this matrix also has full rank D, i. e. that we can find
D functions κm(x) which are functionally independent.
If this was not the case, then our search space would be
so small that it would not make much sense to search
for further conservation laws. In other words, this would
indicate that not enough data is available.
Besides (8), we impose the L orthogonality conditions

∇Ψℓ(x̄) · ∇Φ(x̄) = 0 , ℓ = 1, . . . , L . (28)

As discussed above, they entail that Φ is functionally
independent of the given conservation laws Ψℓ. Entering
(27) yields the linear constraints

Py = 0 (29)

with the matrix P = J̄T
ΨJ̄κ ∈ RL×M . It follows from the

made rank assumptions that P has full rank L. Thus we
arrive at the linearly constrained quadratic program

min
y∈RM

yTAy

subject to Py = 0 ∧ aTy = 1 .
(30)

Compared with (9), we have only added L further linear
constraints Py = 0.
If the unique solution of (30) passes the validation, i. e.

if the function Φ(x) defined by (6) indeed defines a new,
functionally independent conservation law, then we can
rename it as ΨL+1(x) and iterate. The iteration only re-
quires to add one column to the matrix J̄Ψ leading to one
additional row in the matrix P ; all other quantities re-
main unchanged. The iteration stops, when a candidate
conservation law fails the validation.
If there are problems with numerical stability, one may

take a closer look at the matrices J̄Ψ and/or P by com-
puting their singular value decomposition. If the Lth
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singular value is rather small, then the rows of these ma-
trices are close to being linearly dependent. In this case,
it might be useful to choose a new random point x̄ which
hopefully leads to a larger value.

We recall that the functions κ(x) depend not only on
the data points, but also on the regularization parame-
ter λ. Since their Jacobian is a factor of P , we can set up
the quadratic program (30) only when we already know
a good value for λ. In the practical application, one must
therefore distinguish two different cases. If no conserva-
tion laws are known a priori, then a first conservation law
is determined with our approach for a single conservation
law. As part of this determination, the hyperparameter λ
is tuned. For discovering further conservation laws, we
now use the quadratic program (30) working throughout
with the obtained value of λ. Since λ reflects the amount
of noise present in our data and we continue to work with
the same data, there is indeed no need to change λ.

If some conservation laws are known a priori, then we
must still first perform a cross-validation for tuning λ in
the same manner as in the search for single conservation
law. We discard the trajectory labels y obtained as a by-
product of this computation and now use the quadratic
program (30) for searching for further conservation laws.

Our computations take place in an R-linear space of
polynomials in D variables and degree up to q. This
space is of dimension nD,q =

(
D+q
q

)
. The base functions

φm,n(x) or κm(x) are dense polynomials in this space and
hence it is not advisable to work with them symbolically.
We now formulate certain operations via matrices.

We first represent the vector φ(x) of polynomials as
a matrix S ∈ RMN×nDq where each row contains the
coefficient of one polynomial φm,n(x). It follows from
the definition of the base functions and from the form of
the polynomial kernel that, according to the multinomial
formula, the entries of S are given by

smn,µ =

(
q

µ̂

)
cµ0xµ

m,n (31)

where µ = (µ1, . . . , µD) is an exponent vector of length
0 ≤ |µ| ≤ q, µ0 = q − |µ| and µ̂ = (µ0, µ1, . . . , µD). It
follows then from its definition that we can represent the
vector κ(x) by the matrix Ŝ = K̂TS ∈ RM×nD,q .
For our approach to discovering several conservation

laws, we also need the gradients of the polynomials
κm(x). We represent the Jacobian Jκ(x) by a rank 3
tensor T ∈ RD×M×nD,q−1 (the last dimension is only
nD,q−1, since the derivatives are polynomials of degree
at most q− 1). For an exponent vector µ = (µ1, . . . , µD)
of length strictly less than q, we obtain as entries

Td,m,µ = (µd + 1)Ŝm,µ+1d (32)

where µ + 1d = (µ1, . . . , µd + 1, . . . , µD). Given a point
x̄ ∈ RD, the entries of the Jacobian Jκ(x̄) arise then as
a simple contraction:

Td,m =
∑

0≤|µ|<q

Td,m,µx̄
µ . (33)

As we can probably assume that the conservation laws
Ψ1(x), . . . ,ΨL(x) are sparse polynomials, their Jacobian
JΨ(x) could be computed symbolically and then evalu-
ated at the point x̄ ∈ RD. Alternatively, one could treat
them in the same way as the vector κ(x).

Example 6. We continue to study Example 2, the non-
dissipative Lorenz model. Above, we discovered in a first
run the conservation law (21) which represents a linear
combination of the two conservation laws given in (20).
Applying our approach, we discover in a second run with
an additional linear constraint enforcing the orthogonal-
ity to (21) the conservation law

Φ̃ = 7.35× 10−4(−σz + 0.499998x2)

+ 5.64× 10−3(rz − 0.4999998y2 − 0.5z2) (34)

with a generalization error ϵgen = 1.244 × 10−8 and a
validation error ∆1(Φ) = 1.844 × 10−7. Obviously, it
is functionally independent of (21) so that we have now
obtained a complete set of functionally independent con-
servation laws.

Example 7. As a “scalable” example, we consider (gen-
eralized) Fermi–Pasta–Ulam–Tsingou (FPUT) lattices
[24] described by second-order systems of the form

ẍℓ = f(xℓ+1 − xℓ)− f(xℓ − xℓ−1) . (35)

For simplicity, we restrict again to periodic lattices, i. e.
we assume that xℓ+L = xℓ for some given L ∈ N. It
then suffices to consider only ℓ = 1, . . . , L and rewriting
(35) as a first-order system yields a system of dimension
D = 2L. The obtained system is Hamiltonian so that
energy is a conserved quantity:

H =
1

2

L∑
ℓ=1

ẋ2
ℓ +

L∑
ℓ=1

F (xℓ+1 − xℓ) (36)

(here F is an antiderivative of f). Furthermore, it follows
immediately from the structure of (35) that for periodic
lattices momentum is conserved, i. e. we have an addi-
tional linear conservation law

P =

L∑
ℓ=1

ẋℓ . (37)

For general f (or F , respectively), H and P are the only
conservation laws for (35), but for special choices further
ones may exist. Famous is e. g. the Toda lattice defined by
F (x) = gex [25, 26], as it is a completely integrable sys-
tem. One usually assumes that F can be represented by a
power series and the original FPUT α-model is obtained
for the simplest non-trivial choice F (x) = 1

2kx
2 + 1

3αx
3.

In the β-model, one adds one further term 1
4βx

4.
We used the α-model with L = 5 treating the parame-

ters k and α as further state variables with trivial dynam-
ics. Hence, the system dimension wasD = 12 and we had
to use a polynomial kernel of degree 4. A set of 200 data
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points was not sufficient for discovering the conservation
law, whereas 500 data points, (M,N) = (10, 50), yielded
good results with a generalization error ϵgen = 9.8×10−7

and a validation ∆1(Φ) = 1.965× 10−6. Figure 3d shows
the relative variation along some random trajectories. If
this number of points is contrasted with the dimension
n12,4 = 1820 of the space of polynomials in 12 variables
and maximal degree 4, then one sees that the number of
data points is here less than one third of the number of
coefficients.

We do not exhibit the found conservation law, as it is
a rather lengthy polynomial containing 135 monomials
(after discarding very small coefficients). Compared to
the 25 terms in H, this appears large, but is simply due
to the fact that we discovered a linear combination of
H, P , powers of P and products of the latter ones with
the constant parameters α and k. We will discuss in the
next section how one can retrieve H from this lengthy
expression. For the moment, we only note that the rel-
ative errors of the coefficients that corresponds to terms
appearing in H lie between O(10−5) and O(10−3). Thus
even without a refinement we can conclude that we have
discovered H with good precision.

C. Getting Sparse Conservation Laws

Assume that, using the method described above, we
have finally obtained a complete, functionally indepen-
dent set of conservation laws Ψ1, . . . ,ΨL within the
Hilbert space defined by our kernel. While the func-
tions Ψℓ will typically be sparse polynomials (compared
to the full dimension of the search space), the question
naturally arises whether by taking linear combinations
one may obtain an even sparser set.

If we assume for a moment that all the known con-
servation laws have the same degree, then the following
simple approach will work. Let τn with n = 1, . . . , nD,q

be some enumeration of the terms xµ in D variables of
degree at most q (here D is understood as the dimen-
sion of our feature vector which might be larger than
the dimension of the phase space of our dynamical sys-
tem). Then we write our conservation laws in the form
Ψℓ =

∑nD,q

n=1 cnℓτn. This representation defines a matrix
C = (cnℓ) ∈ RnD,q×L. Our problem can be formalized
as searching for a non-singular matrix T ∈ RL×L such
that the columns of CT contain as many zeros as possi-
ble. These columns can then be interpreted as the coef-
ficients of a new, complete, functionally independent set
of conservation laws Ψ̃1, . . . , Ψ̃L consisting now of sparser
functions.

Finding a sparsest vector in a subspace is known to
be an NP-hard problem [27]. Since we do not need the
optimal solution, we use a standard relaxation trick by re-
placing the number of non-zero terms – sometimes called
ℓ0-norm, although it is not a norm – by the ℓ1-norm as
the closest convex norm (in the theory of compressed
sensing, it has been proven that under certain conditions

the ℓ1-solution is also the sparsest one [28, 29]). Now, the
problem of finding one sparse vector can be transformed
into a linear program.
We first search for one sparse affine combination of the

given conservation laws via the ℓ1 optimization problem

min
a∈RL

∥Ca∥1 subject to

L∑
ℓ=1

aℓ = 1 . (38)

The use of an affine combination avoids as usual the triv-
ial zero solution. It is well-known that (38) can be refor-
mulated as an equivalent linear program:

min
a∈RL

w∈RnD,q

nD,q∑
n=1

wn

subject to

L∑
ℓ=1

aℓ = 1 ,

− wn ≤
L∑

ℓ=1

cnℓaℓ ≤ wn .

(39)

Now assume that we have already constructed L̃ < L
sparse conservation laws Ψ̃ℓ =

∑nD,q

n=1 c̃nℓτn for 1 ≤ ℓ ≤ L̃.

They define a matrix C̃ = (c̃nℓ) ∈ RnD,q×L̃. We aug-
ment the linear program (39) by the additional constraint

C̃TCa = 0 ensuring that the vector Ca representing the
new conservation law is orthogonal to and thus in par-
ticular linearely independent of the already found ones.
In this manner we can iteratively construct an alterna-
tive sparse set of conservation laws. Note that the use of
such orthogonality constraints leads generally to subop-
timal solutions, as one cannot expect that the sparsest
basis is orthogonal.

Example 8. We continue Example 6, i. e. the analysis
of the non-dissipative Lorenz model. We have discovered
two functionally independent conservation laws of degree
two each of which contains five terms whereas the con-
servation laws given in (20) contain only two and three
terms, respectively. Applying our sparsification proce-
dure to the discovered conservation laws yields exactly
the ones presented in (20). In this particular case, we
are lucky that these obviously sparsest solutions are in-
deed orthogonal to each other.

The situation is more difficult when polynomial con-
servation laws of different degrees occur. The reason
is that our approach is based on linear algebra in an
L-dimensional linear subspace of the polynomial ring
P spanned by Ψ1, . . . ,ΨL whereas in fact the sparsifi-
cation problem lives in the truncated R-algebra A =
R[Ψ1, . . . ,ΨL]≤q with q the maximal degree of the known
conservation laws. The dimension of A is typically con-
siderably higher than L and therefore it does usually not
suffice simply to compute L sparse vectors in A, as these
will typically not generate A as an algebra.
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We propose the following modification of the basic ap-
proach outlined above. Our goal is to find new conserva-
tion laws Ψ̃1, . . . , Ψ̃L which are sparser but still generate
the same algebra: R[Ψ1, . . . ,ΨL] = R[Ψ̃1, . . . , Ψ̃L]. We
assume that Ψ1, . . . ,ΨL are ordered ascendingly by de-
gree and denote by qℓ the degree of Ψℓ. Generally, not
all degrees qℓ are different. Let the indizes L1, . . . , LR

define the “jump positions”:

q1 = · · · = qL1 < qL1+1 = · · · = qL2 < · · ·
· · · < qLR−1+1 = · · · = qLR

. (40)

If L1 = 1, then trivially Ψ̃1 = Ψ1 and we can proceed
to the degree q2. Otherwise, we apply the above pre-
sented method to Ψ1, . . . ,ΨL1 within the linear space
A1 = R[Ψ1, . . . ,ΨL1 ]≤qL1

.
For the higher degrees, assume that for some in-

dex 1 < r ≤ R we have already constructed
the sparse conservation laws Ψ̃1, . . . , Ψ̃Lr−1 . We
then choose a basis p1, . . . , par

of the linear space

Ar = R[Ψ̃1, . . . , Ψ̃Lr−1 ,ΨLr−1+1, . . . ,ΨLr ]≤qLr
. Since we

started with functionally (and thus in particular alge-
braically) independent conservation laws, the R-algebra
generated by them is isomorphic to a polynomial ring in
Lr variables and a linear basis of Ar is obtained by tak-

ing all “terms” Ψ̃n1
1 · · · Ψ̃

nLr−1

Lr−1
· · ·Ψ

nLr−1+1

Lr−1+1 · · ·ΨnLr

Lr
with

integer exponents ni ≥ 0 satisfying
∑Lr

i=1 ni ≤ qLr
.

For notational simplicity, we assume pi = ΨLr−1+i for
1 ≤ i ≤ Lr − Lr−1, but we do not care about the enu-
meration of the remaining polynomials in the basis.

For the construction of the first sparse conservation
law of degree qLr

, we augment (38) to the optimization
problem

min
a∈RLr

∥Cra∥1

subject to

L∑
ℓ=1

aℓ = 1 ∧ eTr a > 0 .
(41)

Here er ∈ RLr has for the first Lr −Lr−1 entries a 1 and
all remaining entries are 0. The matrix Cr has ar columns
representing the linear basis p1, . . . , par of Ar. The con-
dition eTr a > 0 ensures that the solution depends on
at least one of the conservation laws ΨLr−1+1, . . . ,ΨLr .
Note that theoretically the optimal solution might satisfy
eTr a = 0 and in this case would be missed by our ansatz.
However, since our conservation laws are the result of a
numerical process, this case is extremely unlikely and can
be safely ignored.

If Lr − Lr−1 > 1, we proceed again by orthogonality
constraints to ensure the functional independence of the
conservation laws of degree qLr

. Note that we must en-
force orthogonality only between the conservation laws of
this degree, i. e. between the newly constructed conserva-
tion laws Ψ̃Lr−1+1, . . . , Ψ̃Lr

. The previously constructed

conservation laws Ψ̃1, . . . , Ψ̃Lr−1
are automatically func-

tionally independent of the new ones for degree reasons.

Example 9. In our treatment of the FPUT lattice (Ex-
ample 7), we assumed a priori knowledge of the lin-
ear conservation law Ψ1 = P given by (37). Further-
more, there are two linear conservation laws defined by
the parameters Ψ2 = α and Ψ3 = k. We discovered
an additional conservation law Ψ4 of degree four (in-
cluding the parameter dependency) which, however, was
much more complicated than the Hamiltonian H given
by (36). We now have to work in the linear space
A = R[α, k,Ψ1,Ψ2]≤4. A generating set of it is given by
Ψ2 and all “terms” αakbΨc

1 with exponents a, b, c ∈ N0

satisfying a + b + c ≤ 4. A simple counting yields as
dimension dimA = 35. Applying the above described
approach followed by our refinement procedure, we can
reduce the originally discovered fourth conservation law
consisting of 135 terms to (36) with only one coefficient
off by 2× 10−7.

V. SOME COMPLEXITY CONSIDERATIONS

The core computation in our approach is the kernel
ridge regression requiring mainly the inversion of the ma-
trix K+λ1 (because of our indeterminate regression, we
indeed need the inverse and not only the solution of a
linear system). The dimension of this matrix equals the
number Ndata = MN of used data points. It is a priori
independent of the dimension D of the feature vector and
of the degree q of the used polynomial kernel. In our ex-
periments, typically Ndata had to be roughly of the same
magnitude as the dimension nD,q of our search space of
polynomials in D variables and of degree up to q, but we
expect that generally Ndata grows slower than nD,q. This
implies in particular that modifications of our basic algo-
rithm – like the “promotion” of parameters to dynamical
variables or the inclusion of additional functions into the
feature vector x which all increase D and may require
higher values of q – have only a moderate effect on the
complexity. Since our matrix is symmetric and positive
definite, its inversion requires 1

3N
3
data + O(N2

data) opera-
tions. The (system) dimension D is relevant, when the
data is produced by numerical integration. One may es-
timate the costs for this step to be roughly O(DNdata)
which is, however, neglectable compared to the costs of
the matrix inversion.
How many matrix inversions are needed depends on

the grid search performed as part of the cross-validation:
for every value of the regularization parameter λ that is
tested, one inversion must be performed. This also im-
plies that discovering more than one conservation law is
cheap. Since we continue to use the same value of λ, each
additional conservation law requires only one additional
matrix inversion.
As soon as the final coefficient vector α has been com-

puted and the candidate conservation law Φ defined by
(4) has been validated, we are in principle done and
have found a conservation law (strictly speaking, already
the labels y determine Φ via (6); we need α mainly to
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find y!). Compared with approaches where conservation
laws are represented by neural networks, our result is
much more explicit, as it is a closed form expression (with
numerical coefficients). However, as the conservation law
is given as a linear combination of the dense polynomi-
als φm,n, it does not arise in a form convenient for any
subsequent analysis.

One should therefore transform the conservation law Φ
obtained in the form (4) (or (6)) into the usual repre-
sentation (11) of a polynomial. One may consider this
rewriting as the analogue in our method to the sym-
bolic regression step used in approaches based on neu-
ral networks to obtain a closed form expression for the
discovered conservation law. If one does the expansion
straightforwardly in a symbolic computation, then each
of the base functions φm,n(x) = (xTxm,n + c)q expands
into a dense polynomial of degree q in D variables and we
must compute and simplify a linear combination of Ndata

such polynomials each containing nD,q terms. Indeed, we
noticed in experiments that – already for moderate val-
ues of D and q – such a symbolic computation leads to a
bottleneck.

However, one can compute directly the coefficients of
the representation (11) in a purely numerical manner. If
we consider again the matrix S with entries smn,µ defined
by (31), then the coefficients of Φ arise as the product Sα
and we obtain for the coefficients aµ in (11) the formula

aµ = cµ0

(
q

µ̂

) M∑
m=1

N∑
n=1

αm,nx
µ
m,n , (42)

where µ0 = q − |µ|. The numerical evaluation of this
sum is straightforward. The total cost of the rewriting
is then O(nD,qNdata) and neglectable against the cost of
the kernel ridge regression.

For finding the right trajectory labels y, we must solve
the linearly constrained quadratic program (9). It is
known that such problems can be solved in polynomial
time (roughly cubical) [30]. Note, however, that the pro-
gram (9) is only M -dimensional and hence these costs
are again neglectable against the cost of the kernel ridge
regression. The same is true for our approach to dis-
cover multiple conservation laws, as (30) is still an M -
dimensional program which only has more linear con-
straints. Since we always assume that M > D, the num-
ber of constraints is not relevant for the complexity.

Finally, we consider the costs of the sparsification pro-
cess described above. The classical approach to linear
programs like (39), the simplex algorithm and its vari-
ants, shows in rare cases an exponential worst-case be-
haviour, but the expected behaviour is a quadratic com-
plexity in the number of decision variables (it has been
proven that theoretically linear programs can always be
solved in polynomial time with the fastest algorithms
having the same time complexity as fast matrix multi-
plication, i. e. better than cubic) [31]. The number of
decision variables can be rather large here, namely up
to L + nD,q. However, in practise, this number is much

smaller: even if the conservation laws Ψℓ are not opti-
mal, we can expect that each of them contains much less
than nD,q terms. In all our examples, this was indeed the
case. Thus we can assume that also the sparsification is
cheaper than the kernel ridge regression.

We thus conclude that our whole method has a com-
plexity given by 1

3 (Nλ+NCL)N
3
data+O(N2

data) where Nλ

denotes the number of λ-values used in the grid search
and NCL the number of functionally independent con-
servation laws discovered. We note that this very basic
estimate neglects the many available methods to speed
up the inversions in a ridge regression ranging from fast
updates via the Woodbury formula over aiming for op-
timal statistical accuracy to the use of hierarchical ma-
trices. State of the art methods achieve complexities of
O(Ndata

√
Ndata) and better [32, 33] and allow for the

handling of millions of data points.

For a rough comparison with neural networks, let us
assume that we have a simple feedforward network with
Nlayer layers each containing D neurons. We further as-
sume that the backpropagation requires Niter iterations.
Then it is well-known that the complexity for process-
ing one data point is O(NiterNlayerD

3). We denote by
Nep the number of epochs used for the training of the
neural network. By a rule of thumb, Nep grows with
Ndata and we assume for simplicity a linear growth, i. e.
Nep = O(Ndata). Since in each epoch every data point
has to be run through the network, we thus obtain a com-
plexity estimate of O(N2

data) with a leading coefficient of
the size O(NiterNlayerD

3).

If we contrast this estimate with our approach (without
fast inversions), one must take into account that not only
our leading coefficient is much smaller, but that in par-
ticular our approach requires much less data points than
neural networks. If we compare with examples presented
in the literature, then our Ndata is typically at least an
order of magnitude smaller than the Ndata used there.
Thus only for very large examples neural networks might
be cheaper and even this is doubtful, if one uses state of
the art inversion algorithms. This comparison has not
yet taken into account that our approach yields directly
a nice symbolic representation of the conservation laws,
whereas approaches based on neural networks still need
a symbolic regression step to translate the network into
a formula. The cost of this step is difficult to estimate
and depends of course on the used symbolic regression
method, but it is surely not neglectable.

One may wonder why we bother with machine learning
techniques, if we search only for polynomial conservation
laws – in particular, in view of our refinement method.
One could instead directly make a simple ansatz for a
general polynomial of degree q in D variables with inde-
terminate coefficients, enter the ansatz into the partial
differential equation (2) and then solve the arising linear
system of dimension for its nD,q coefficients.

For an exact computation, one must then assume that
the right hand side of the dynamical system (1) con-
sists at most of rational functions over the rational num-
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bers Q, as only then entering a polynomial ansatz yields
after clearing denominators a linear system over Q. The
usual complexity estimates for nullspace computations
assumes that any arithmetical operation can be per-
formed in constant time. While this is surely the case
for floating point operations, it is not true for computa-
tions over the rationals Q. A naive implementation of
Gaussian implementation will even have an exponential
bit complexity, as the number of digits will double in each
elimination step. With more advanced methods like mod-
ular arithmetics, one can again obtain algorithms with a
cubic complexity. However, the constants are much worse
than in a floating point computation and depend on the
size of the results. As a rule of thumb, one can treat
on a single processor machine linear systems over Q up
to a size of about a few thousand indeterminates within
reasonable computation times.

If one replaces the exact nullspace computation of the
linear system by a numerical one, then one finds the clas-
sical complexity O(n3

D,q). Assuming that MN and nDq

are of the same order of magnitude (which is roughly
the case in all examples that we studied), we find the
same complexity as in our approach. A key difference
is that in our approach it is not necessary to know the
dynamical system (1) explicitly; it suffices, if enough tra-
jectory data are available. If (1) is explicitly given, then
our refinement step takes into account only those power
products which according to the regression analysis ac-
tually appear in the conservation law. Thus generally
in our refinement step one has to solve a much smaller
linear system and its costs are again neglectable.

In principle, one can also work with an ansatz con-
taining more general functions than polynomials. The
“theorist” approach of [6] is an example how this can be
realized purely numerically leading to a linear regression
problem. For exact computations, their approach is not
suitable, as it would lead to a linear system over a func-
tion field instead of the rationals Q. For doing exact
linear algebra computations over such a field, one must
be able to decide whether or not an expression is zero.
Richardson’s theorem (see [34, Sect. 5]) asserts that this
problem becomes rapidly undecidable, if one adds tran-
scendental functions like expx or sinx.
However, with a suitable setup we can always reduce

to linear algebra over the rationals. We first choose
a (finite-dimensional) Q-linear function space V1 which
represents the search space in which we look for conser-
vation laws. Then we have to construct a second (finite-
dimensional) Q-linear function space V2 which must con-
tain for each function Φ ∈ V1 and for each variable xd

the product (∂Φ/∂xd)fd. Let {g1, . . . , gR} be a linear
basis of V1 and {h1, . . . , hS} one of V2. Making the

ansatz Φ =
∑R

r=1 βrgr with yet undetermined coeffi-
cients βr ∈ Q and entering it into the partial differ-
ential equation (2), we obtain a condition of the form∑S

s=1 cs(β)hs = 0 where the coefficients cs are linear in
the unknowns β. The ansatz defines an exact conserva-
tion law, if and only if cs(β) = 0 for s = 1, . . . , S. This

condition defines a linear system over Q for the coeffi-
cients β. Compared with the purely polynomial case, the
dimensions R and S are rapidly growing here for more
complicated situations, so that exact computations will
often be unfeasable.

VI. FURTHER APPLICATIONS

The basic idea of our approach is fairly independent of
the notion of a conservation law of a dynamical system.
It is concerned with predicting functions from knowing
points in their level sets (the “grouped data” of Ha and
Jeong [3]). This problem also appears in other situations.
We briefly discuss here three applications. The first one
is very close to what we have done so far: we consider
discrete dynamical systems which can be handled by our
approach without any real changes. As a second applica-
tion, we consider discovering simultaneous conservation
laws of several vector fields which is equivalent to find-
ing an implicit representation of the integral manifolds of
an (integrable) vector field distribution. The final appli-
cation is quite different: the implicitization of curves or
higher-dimensional surfaces which is important in alge-
braic geometry, geometric modeling and computer vision.

A. Discrete Dynamical Systems

Our approach can also be applied to discrete dynam-
ical systems, i. e. systems where the time t is a discrete
variable. We assume t ∈ Z and consider an autonomous
first-order system of the form

xt+1 = f(xt) . (43)

A conservation law of it is a function Φ: RD → R which
remains constant along solutions of (43), i. e. which sat-
isfies Φ(xt+1) = Φ(xt) (see e. g. [35]).
Thus we are in exactly the same situation, as in the

continuous case: we know points on level sets of Φ and
can apply the approach developed above. One may even
say that the discrete case is slightly easier to handle, as
evaluation of (43) along a trajectory does not require the
use of numerical approximations as in the case of differ-
ential equations. On the other hand, it is more difficult
to provide a more or less uniform sampling of the state
space, as one has no control about the distance between
consecutive points.

Remark 10. In the differential case, it was not really nec-
essary to assume that we treat a first-order system. Most
numerical methods are geared towards such systems, but
e. g. there also exist methods for second-order systems.
For our approach this is irrelevant; we only need the tra-
jectory data (this is different for the approach by Liu et
al. [5] using the partial differential equation (2) which
assumes a first-order system). In the discrete case, the
above definition of a conservation law is valid only for
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first-order systems. For a system of order Q, conserva-
tion laws are functions defined on RQD, as they depend
not only on xt, but also on the points xt+1, . . . ,xt+Q−1,
i. e. on a whole segment of the trajectory [35]. In prin-
ciple, our approach can be adapted to such a situation,
but it is probably easier to rewrite the given dynamical
system as a first-order one.

Example 11. We consider the scalar second-order dif-
ference equation

xt+2 =
t

t+ 1
xt +

1

xt+1
(44)

appearing in [35]. One readily verifies that

Φ(t, xt, xt+1) = txtxt+1 −
1

2
t(t+ 1) (45)

is constant along solutions and thus defines a polyno-
mial conservation law. For applying our approach to this
equation, we first rewrite it as a first-order system by in-
troducing yt = xt+1 and then render it autonomous by
introducing zt = t. This yields the rational system

xt+1 = yt , yt+1 =
xtzt
zt + 1

+
1

yt
, zt+1 = zt + 1 (46)

with a polynomial conservation law of degree 3

Φ(xt, yt, zt) = xtytzt −
1

2
zt(zt + 1) . (47)

Applying our approach to (46) and rounding the obtained
coefficients to four digits, we discover the exact conser-
vation law (47).

Remark 12. As the approach of Arora et al. [7] is
based on finding via discrete gradients a particularly
well adapted discretization of the given continuous dy-
namical system, it cannot be extended to discrete dy-
namical systems. Similarly, the approach of Kaiser et
al. [1] uses the Koopman theory of continuous dynamical
systems and cannot be extended. The neural deflation
approach of Zhu et al. [9] only applies to Hamiltonian
systems and requires a Poisson structure. While there
exist discrete analogues of these concepts, it is unclear
whether an extension is possible. The approach of Liu
et al. [5] is based on learning solutions of the partial dif-
ferential equation (2). For discrete dynamical systems,
one can derive a discrete analogon to this partial differ-
ential equation where partial derivatives are replaced by
shift operators [35]. It is unclear how solutions of this
difference equation can be learned, but our refinement
procedure could probably be adapted to this partial dif-
ference equation. By contrast, the approaches of Ha and
Jeong [3] via a noise-variance loss and Wetzel et al. [2]
via Siamese neural networks, respectively, can also be
straightforwardly extended to the discrete case.

B. Integral Manifolds of Vector Field Distributions

Let the vector fields X1, . . . , XA span a smooth and
regular distribution A onRD of rank A, i. e. at each point
x ∈ RD the vectors X1(x), . . . , XA(x) are linearly inde-
pendent. An integral manifold of A is an A-dimensional
submanifold M ⊆ RD such that at each point m ∈ M
the vectors X1(m), . . . , XA(m) form a basis of the tan-
gent space TmM. The distribution A is called integrable,
if there exists an integral manifold through every point
x ∈ RD, and involutive, if the Lie bracket of any two vec-
tor fields Xa, Xa′ also lies in A, i. e. if there exist smooth

functions Ca′′

aa′(x) such that [Xa, Xa′ ] =
∑A

a′′=1 C
a′′

aa′Xa′′ .
By the well-known Frobenius theorem, a smooth and reg-
ular distribution is integrable, if and only if it is involutive
[36, Chapt. 19]. The integral manifolds of an integrable
distribution define a foliation of RD.

In the sequel, we will always assume that A is an in-
volutive and hence also integrable distribution spanned
by explicitly given vector fields X1, . . . , XA. Our goal is
to discover an implicit representation of the foliation de-
fined by A. This means that we search for B = D − A
functionally independent functions Φb(x) such that each
integral manifold can be represented as the solution set
of the system Φb(x) = cb with b = 1, . . . , B for suitable
constants cb ∈ R.

For a dynamical system defined by a single vector
field X, the linear first-order partial differential equa-
tion (2) characterizing conservation laws can be written
as XΦ = 0. We now generalize it to an overdetermined
linear first-order system XaΦ = 0 with a = 1, . . . , A and
search for a linear basis of the solution space.

It follows immediately from the definitions that each of
the functions Φb(x) must be a conservation law of each
of the vector fields Xa. Thus we search for functions
which are simultaneously conservation laws for several
vector fields. Within our approach, this is easy to han-

dle. We choose some random initial points x
(m)
0 with

m = 1, . . . ,M . Then we numerically compute N points

x
(a)
m,n on the trajectory of each vector field Xa through

each initial point x
(m)
0 . All points with the same index

m must lie on the same level set of the functions Φb.
Hence we can use exactly the same indeterminate regres-
sion approach, but now with larger groups of data: each
group contains the data of A trajectories – one for each
vector field Xa. Note that this time we know already in
advance the number of functionally independent conser-
vation laws to be discovered, namely B.

Remark 13. Many textbooks present approaches for com-
puting integral manifolds where it is assumed that the
vector fields Xa commute with each other, i. e. that all
functions Ca′′

aa′ vanish. Our approach does not require
such assumptions; we only need sufficiently many points
lying on different level sets.
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Example 14. We consider on R4 the two vector fields

X1 = x1∂x2 − x2∂x1 + x3∂x4 − x4∂x3 ,

X2 = x3∂x1 − x1∂x3 + x4∂x2 − x2∂x4 . (48)

As their Lie bracket vanishes, they span an involutive
distribution A. It is easy to verify that the integral man-
ifolds can be described by the two quadratic functions

Φ1(x) = x2
1+x2

2+x2
3+x2

4 , Φ2(x) = x1x4−x2x3 . (49)

Applying our approach for the data condition
(M,N) = (5, 20), we discover first the conservation law

Φ = −0.008836x2
1 − 0.00889x2

2

− 0.008794x2
3 − 0.008838x2

4

− 0.011600x2x3 + 0.011605x1x4 (50)

which obviously corresponds with high accuracy to a
linear combination of Φ1 and Φ2. The generalization
error was ϵgen = 7.8 × 10−6 and the validation error
∆1(Φ) = 1.26× 10−5.

Searching for a further conservation law orthogonal to
the first one, we discover in a second run

Φ̃ = 0.0037843x2
1 + 0.0037844x2

2

+ 0.00378439x2
3 + 0.00378439x2

4

− 0.0135777x2x3 + 0.013577x1x4 (51)

approximating very well another linear combination of
Φ1 and Φ2. This time, we have a generalization error
of ϵgen = 1.72 × 10−6 and a validation error of ∆1(Φ̃) =
5.62×10−6. Calling our sparsification procedure with the
two discovered expressions Φ and Φ̃, we obtain with very
high precision Φ1 and Φ2. Again this is due to the fact
that these two conservation laws are indeed orthogonal
to each other.

Remark 15. The problem treated here concerns dis-
covering an implicit representation of a family of A-
dimensional manifolds. Naively, one would expect that
the number of data points needed should grow exponen-
tially with A, as so many points are required for a proper
sampling of the manifolds (the often mentioned “curse of
dimensionality”). However, this is not the case with our
approach. Here the number of data points grows only lin-
early with A, since A trajectories are computed for every

chosen initial point x
(m)
0 . As already mentioned earlier,

we typically choose M initial points where M should be
larger than the dimension D of the ambient space, but
is typically of the same order of magnitude. Thus the
total number of data points is O(AD). Again, this is
due to the fact that we are not using random points, but
grouped data with points lying on special curves, namely
trajectories of the given vector fields.

C. Implicitization of Curves and Surfaces

In geometry, two different types of representations of
objects like curves and surfaces (of dimension 2 or higher)

in some affine space RD are typically used. In an ex-
plicit representation, a K-dimensional object is given via
a parametrization xd = φd(t1, . . . , tK) with parameters
(t1, . . . , tK) ∈ P ⊆ RK from some real parameter set. In
an implicit representation, the object is described as the
zero set of some functions Φj : R

D → R. Each repre-
sentation is preferable for certain tasks. For example, an
explicit representation allows us to produce easily points
on the object, whereas an implicit representation is bet-
ter for checking whether a given point lies on the object.
It is therefore of importance to be able to switch between
these two types of representations and implicitization is
the problem of going from a given parametrization to an
implicit representation. An extensive discussion in the
context of geometric modeling can be found in [37].

In algebraic geometry, the given parametrization φd is
typically rational and one looks for polynomials Φj , i. e. it
is assumed that the represented object is a variety. Then
implicitization can be formulated as an elimination prob-
lem and techniques like resultants or Gröbner bases are
available for its solution (see [37] and references therein).
However, these techniques are expensive and often lead to
polynomials of high degree making subsequent computa-
tions costly and numerically unstable (which is a problem
for applications in CAGD).

Consequently, numerous methods for approximate im-
plicitization have been developed (see the references in
the recent work [38]) and our approach is related to a
class of methods called discrete approximate implicitiza-
tion. The authors of [39] propose to use an autoencoder
for fitting polynomial equations, i. e. a neural network.
Like for conservation laws, we consider our approach via
kernel methods as much cheaper.

While many of the algebraic methods can – at least
in principle – handle arbitrary dimensions K < D, most
of the approximate approaches concentrate on the case
K = D−1 forD = 2, 3, i. e. on planar curves and surfaces
in 3D, as these are the dominant situations in CAGD
and geometric modelling. This restriction means that the
implicit representation consists of a single polynomial.
For simplicity, we also consider here only this case.

Our discovery of conservation laws of ordinary differ-
ential equations from trajectory data corresponds to the
implicitization of whole families of curves: we are look-
ing for an implicit representation valid not only for a
single curve, but for many curves simultaneously. This
means that we search for functions Φ such that the kth
curve is described by the equations Φ(x) = c(k) for some
constant vector c(k). The extension of our approach to
families of two or higher dimensional surfaces is straight-
forward: one only needs a way to generate sufficiently
many data points on the surfaces that do not lie on lower-
dimensional subsets. While for a single curve or surface
always an implicitization exists (though not necessarily
one with polynomials as desired in algebraic geometry),
this represents a special property for families.

In the case of a single curve or surface, one needs in
addition to data points on the curve or surface one point
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off the curve or surface; this point should not lie too
close. Then we take as labels for all points on the curve
or surface 0 and for the one additional point 1.

Example 16. A classical planar algebraic curve is
the trifolium shown in Figure 4. A trigonometric
parametrization of it is given by

x = 4 sin (t)
4 − 3 sin (t)

2
,

y = − sin (t) cos (t)(4 sin (t)
2 − 3)

(52)

with 0 ≤ t ≤ π. As an implicit description of it, one may
use the polynomial equation of degree 4

(x2 + y2)2 = x(x2 − 3y2) . (53)

FIG. 4: Regular trifolium.

A point outside of the curve is for example (−1, 0).
By employing our kernel method, we discover – after
rounding the coefficients to five digits – the exact solution
x4 − x3 + 2x2y2 + 3xy2 + y4 = (x2 + y2)2 − x(x2 − 3y2).

Example 17. Whitney’s umbrella is the algebraic sur-
face shown in Figure 5 – note that the “handle”, i. e. the
z-axis, is part of the surface. It is implicitly defined by
the polynomial equation of degree 3

x2z = y2 . (54)

A polynomial parametrization of the two-dimensional
part of the surface is given by

x = u , y = uv , z = v2 . (55)

Points on the z-axis are not really necessary for the
implicitization; it suffices to consider only points on the
two-dimensional part of the surface. A point obviously off
Whitney’s umbrella is (1, 1,−1). By employing a poly-
nomial kernel of degree 3, we discover after rounding the
coefficients to 7 digits the exact implicit description.

VII. CONCLUSIONS

In this work, we proposed a novel approach to discover
either a single conservation law of a dynamical system or

FIG. 5: Whitney’s umbrella.

a complete set of functionally independent conservation
laws. It is based on a kernel method, namely an “in-
determinate” ridge regression, instead of some variants
of neural networks. We believe that it is computation-
ally more efficient and in particular requires much less
data which is important, if the data comes from exper-
iments and not from numerical simulations. Indeed, in
all our examples a few dozens to a few hundred data
points were sufficient (600 points was the maximum we
used). By contrast, in [2, 7, 9], the authors report that
for problems of similar sizes they trained their neural
networks with 50, 000 to 200, 000 points; only the 2, 000
data points used in [3] are somewhat close to our val-
ues. The neural networks typically consist of about 200
to 2, 000 neurons in the hidden layers and the training re-
quires between 1, 000 and 50, 000 epochs. The computa-
tional costs of such trainings are probably several orders
of magnitudes larger than the matrix inversions needed
in a kernel ridge regression, even if one takes into account
that the determination of the labels in our indeterminate
regression and the tuning of the regularization parame-
ter require repeated inversions. The comparatively low
number of data points ensures that the costs for the in-
versions remain moderate. We also emphasize that our
approach yields immediately a symbolic representation
of a discovered conservation law, whereas methods based
on neural networks still need a subsequent symbolic re-
gression step which usually also comes with considerable
computational costs.

For discovering conservation laws, one may distinguish
at least three different scenarios. In the first and simplest
one – on which we concentrated in this work – the dy-
namical system (1) is explicitly known. Thus arbitrary
amounts of synthetic trajectory data can be produced
any time. For most dynamical systems, the cost of the
required numerical integrations is negligible compared to
the subsequent machine learning and the obtained data
are fairly accurate. A sampling bias can be easily avoided
by using a normalized vector field. Furthermore, one can
use the explicitly given vector field for a symbolic re-
finement of candidate conservation laws. Finally, the ex-
plicit knowledge of the system typically indicates natural
choices for an extended feature vector to proceed beyond
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polynomial conservation laws.

In a second scenario, the dynamical system is only
known as a black box (e. g. in form of a neural network).
Then one can still produce arbitrary amounts of accurate
synthetic trajectory data, but it becomes more difficult
to avoid a sampling bias (e. g. via interpolation). A sym-
bolic refinement is no longer possible and extensions of
the feature vector can only be guessed.

In a third scenario, the dynamical system is not known
at all and only a limited and fixed amount of possibly
noisy data is available. Such a situation arises in par-
ticular when one has experimental data without a math-
ematical model and raises a number of questions that
call for a deeper analysis. An obvious one is the robust-
ness with respect to noisy data. One could hope that
up to a certain noise level the regularization parameter
of the kernel ridge regression may compensate the noise.
Another question is the robustness against the sampling
bias introduced by unevenly distributed data. Here we
are optimistic that the effect is not very pronounced. In
both cases, only further experiments will tell whether our
expectations are justified.

Finally, we want to mention that our approach should
also be able to discover approximate conservation laws.
These could be for example quantities that are almost
conserved on shorter time scales, but show some evo-
lution on longer time scales or quantities that remain
conserved only after an initial transient phase. While
in physics many models are constructed in such a way

to possess exact symmetries and thus related exact con-
servation laws, we expect that in the phenomenological
models that prevail in biology approximate conservation
laws are much more frequent than exact ones. In our ap-
proach, one can study such phenomena by data window-
ing. Thus one could e. g. consider only trajectory points
up to a certain maximal time or conversely only points
at times larger than a certain minimal time. By playing
with the time threshold, one may even glean information
about the corresponding time scales.
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