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Abstract

We discuss the use of machine learning models for finding “good coordinates” for poly-
nomial ideals. Our main goal is to put ideals into quasi-stable position, as this generic
position shares most properties of the generic initial ideal, but can be deterministically
reached and verified. Furthermore, it entails a Noether normalisation and provides us
with a system of parameters. Traditional approaches use either random choices which
typically destroy all sparsity or rather simple human heuristics which are only moder-
ately successful. Our experiments show that machine learning models provide us here
with interesting alternatives that most of the time make nearly optimal choices.
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1. Introduction

It is well known that many results in algebraic geometry and commutative alge-
bra considerably simplify in generic coordinates. While from a theoretical point of
view one may simply exploit that a random transformation (almost) always achieves
a generic position, the situation is less simple from a computational point of view.
Random transformations are computationally bad, as they destroy all sparsity typically
present in generators of polynomial ideals. Furthermore, for many generic positions –
like for example the popular GIN position in which one obtains the generic initial ideal
– effective tests are either not known or prohibitively expensive.

As we have demonstrated in several articles, quasi-stable position represents an
interesting alternative. It shares most of the properties of the GIN position (Hashemi
et al., 2012), but can be effectively verified. It entails a Noether normalisation (Seiler,
2009b) and in quasi-stable position one obtains easily a system of parameters (Seiler,
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2012). Furthermore, in a series of articles, we developed a deterministic approach to
obtain a quasi-stable position for arbitrary ideals (Hausdorf and Seiler, 2002; Seiler,
2009b; Hashemi et al., 2018). In this approach, one performs a finite sequence of
very sparse transformations until quasi-stability is achieved. The efficiency depends
crucially on the number of transformations required.

In each step, one typically has a choice between several possible transformations.
The correctness and the termination of the whole procedure is independent of this
choice. But the number of transformations required to achieve quasi-stable position
can depend strongly on it. Previous computational experiments have indicated that
simple human heuristics are not very successful in making consistently good choices
here. Therefore we propose to apply methods from machine learning for selecting the
applied transformations.

This is similar to some other proposed applications of machine learning in the con-
text of commutative algebra. England and collaborators have studied in a larger number
of articles the use of various classification methods for choosing the variable ordering
for a cylindrical algebraic decomposition, see e. g. (Huang et al., 2014; England and
Florescu, 2019; Florescu and England, 2019; Huang et al., 2019; Florescu and Eng-
land, 2020; Pickering et al., 2023) and noted that these were better than known human
heuristics. The problem of learning a selection strategy in Buchberger’s algorithm
applied to binomial ideals was studied in (Peifer et al., 2020; Peifer, 2021) using rein-
forcement learning with a 1D convolutional neural network. In all these works, one is
also concerned with choices within an algorithm which do not affect its correctness or
termination, but which possess a signigicant effect on its efficiency. Somewhat related
is also the idea of Simpson et al. (2016) to employ machine learning for chosing the
most efficient algorithm for computing resultants. By contrast, Jamshidi and Petrović
(2023) presented a machine learning approach for computing Gröbner bases.

This article is structured into two parts. In the next section, we discuss the math-
ematical foundations: quasi-stability and Pommaret bases. We recall the necessary
notions and their relevant properties. On the algorithmic side, we recall the determin-
istic approach from (Hashemi et al., 2018) and provide two completion algorithms for
monomial Janet and Pommaret bases, respectively. The following section is concerned
with applying machine learning in this context. We describe the structure of our feature
vetors and how we quantitatively compare different choices. After a discussion of the
training process, we present our results. Finally, some conclusions are given.

2. Quasi-Stability and Pommaret Bases

We will work throughout in a polynomial ring S = k[x1, . . . , xn] = k[X] over a
field k of characteristic zero3 with a fixed number n of variables. We consider exclu-
sively homogeneous polynomials f1, . . . , fk ∈ S and the ideal I = ⟨ f1, . . . , fk⟩ gener-
ated by them. A term is a power product xµ1

1 · · · x
µn
n and denoted by xµ with an exponent

3In principle, we can also handle coefficient fields of positive characteristic. However, some minor adap-
tions are necessary. In particular, if the field is too small, a field extension is needed. We refer to (Hashemi
et al., 2018) for a more detailed discussion of this situation.
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vector µ = (µ1, . . . , µn) ∈ Nn
0. We write max xµ = j, if µ j is the last non-vanishing entry

of µ. We will exclusively work with the degree reverse lexicographic order assuming
x1 ≻ · · · ≻ xn. The leading term of a polynomial f ∈ S is written lt f . If F ⊂ S is
a finite set of polynomials, we denote by ltF the set {lt f | f ∈ F } of their leading
terms. The set F is called a Gröbner basis for an ideal I, if F ⊂ I and the leading
ideal satisfies ltI = ⟨lt g | g ∈ I⟩ = ⟨ltF ⟩. We refer e. g. to (Cox et al., 2015) for more
details on Gröbner bases.

2.1. Quasi-Stable Ideals and Quasi-Stable Position
Quasi-stable ideals represent a special class of monomial ideals that appear in many

different places and which are know under many different names like e. g. ideals of
nested type (Bermejo and Gimenez, 2006), ideals of Borel type (Herzog et al., 2003)
or weakly stable ideals (Caviglia and Sbarra, 2005). Many equivalent definitions are
possible; we recall here the classical combinatorial one.

Definition 2.1. A monomial ideal J ◁ S is quasi-stable, if for any term t ∈ J and
any index 1 ≤ i < j = max t there exists an exponent s > 0 such that xs

i t/x j ∈ J . A
polynomial idealI◁S is in quasi-stable position, if its leading ideal ltI is quasi-stable.

One readily verifies that it suffices to verify the condition in Definition 2.1 for the
finitely many minimal generators of J , so that quasi-stability can easily be checked
effectively. If t is a minimal generator and for the index 1 ≤ i < j = max t no term of
the form xs

i t/x j lies in J , then we call the pair (t, xi) an obstruction to quasi-stability.
The following proposition recalls a number of well-known equivalent characterisations
of quasi-stable ideals (see (Hashemi et al., 2018) for a more detailed discussion, refer-
ences and some further characterisations).

Proposition 2.2. Let J ◁ S be a D-dimensional monomial ideal. Then the following
statements are equivalent:

(i) J is quasi-stable.
(ii) Every associated prime ideal of J is of the form ⟨x1, . . . , x j⟩ for some index

1 ≤ j ≤ n − D.
(iii) The variable xn is not a zero divisor on S/J sat and the variables xn− j for 1 ≤

j < D are not zero divisors on S/⟨J , xn, . . . , xn− j+1⟩.
(iv) There is an ascending chain J : x∞n ⊆ J : x∞n−1 ⊆ · · · ⊆ J : x∞n−D+1 and for each

index 1 ≤ j ≤ n − D there exists a term xℓ j

j ∈ J .
(v) We have J sat = J : x∞n and for 1 ≤ j < D

⟨J , xn, . . . , xn− j+1⟩
sat = ⟨J , xn, . . . , xn− j+1⟩ : x∞n− j . (2.1)

(vi) For all 1 ≤ j < n we have

J : x∞n− j = J : ⟨x1, . . . , xn− j⟩
∞ . (2.2)

The various characterisations show that quasi-stable ideals are indeed rather special
possessing many properties that do not hold for arbitrary monomial ideals and that
these properties are closely related to the chosen coordinate system which here means
mainly the ordering of the variables x1 ≻ · · · ≻ xn. Seiler (2009b, 2010) furthermore
showed that one can provide for quasi-stable ideals an explicit free resolution.
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Remark 2.3. For a polynomial ideal I◁S, quasi-stable position is related to the better
known Noether position. Part (iv) of Proposition 2.2 entails that the canonical map
k[xn−d+1, . . . , xn] → S/I defines a Noether normalisation (see also the discussion in
(Seiler, 2010)). In fact, quasi-stable position is a stronger condition than Noether po-
sition. Bermejo and Gimenez (2006) proved that an ideal is in quasi-stable position, if
and only if the ideal and all primary components of its leading ideal are simultaneously
in Noether position. Hashemi et al. (2018) provided a combinatorial characterisation
of Noether position analogous to Definition 2.1 showing that it represents a weakened
version of quasi-stability where one can simply ignore certain obstructions.
Remark 2.4. If the polynomial ideal I ◁ S is D-dimensional, then a maximal sys-
tem of parameters consists of c = n − D ideal members f1, . . . , fc ∈ I such that the
ideal Ĩ ⊆ I generated by them is also D-dimensional. This is equivalent to f1, . . . , fc
defining an S-regular sequence in I and Ĩ is then a complete intersection. Such sys-
tems of parameters are relevant for many computational tasks in commutative algebra.
E. g. when computing primary decompositions, their determination represents a seri-
ous bottleneck (Decker et al., 1999). It is shown in (Seiler, 2012) that in quasi-stable
position those elements of a Pommaret basis of I which have a pure variable power as
leading term form a maximal system of parameters. Thus in quasi-stable position the
determination of a system of parameters is trivial.

It is also well-known that quasi-stable position is a generic notion (see e. g. (Seiler,
2010) for a proof). In our context, this has the following meaning given an arbitrary
polynomial ideal I ◁ S. If we choose a non-singular random matrix A ∈ kn×n and
perform the coordinate transformation x 7→ Ax, then the transformed ideal IA = A · I
will almost always be in quasi-stable position. More precisely, the set of all matrices A
such that IA is in quasi-stable position contains a Zariski open subset of kn×n.

Galligo (1974) in characteristic zero and Bayer and Stillman (1987b) in positive
characteristic proved for any ideal I◁ S the existence of a generic initial ideal ginI,
i. e. they showed that there exists a Zariski open subset U ⊆ GL(n,k) such that for
all A, B ∈ U we have ltIA = ltIB = ginI. We say that I is in GIN position, if
ltI = ginI. This position is very popular among theorists, as in it many invariants of
the polynomial ideal I can already be read off from the monomial ideal ltI where they
are typically easier to compute. Computationally, it is very expensive to rigorously
verify that an ideal is in GIN position; Hashemi et al. (2018) describe an approach
based on Gröbner systems.

If an ideal I is in GIN position, then its leading ideal is strongly stable and thus
in particular quasi-stable. Hence GIN position entails quasi-stable position, but the
converse is not true. In Hashemi et al. (2012), it is demonstrated that most of the
properties of ginI also hold for ltI provided I is in quasi-stable position. We recall
here some of most important results.

Theorem 2.5. Let I ◁ S be an ideal in quasi-stable position. Then the ideals I and
ltI share the following invariants:

(i) satiety satI = sat ltI,
(ii) projective dimension pdI = pd ltI (or equivalent depthI = depth ltI),

(iii) Casteluovo–Mumford regularity regI = reg ltI.
Furthermore, S/I is Cohen–Macaulay, if and only if the same is true for S/ ltI.
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2.2. Pommaret Bases

Involutive bases are a special type of Gröbner bases with additional combinatorial
properties and depend not only on a term order but also on a so-called involutive divi-
sion, a refinement of the usual divisibility relation of terms. They were introduced by
Gerdt and Blinkov (1998a) inspired by the Janet–Riquier theory of partial differential
equations. The basic idea of an involutive division L is to associate with any genera-
tor h in a finite set H ⊂ S a subset XL,H (h) ⊆ X of multiplicative variables. In linear
combinations (or normal form computations), the generator h may then only be mul-
tiplied with polynomials in the subring k[XL,H (h)] ⊆ S. Loosely speaking, H is an
involutive basis, if even with this restriction it still generates the whole ideal ⟨H⟩. In
contrast to the usual Gröbner bases, involutive bases are non-trivial even for monomial
ideals. For an extensive introduction to theory, algorithmics and history of involutive
bases, we refer to (Seiler, 2009a, 2010). We omit here the rather technical definition of
an involutive division L and provide only one for L-involutive bases.

Definition 2.6. Let L be an involutive division. The L-involutive span of a finite set
H ⊂ S of polynomials is the k-linear space

⟨H⟩L =
∑
h∈H

k[XL,H (h)] · h ⊆ ⟨H⟩ . (2.3)

H is an L-involutive basis of the ideal I = ⟨H⟩, if (i) all elements ofH have different
leading terms, (ii) ⟨H⟩L = ⟨H⟩ and (iii) the sum in (2.3) is direct.

The definition immediately implies that H is an L-involutive basis of I, if and
only if ltH is an L-involutive basis of ltI. This in turn entails that any involutive
basis is also a – generally non-reduced – Gröbner basis. A key difference to the theory
of Gröbner bases is the requirement that any involutive basis induces a direct sum
decomposition of the ideal generated by it. This fact implies for example that involutive
standard representations of ideal members are unique. Most properties of involutive
bases can be traced back to induced decompositions both of the (leading) ideal and its
complement – for a more detailed discussion see (Seiler, 2010) and (Hashemi et al.,
2022) and references therein.

Example 2.7. Let H be a set of terms. Then the Janet division is defined as follows.
Assume xµ ∈ H . We have x1 ∈ XJ,H (xµ), if and only if µ1 = max

{
ν1 | xν ∈ H

}
.

For deciding whether any of the other variables are multiplicative, we must consider
certain subsets of H defined by initial segments of exponent vectors. Given such a
segment (µ1, . . . , µ j), we write H(µ1,...,µ j) =

{
xν ∈ H | ν1 = µ1, . . . , ν j = µ j

}
. Now

x j+1 ∈ XJ,H (xµ), if and only if µ j+1 = max
{
ν j+1 | xν ∈ H(µ1,...,µ j)

}
.

The Janet division has the special property that any finite set of terms is automati-
cally involutively autoreduced, i. e. no term in the set involutively divides another term
in the set. It entails that for this division the sum in (2.3) is always direct provided all
elements of H have different leading terms. For other divisions, one may have to per-
form an involutive autoreduction to ensure the directness of the sum. In the following,
we will always assume that we are dealing with involutively autoreduced sets so that
we will always have a direct sum in (2.3).
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Definition 2.8. Let H ⊂ S be a finite set of polynomials and I = ⟨H⟩ the ideal gen-
erated by it. The volume function of I is the numerical function vI : N0 → N0 given
by vI(q) = dimk Iq where Iq denotes the homogeneous component of the ideal I
of degree q. If L is an involutive division for which the set H is involutively au-
toreduced, we analogously define a volume function of the L-involutive span of H by
setting v⟨H⟩L (q) = dimk(⟨H⟩L)q where again the subscript q refers to the homogeneous
component of degree q.

The following assertion is a simple consequence of the assumed directness of the
sum in (2.3) and elementary combinatorics. It shows that with an involutive basis it is
trivial to compute the volume function (and thus also the more commonly used Hilbert
function) of any ideal. Furthermore, we also obtain as a trivial corollary the well-known
statement that these functions become polynomial for sufficiently high degrees.

Lemma 2.9. Let the finite setH ⊂ S be involutively autoreduced for the involutive di-
vision L. If we denote by qh the degree and by kh the number of multiplicative variables
of a generator h ∈ H , then we have4

v⟨H⟩L (q) =
∑
h∈H

[
q ≥ qh

](q − qh + kh − 1
kh − 1

)
. (2.4)

If q̄ = maxh∈H qh, then v⟨H⟩L is a polynomial for all q ≥ q̄, the volume polynomial V⟨H⟩L
of the involutive span. An explicit expression for it is obtained by simply dropping the
Kronecker–Iversion symbol in (2.4).

In this article, mainly Pommaret bases are relevant. For them, the rule to de-
termine the multiplicative variables is particularly simple, as it depends only on the
polynomial h and not on the whole set H , as for most other involutive divisions: if
max lt h = j, then we have XP(h) = {x j, . . . , xn}. Thus to get as many multiplicative
variables as possible, the optimal choice is to use the degree reverse lexicographic order
which explains why we exclusively consider it.

While for many involutive divisions L (e. g. the Janet division), any ideal I◁S pos-
sesses a finite L-involutive basis, this is not true for the Pommaret division P. A trivial
counterexample is the monomial ideal J = ⟨x1x2⟩ ◁ k[x1, x2] where one needs the
infinite set {xk

1x2 | k ∈ N} to generate J involutively. The following result from Seiler
(2009b) relates the existence of finite Pommaret bases to quasi-stability and provides
yet another characterisation of this combinatorial concept.

Theorem 2.10. A monomial ideal J ◁ S has a finite Pommaret basis, if and only if it
is quasi-stable. A polynomial ideal I◁ S has a finite Pommaret basis, if and only if it
is in quasi-stable position.

We note already above that quasi-stability is a generic property. Thus the possible
non-existence of a finite Pommaret basis is only a matter of the use coordinate system:

4Here, we use for notational simplicity the Kronecker-Iverson symbol [C] which is 1, if the logical
statement C is true, and 0 otherwise.
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after a generic linear transformation every ideal is in a position where it has finite Pom-
maret basis. Seiler (2009b) showed that Pommaret bases provide us with the following
effective version of Theorem 2.5.

Theorem 2.11. LetH be a finite Pommaret basis of the polynomial ideal I◁S. Let q
be the maximal degree deg h and n − d + 1 the maximal value of max h for an element
h ∈ H . Then:

(i) Isat = I : x∞n and satI = max
{
deg h | h ∈ H ∧max lt h = n

}
,

(ii) depthI = d,
(iii) regI = q.

As by definition of an involutive basis, ltH is a Pommaret basis of ltI and as
the values q and d are determined by leading terms, Theorem 2.5 becomes now an
immediate corollary of Theorem 2.11. With these results, the effective computation
of such key invariants like satI, depthI or regI becomes trivial – provided we can
efficiently determine a coordinate transformation to quasi-stable position. Despite the
fact that quasi-stability is a generic property, many ideals appearing in applications are
not in quasi-stable position. The only exception are zero-dimensional ideals which are
always in quasi-stable position.

Example 2.12. A celebrated result by Bayer and Stillman (1987a) asserts that gener-
ically the maximal degree of a Gröbner basis with respect to the degree reverse lexi-
cographic order is the Castelnuovo–Mumford regularity of the ideal. However, there
is no way to effectively verify whether a given ideal is in the required generic position
whereas this is trivial for quasi-stability. The difference is nicely demonstrated by the
following ideal from (Seiler, 2009b, Ex. 9.9):

I = ⟨x8
1 − x6

2x3x4, x7
2 − x1x6

3, x7
1x2 − x7

3x4⟩ ◁ k[x1, x2, x3, x4] . (2.5)

In the given coordinates, the three generators define already the reduced Gröbner basis
for the degree reverse lexicographic order. Thus one might expect that regI = 8. How-
ever, if we swap two of the coordinates and consider I as an ideal in k[x1, x3, x2, x4],
we obtain a completely different Gröbner basis for the corresponding degree reverse
lexicographic order:{

x7
2 − x1x6

3, x7
1x2 − x7

3x4, x8
1 − x6

2x3x4, x6
1x8

2 − x13
3 x4,

x5
1x15

2 − x19
3 x4, x4

1x22
2 − x25

3 x4, x3
1x29

2 − x31
3 x4,

x2
1x36

2 − x37
3 x4, x1x43

2 − x43
3 x4, x50

2 − x49
3 x4

}
. (2.6)

It seems to indicate that regI = 50. However, none of the used coordinates are generic
in the sense of Bayer and Stillman (1987a). In the orginal coordinates, the ideal I is
in quasi-stable position. A Pommaret basis is obtained, by adding to the Gröbner basis
the polynomials xk

1(x7
2 − x1x6

3) for 1 ≤ k ≤ 6. According to Theorem 2.11, we thus have
regI = 13 and we can conclude that the result by Bayer and Stillman (1987a) does not
even provide either a lower or an upper bound. Without a mean to verify the genericity
of the used coordinates, it is rather useless for concrete computations.
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Although the definitions of the Janet and the Pommaret division, respectively, look
very different, the two divisions are actually closely related (see (Gerdt, 2000) for a
detailed discussion). One consequence of this is the following observation that is an
immediate corollary to statements in (Seiler, 2009b).

Proposition 2.13. Assume that the polynomial ideal I◁S is in quasi-stable position.
Then any minimal Janet basis of I is also a Pommaret basis.

2.3. Related Algorithms

As extensively discussed in (Seiler, 2010) and references therein, the theory of
involutive bases provides a direct algorithm – developed by Gerdt and Blinkov (1998a)
(see also (Gerdt and Blinkov, 1998b)) – for completing an arbitrary generating set of an
ideal into an involutive basis (assuming that such a basis exists) and many optimisations
have been proposed for it (see e. g. (Gerdt, 2005) and references therein). Several
implementations of various variants of the basic algorithm exist. Nevertheless, one
must say that these are not at the same level of maturity as current implementations of
algorithms for Gröbner bases. In our computational experiments, we therefore used the
following strategy: we computed first reduced Gröbner bases and then completed the
leading terms to an involutive basis of the leading ideal. As one can see from results
like Theorem 2.5, this is sufficient for most purposes.

As a consequence of this strategy, we discuss here only monomial completion al-
gorithms. The basic idea of any involutive completion algorithm is to consider what
happens if a generator is multiplied with one of its non-multiplicative variables. If the
thus obtained term does not lie in the involutive span, it is added to the basis. Under
modest assumptions, one can show correctness and termination of such algorithms; in
fact, one can even show that if the input is a minimal generating set, then the output
will be a minimal involutive basis (Seiler, 2010).

Algorithm 1 allows us to compute efficiently (minimal) Janet bases, although it
does not explicitly use more sophisticated data structures like Janet trees (Gerdt et al.,
2001) (implicitly some ideas of such optimisations are contained in our management
of the multiplicative variables). The key optimisations in this algorithm are that we
keep track of the already considered non-multiplicative variables and that we do not
compute the multiplicative variables from scratch after each change in the basis, but
only perform some necessary adaptions. Experiments with 2000 random ideals show
that such simple measures suffice to provide a rather efficient algorithm: compared
with a naive completion algorithm, the runtimes were on average 10 times faster.

We do not provide a detailed proof of the correctness of Algorithm 1. It follows
rather immediately from the definition of the Janet division that adding in Line 11 the
new generator xi · h[1] affects the assignment of multiplicative variables only for the
generators considered in Line 12. The properties of an involutive division, in particular
the so-called filter axiom, ensure that the addition of a further generator can only lead
to smaller sets of multiplicative variables; it is not possible that a non-multiplicative
variable becomes multiplicative. One might worry that some earlier considered non-
multiplicative prolongation could then lose its Janet divisor. But it is shown in (Seiler,
2010, Sect. 4.4) that this does not affect the correctness of the algorithm.
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Algorithm 1: JanetCompletion
Data: Minimal generating set F for the monomial ideal J ⊴ S
Result: Minimal Janet basis of J

1 begin
2 H ←−

{
[ f , ∅,XJ,F ( f )] | f ∈ F

}
// the second component contains the already

treated non-multiplicative variables
3 SortH w.r.t. degree from the smallest to the largest one
4 repeat
5 f lag←− true
6 if ∃ h ∈ H : {x1, . . . , xn} \

(
h[2] ∪ h[3]

)
, ∅ then

7 f lag←− false
8 xi ←− first element of {x1, . . . , xn} \ (h[2] ∪ h[3])
9 h[2]←− h[2] ∪ {xi}

10 if xi · h[1] has no Janet divisor in
{
h[1] | h ∈ H

}
then

11 H ←− H ∪
{[

xi · h[1], ∅, h[3] ∩ {x1, . . . , xi−1}
]}

12 For the elements g ∈ H such that g[1] and xi · h[1] have the
same exponents in the variables x1, . . . , xi, update the
multiplicative variables among the variables xi, . . . , xn (the
variable xi must be checked only for xi · h[1]).

13 SortH w.r.t. degree from the smallest to largest one

14 until f lag
15 return

{
h[1] | h ∈ H

}

If we know that the given monomial ideal is quasi-stable and hence possesses a
finite Pommaret basis, then we can resort to a simpler algorithm. Recall that the Pom-
maret division is global, i. e. the multiplicative variables associated to a term are inde-
pendent of the remaining terms in the considered set. Hence it is not necessary to man-
age multiplicative variables or to keep track of already considered non-multiplicative
variables and we arrive at Algorithm 2 (in Line 4, any term order ≺ may be used).
Correctness and termination is extensively discussed in (Seiler, 2010).

Hashemi et al. (2018) developed a deterministic approach to achieve quasi-stable
(and related) position for arbitrary ideals. This approach is based on elementary moves.
These very sparse transformations generate the Borel group of lower triangular, non-
singular matrices. Each elementary move is characterised by a pair of indices (i, j)
with 1 ≤ i < j ≤ n and the move µ(i, j) maps x j 7→ xi + x j and leaves all other variables
unchanged. Thus in S we have a total of 1

2 n(n − 1) different elementary moves.
Assume that the ideal I is not in quasi-stable position. Hence its leading ideal

ltI has at least one obstruction (xµ, i) to quasi-stability. In (Hashemi et al., 2018)
it is shown that if max xµ = j the transformation x j 7→ xi + ax j will remove this
obstruction for almost any choice of a ∈ k (here our assumption chark = 0 is crucial).
We will always choose a = 1, i. e. apply the elementary move µ(i, j). In “unlucky”
situations, cancellations may allow the obstruction to persist. However, after finitely
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Algorithm 2: PommaretCompletion
Data: Finite generating set F of quasi-stable ideal J ⊴ S
Result: Pommaret basisH of J

1 begin
2 H ←− F ; S ←−

{
xih | h ∈ H , i < max h

}
3 while S , ∅ do
4 s←− min≺ S; S ←− S \ {s}
5 if s has no Pommaret divisor inH then
6 H ←− H ∪ {s}; S ←− S ∪

{
xis | i < max s

}
7 returnH

many iterations of µ(i, j), it will always disappear.
These considerations lead to Algorithm 3 (in (Hashemi et al., 2018), it was given

for the case of strongly stable position, but the adaption is trivial). For proving its
termination and for its formulation, one needs the following ordering. Let F be an au-
toreduced finite set of polynomials and writeL(F ) = (t1, . . . , tℓ) for the tuple of leading
terms of F sorted such that t1 ≺revlex · · · ≺revlex tℓ for the purely reverse lexicographic
order (not the degree reverse lexicographic order!). Given two such sets F and F̃ with
L(F ) = (t1, . . . , tℓ) and L(F̃ ) = (t̃1, . . . , t̃ℓ̃), we define

F ≺L F̃ ⇐⇒

∃ j ≤ min (ℓ, ℓ̃) :
(
∀i < j : ti = t̃i

)
∧ t j≺revlex t̃ j or(

∀ j ≤ min (ℓ, ℓ̃) : t j = t̃ j
)
∧ ℓ < ℓ̃ .

(2.7)

Algorithm 3: QSPos – Quasi-Stable Position
Data: Reduced Gröbner basis G of homogeneous ideal I◁ S
Result: Linear change of coordinates Ψ such that ltΨ(I) is quasi-stable

1 begin
2 Ψ←− id; F ←− G

3 while obstruction to quasi-stability of ⟨ltF ⟩ exists do
4 choose elementary move ψ related to obstruction; Ψ←− ψ ◦ Ψ
5 F̃ ←− ReducedGröbnerBasis

(
ψ(F )

)
6 while F ⪰L F̃ do
7 Ψ←− ψ ◦ Ψ

8 F̃ ←− ReducedGröbnerBasis
(
ψ(F̃ )

)
9 F ←− F̃

10 return Ψ

The strategy behind Algorithm 3 is quite simple. As long as obstructions exist, we
apply a related elementary move. Generically, this move will eleminate at least one
obstruction; in rare cases we may have to iterate the move. In (Hashemi et al., 2018), it
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is shown that a given ideal I possesses modulo linear coordinate transformations only
finitely many leading ideals and that after an elementary move related to an obstruction
a polynomial set can never descend with respect to the ordering ≺L. This ensures
correctness and termination of the algorithm.

Like many algorithms in commutative algebra, Algorithm 3 is not completely spec-
ified: in Line 4, it is not said how the next elementary move should be chosen. In
general, several possibilities will exist here. While the choice does not affect the cor-
rectness and the termination of the algorithm, it has an effect on the efficiency. A
coarse measure for the efficiency is the number of elementary moves required until
quasi-stable position is reached.

In a preparatory experiment, we compared two simple ways for performing this
choice. In the “democratic” strategy, we note for each existing obstruction of quasi-
stability for which elementary move it “votes”, i. e. to which move it corresponds; the
move which gets the most votes is taken. For estimating the influence of good or bad
choices, we also used a random strategy: in each iteration of the outer while loop of
Algorithm 3, we randomly pick an elementary move.

Figure 1: Performance of random choices. Left: comparison of minimal and maximal number of transfor-
mations needed to reach quasi-stable position. Right: Comparison of average number of transformations
required by random strategy (green) with democratic strategy (blue).

We applied both strategies to 1000 ideals (these were a sample of 10% of a large
test set of random ideals described in Section 3.2 below). The random strategy was
applied to each ideal 10 times. The outcome of the experiment is shown in the two
plots in Figure 1. The plot on the left shows for each ideal the minimal and the max-
imal number of transformations needed to reach a quasi-stable position using random
choices. Obviously, the numbers differ significantly: the maximum is almost 10 times
as large as the minimum in the worst cases and even in the best cases the numbers
differ by a factor of five. The plot on the right compares the average number of trans-
formations in a random strategy with the number required by the democratic strategy.
The latter one needed typically between one and three elementary moves and thus was
much more efficient. These observations clearly indicate that it is worth while thinking
about good ways to perform the choice in Algorithm 3.

Remark 2.14. A natural thought is to consider only elementary moves which are related
to obstructions, i. e. which obtain in the democratic strategy at least one vote. In fact,
any human strategy we are aware of is based on this assumption. To our surprise, in
the systematic analysis of a large set of random ideals (see Section 3.2 below), we
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found cases where the optimal choice is not related to any obstruction and thus not
obtainable with such strategies. However, such cases are fairly rare: we observed this
phenomenon only for about 6% of the considered ideals.

3. Machine Learning Quasi-Stable Position

It follows from Remarks 2.3 and 2.4 that all problems mentioned in the title can be
simultaneously solved by achieving quasi-stable position (for a system of parameters
one needs in addition the Pommaret basis). Therefore, we will consider in the sequel
only this problem. If the goal is a Noether position, then this may lead to unneces-
sary transformations, as it is weaker than quasi-stable position. Hashemi et al. (2019)
constructed a special involutive division, called D-Noether division, such that a finite
Noether basis exists, if and only if the ideal is in Noether position. In principle, one
could adapt the approach presented here to this division and thus obtain slightly more
efficient computations. As a quasi-stable position has so many further benefits, we
refrain from detailing such an adaption.

We will now show how methods from supervised machine learning can success-
fully be applied to selecting the “right” elementary move in Line 4 of Algorithm 3.
We are using a greedy approach: the models are trained to estimate which elementary
move will lead to the largest Pommaret span. Following ideas used by England and
collaborators for machine learning good variable orders for cylindrical algebraic de-
compositions (see the references in the Introduction), we consider the choice of moves
as a multi class classification problem: each class corresponds to one possible elemen-
tary move so that we have 1

2 n(n − 1) different classes.
We will compare five well established and much used classification methods:
• k Nearest Neighbours (kNN)
• Support Vector Machine (SVM)
• Decision Tree (DT)
• Multilayer Perceptron (MLP)
• Logistic Regression (LR)

Details about these methods can be found in most textbooks on machine learning; see
e. g. (Aggarwal, 2015) or (Bishop, 2006). We emphasise that with the exception of the
multilayer perceptron, none of them is based on a neural network. This means that
training is comparatively cheap and less data are needed for it. In particular the latter
point is of some relevance, as we will discuss below.

All our computations were done in Python using the Scikit-learn library (Pe-
dregosa et al., 2011). For polynomial computations, the Python based computer al-
gebra system SageMath5 was used. This concerns in particular the determination of
Gröbner bases. For the extension to Janet or Pommaret bases, we implemented the
monomial algorithms presented in Section 2.3 in SageMath.

5https://www.sagemath.org/
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3.1. Features and Scoring

For applying machine learning models, the problem data must be mapped into a
feature space of fixed dimension. This fact excludes the typical computer algebra ap-
proach of using a generating set as input: as the number of generators and the number
of terms in each generator vary widely from ideal to ideal, generating sets cannot be
interpreted as elements of a feature space. It also turned out that typical algebraic
invariants like dimension, depth or regularity are not relevant for deciding which ele-
mentary move to choose.

Our feature vectors contain mainly what we call statistical data about the given
generating set. This includes e. g. information about degrees (total or in individual
variables) or the distribution of the variables over all terms or over the leading terms.
In addition, we incorporate a transformation part which encodes for each elementary
moves how many obstructions to quasi-stability vote for it. This makes the length of
the feature vector independent of the size of the generating set, but it still depends on
the number n of variables in the underlying polynomial ring S so that we must fix n.
All experiments reported in this work have been done for n = 4. For smaller values
of n, it is not so hard to construct by hand good coordinates. For larger values of n, the
computational costs rapidly increasing (both for preparing the training data, but also for
the learning, as the number of our features grows exponentially with n). Hence n = 4
seems a good choice for first experiments with different machine learning models.

Table 1 lists 3 · 2n + 6n+ 8 statistical features, if we work in a polynomial ring with
n variables. The second column describes the number of features each row defines. For
instance, in the fourth row we have three values for each variable which gives a total
of 3n features. For explaining the third column, we need the following notations. Let
F = { f1, . . . , fk} ⊂ S be the considered finite generating set of an ideal I. We can write
each polynomial as

fi =
Ti∑

t=1

ci,t x
d1

i,t

1 · · · x
dn

i,t
n , i ∈ {1, . . . , k} . (3.1)

Here Ti is the number of terms of fi. We also write f t
i for the term t in fi. For the

leading term, we use capital letters:

lt fi = Ci,t x
D1

i,t

1 · · · x
Dn

i,t
n . (3.2)

In some rows, we used the sign function to count the number of nonzero exponents and
denoted by av the arithmetic mean of some values.

As one can see, this statistical part of the feature vector provides information about
how the variables are distributed over all the terms, over the different generators and
over the leading terms, as such information are crucial for estimating how different
possible transformations may affect the size of the Pommaret span (and the sparsity) of
the transformed set.

In addition, we have a smaller transformation part in the feature vector consisting
of 1

2 n(n − 1) entries: we store for each elementary move how many obstructions vote
for it. A natural human strategy – the democratic strategy mentioned above – is based
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Table 1: Used statistical features

Description # Formula
Number of generators 1 k
total number of terms 1

∑
i Ti

Min/max/average total degree of
generators

3 mini
∑n

j=1 d j
i,t, maxi

∑n
j=1 d j

i,t and
avi

∑n
j=1 d j

i,t

Min/max/average degree in single
variable of generators

3n mini d j
i,t, maxi d j

i,t and avi d j
i,t for

j ∈ {1, . . . , n}
Min/max/average degree in single
variable of leading terms

3n mini D j
i , maxi D j

i and avi D j
i for

j ∈ {1, . . . , n}
Min/max/average number of
terms in generators

3 mini Ti, maxi Ti and avi Ti

Number of generators containing
certain variables

2n − 1
∑

i sgn
(∑

t
∏

x j∈X̄
sgn (d j

i,t)
)

for
∅ , X̄ ⊆ X

Number of terms containing
certain variables

2n − 1
∑

i,t
∏

x j∈X̄
sgn (d j

i,t) for ∅ , X̄ ⊆ X

Number of leading terms
containing certain variables

2n − 1
∑

i
∏

x j∈X̄
sgn (D j

i ) for ∅ , X̄ ⊆ X

Sum of total degrees of generators 1
∑

i deg ( fi)
Number of pure variable powers
among terms

1
∑

i Ti −
∑

i,t, j sgn
(
|d j

i,t − deg ( f t
i )|

)
Number of pure variable powers
among leading terms

1 k −
∑

i,t, j sgn
(
|D j

i,t − deg fi|
)

exclusively on these values. The total number of features is thus 3 ·2n + 1
2 (n2 +11n)+8

which leads for n = 4 to 86 features.
England and Florescu (2019) used 11 similar statistical features in their work on

learning good variables orderings for cylindrical algebraic decomposition. Later, they
proposed in (Florescu and England, 2019) a brute force approach to automatically gen-
erate new features. They generated algorithmically almost 2000 features (in a polyno-
mial ring with n = 3 variables) to extract in the end with a statistical variance analysis
78 relevant and independent ones. We believe that we understand our problem suffi-
ciently well to be able to select the relevant features by hand and refrained from such
an automatised approach. The results presented below seem to indicate that this belief
is not unjustified.

Given a finite polynomial set F ⊂ S generating an ideal I ◁ S, our final goal is
to put I into quasi-stable position and to obtain a Pommaret basis H of I. We first
compute a reduced Gröbner basis G out of F so that ltG is the minimal generating set
of ltI. For determining the transformation part of the feature vector, we need the ob-
structions to quasi-stability of ltG. If no obstructions exist, I is already in quasi-stable
position and we can determine a Pommaret basis (of its leading ideal) with Algorithm 2.

If obstructions exist, then we need a more quantitative measure for assessing how
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far away from quasi-stable position we are. Taking lt G as input for Algorithm 1, we
determine a minimal Janet basis H of ltI and read off from it the volume polyno-
mial VI via Lemma 2.9. With the same lemma, we can also compute the volume
polynomial V⟨H⟩P of the Pommaret span of H . In quasi-stable position, these two
polynomials are identical, as then the Janet basis is simultaneously a Pommaret basis
by Proposition 2.13 and thus ⟨H⟩P = ltI. Otherwise, we have for all sufficiently large
degrees q that V⟨H⟩P (q) < VI(q).

The formula in Lemma 2.9 expresses the volume polynomials as a sum of binomial
coefficients. But it is of course trivial to expand these explicitly into the standard form
of a univariate polynomial

V(q) = vn−1qn−1 + vn−2qn−2 + · · · + v1q + v0 (3.3)

and it also follows immediately from Lemma 2.9 that the maximal degree of any vol-
ume polynomial is n − 1. We associate with each volume polynomial written in the
form (3.3), its coefficient vector v = (vn−1, . . . , v1, v0) ∈ Qn. Given two volume poly-
nomials, we can compare their coefficient vectors using a lexicographic ordering. The
volume polynomial with the larger vector will have the stronger asymptotic growth,
i. e. from some degree on it will always produce larger values. For example, if we are
not in quasi-stable position, then v⟨H⟩P ≺lex vI.

Based on this observation, we can compare the effect of different elementary moves.
Let µ(i, j) and µ(k,ℓ) be two moves. Applying each of them to the generating set F ,
we obtain two new polynomial sets F(i, j) and F(k,ℓ), respectively. Out of them, we
compute first reduced Gröbner bases G(i, j) and G(k,ℓ) and then complete their leading
terms to Janet basesH(i, j) andH(k,ℓ). If now v⟨H(i, j)⟩P ≺lex v⟨H(k,ℓ)⟩P , then we consider the
elementary move µ(k,ℓ) as the better choice in Algorithm 3.

Obviously, it is very costly to analyse all possible elementary moves in this way, in
particular for a larger number n of variables. One may say that we try to bypass this
expensive computation by using machine learning. The task of the different models is
to predict the best move purely on the basis of the above described features – without
actually applying any transformation and without computing any Gröbner basis.

3.2. Producing Training Data

A fundamental problem in the application of tools from machine learning to com-
mutative algebra is the lack of a sufficiently large repository of polynomial ideals.
Available collections contain typically some dozens of examples with different num-
bers of variables, whereas the training of a typical machine learning model will require
at least a few thousand examples (and in our case all with the same number of vari-
ables). Hence we must resort to random ideals. It is well known that the properties
of polynomial ideals appearing in applications often differ from random ideals, but we
are not aware of any alternative.

Instead of relying on some built-in functions of SageMath, we wrote our own ran-
dom generator for homogeneous ideals to have full control over all relevant parameters
like degrees, number of generators or number of terms. It uses a Poisson distribution
for choosing these parameters. Hence like in many applications, most generators have

15



rather small degrees and a low number of terms, but some generators may have fairly
high degrees or a larger number of terms.

An important goal is that most generated ideals are not in quasi-stable position,
as only these are useful for our purposes. Furthermore, the dimension of the ideals is
important. Any zero-dimensional ideal is automatically in quasi-stable position6 and
for ideals of dimension n− 1, i. e. hypersurfaces, it is usually easy to find by hand good
coordinates. Thus we chose the parameters of the Poisson distributions in such a way
that many ideals of intermediate dimensions are produced.

Figure 2: Some statistics of the 10.000 generated random ideals and their generating sets

With this random generator, we produced 10.000 ideals in a polynomial ring with
4 variables over the rational numbers. About 95% of them, 9.509 to be precise, were
not in quasi-stable position and we only used these ideals for our experiments. The
histograms in Figure 2 show some key properties of the generated polynomial sets and
their ideals. The first histogram of the number of generators shows the typical shape
of a Poisson distribution with most of the sets containing two to four generators. The
second and the fourth histogram depicts the average degree and the average number of

6Unfortunately, many of the ideals in available collections are zero-dimensional which further reduces
the amount of training data available from real applications.
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terms in a generator. The third histogram plots the dimensions of the generated ideals.
It shows that most ideals have their dimension in the desired intermediate range.

Remark 3.1. We used the occasion of having so many ideals available to do some
statistics on their properties and on their bases. More precisely, we were interested in
comparing the number of generators and the maximal degree of a generator in the orig-
inal generating set, in the reduced Gröbner basis and in the Janet basis as an empirical
way to assess the practical complexity of the latter two types of bases.

Figure 3: Sizes (left) and maximal degrees (right) of the original generating sets, the reduced Gröbner bases
and the Janet bases of the random ideals

The left diagram in Figure 3 concerns the sizes of the different types of generating
sets. Each curve contains one point for each of the 10.000 random ideals and each curve
is separately sorted by size. It thus makes no sense to compare individual points, as
they will typically belong to different ideals. One clearly see that for the vast majority
of ideals the size of the Gröbner and Janet bases, respectively, grow only moderately;
only for a very small fraction of the ideals large bases with more than one hundred
elements occur. As Janet bases are non-reduced Gröbner bases, they contain of course
more generators, but on average they seem to be larger by a relatively modest factor.

The right diagram in Figure 3 shows the maximal degree of a generator; we omit-
ted here a curve for the reduced Gröbner bases, as it is indistinguishable from the one
for the Janet bases. As already mentioned, Bayer and Stillman (1987a) proved that
generically the maximal degree of a Gröbner basis with respect to the degree reverse
lexicographic order is the Castelnuovo–Mumford regularity of the ideal. But as we
demonstrated in Example 2.12, this degree is neither a lower nor an upper bound of the
regularity. In (Albert et al., 2015), it is shown that the degree of a Janet basis is always
at least the Castelnuovo–Mumford regularity and thus represents an upper bound. The
diagram confirms a well-known empirical fact: although the Castelnuovo–Mumford
regularity may grow double exponentially with the number n of variables and the de-
gree d of the generating set, this rarely occurs in practise. In other words, our random
ideals exhibit here again the same behaviour as ideals appearing in applications.

Hashemi et al. (2021, Ex. 7.7) exhibited a family of ideals in an arbitrary number
of variables such that the difference between the degree of the Janet basis and the
Castelnuovo–Mumford regularity can become arbitrarily large (based on an example
in three variables from (Albert et al., 2015)). The benchmarks presented in (Albert
et al., 2015) indicate, however, that in practise large differences are rare. Our 10.000
random ideals seem to confirm this observation: 5.863 have a Janet basis with exactly
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the same degree as the Gröbner basis, 4.081 Janet bases have a degree which is one
higher and 56 a degree which is two higher; larger differences do not occur. Thus,
although the Janet bases are typically considerable larger, the additional generators do
not increase noticably the maximal degree.

0 1 2 3 4 5
0

1000

2000

3000

4000

Figure 4: Distribution of classes in data set

To each of the not quasi-stable ideals, we
applied each of the six possible elementary
moves and determined which move yields
the largest Pommaret span in the sense that
the coefficient vector of the volume poly-
nomial is maximal for the lexicographic or-
dering. We sorted the elementary moves as
(2, 1), (3, 1), (3, 2), (4, 1), (4, 2) and (4, 3)
and labelled the corresponding classes as
0, 1, . . . , 5. Figure 4 shows how the ideals
distribute over the six different classes. Obvi-
ously, the distribution is very uneven: almost
half of the ideals belong to class 3, whereas the classes 0 and 2 are very rare. As a con-
sequence, we used for the determination of the hyperparameters of the different models
a stratified cross-validation. It is an interesting question whether this unevenness is an
artefact of working with random ideals or whether it can also be observed in ideals
from applications.

3.3. Experimental Results

We determined the hyperparameters of the different used machine learning models
by a grid search with a 5-fold stratified cross-validation. Thus we separated our data
set into five parts of equal size taking care that the distribution of the ideals over the
different classes remains the same in each part. Then always four parts were used for
training and one part for testing. The values obtained for the various hyperparameters
of the different models are shown in Table 2.

As the different models depend on different numbers of hyperparameters and also
the possible ranges of values for the various hyperparameters can be very different
(sometimes a finite number of discrete values, sometimes a real interval), it makes no
sense to directly compare the computation times for the determination of the hyperpa-
rameters. We only mention that the multilayer perceptron required by far the longest
time and the decision trees were the fastest model in this respect.

Working with the thus determined hyperparameters, we observed for the five dif-
ferent models investigated the accuracies reported in Table 3 (these are the average ac-
curacies over the five different test sets in the 5-fold cross-validation). Even the worst
model, k nearest neighbours, achieved an accuracy of 74%, while the best model, the
multilayer perceptron, reached 94%. For comparison: England and Florescu (2019)
reported for their use of machine learning in the context of cylindrical algebraic de-
composition accuracies around 60% for all tested models. This seems to indicate that
our problem is very well suited for the use of machine learning. However, one should
take into account that because of the stratification of our data set, always answering
class 3 yields already an accuracy of almost 50%.
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Model Hyperparameter Value

k-NN
k 20

Weights Inv. proport. distance
Algorithm KDtree

SVM
Regularisation param. C 0.1

Kernel Linear

DT
Criterion Gini impurity

Maximum depth 5

MLP

Hidden layer size 100
Activation function logistic sigmoid

Optimizer Quasi-Newton method
Regularisation param. α 1.0

LR

Class Multinomial
Max. iterations 1.000

Solver Stoch. average gradient
Penalty L1

Table 2: Hyperparameters determined by a grid search with 5-fold stratified cross-validation

Model k-NN SVM DT MLP LR Demo. Random
Accuracy 0.74 0.90 0.78 0.94 0.88 0.43 0.17

Time (sec.) 16.49 15.32 30.44 34.94 146.98 740.32 0.29

Table 3: Accuracy of the different models

In the last two columns of Table 3, we contrast the accuracies with a human strategy
– the democratic strategy mentioned above – and a simple random approach. For the
random approach, we used a uniform random generator, as in real application situations
the uneven distribution of the classes shown for our data in Figure 4 is not known.
Somewhat surprisingly, we observed for random choices an accuracy of 17% which is
exactly the value one would expect for a uniform distribution. Not surprising is the fact
that this is by far the lowest value in the table. The democratic strategy as one of the
most natural human strategies achieved only an accuracy of 43% which is even worse
than always saying class 3 and far inferior to any used machine learning model. Thus
this human strategy cannot be considered as very successful.

The last row in Table 3 provides for each model and the two other strategies the
time required to determine the accuracy. For the machine learning models, this means
the time needed to perform a 5-fold stratified cross-validation. Trivially, the random
strategy is the fastest. As the democratic strategy requires to determine all obstructions,
it is by far the slowest. Among the machine learning models, k nearest neighbours
and support vector machine were the fastest; decision trees and multilayer perceptrons
required roughly double the time and the logistic regression even the tenfold time.

For a more detailed accuracy analysis, we compare in Figure 5 the confusion ma-
trices (based on all 9.509 test ideals not in quasi-stable position) for two models: the
decision tree as an example of a model which did not work so well on our data and the
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multilayer perceptron as the winner among the considered models in terms of accuracy.
One sees the biggest differences in the relatively rare classes 0 and 2 and in the class 1
which is apparently difficult to recognise. The multilayer perceptron classified the vast
majority of ideals in these three classes correctly, whereas the decision tree put most of
ideals in the wrong classes 3 and 4.

Figure 5: Confusion matrices for two models: decision tree (left) and multilayer perceptron (right)

A comparison based on accuracies and similar measures like sensitivity, precision
or specifity is “binary”: if the model does not predict the optimal move, its answer is
considered as false. However, it might be that the move selected by the model has al-
most the same effect on the Pommaret span as the optimal one. We therefore computed
for each model for each ideal where it did not predict the optimal move a “volume
ratio”, i. e. the ratio Vpred(q̄)/Vopt(q̄) where Vpred denotes the volume polynomial of the
Pommaret span after the predicted move, Vopt the volume polynomial of the Pommaret
span after the optimal move and the degree q̄ was chosen as ten times the degree of the
Janet basis of the original ideal, i. e. so high that it approximates well the asymptotic
behaviour. As one can clearly see in Figure 6, in many cases the predicted move was
actually not much worse than the optimal move with a volume ratio above 90%. For
the multilayer perceptron the volume ratio was really bad for less than 100 ideals out
of almost 10.000. By comparison, the decision tree classified more than 1.000 ideals
really badly, i. e. more than 10 times as many.

Figure 6: Volume ratios for two models: decision tree (left) and multilayer perceptron (right)
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3.4. Complete Determination of Quasi-Stable Position

So far, we have only been concerned with one intermediate step of Algorithm 3,
the choice of the next elementary move in Line 4. In principle, it is straightforward
to embed machine learning into the algorithm: in Line 4, the choice of the next move
is done by a trained model. Note, however, the following difference: in Algorithm 3,
the next move is chosen among all moves related to an obstruction, whereas our ma-
chine learning models always consider all possible elementary moves. As discussed
in Remark 2.14, in a small number of cases the optimal move is not related to an ob-
struction and hence it appears useful to allow also such moves. On the other hand, the
termination proof in (Hashemi et al., 2018) does not take such moves into account.

Algorithm 4: QSPosML – Quasi-Stable Position with ML
Data: Reduced Gröbner basis G of homogeneous ideal I◁ S
Result: Linear change of coordinates Ψ such that ltΨ(I) is quasi-stable

1 begin
2 Ψ←− id; F ←− G

3 M←−
{
elem. moves related to obstr. to quasi-stability of ⟨ltF ⟩

}
4 whileM , ∅ do
5 if |M| = 1 then
6 ψ←−M[1];
7 else
8 let ML model choose elementary move ψ

9 F̃ ←− ReducedGröbnerBasis
(
ψ(F )

)
10 if (ψ <M) ∧ (F ⪰L F̃ ) then
11 ψ←− move inM with most votes
12 F̃ ←− ReducedGröbnerBasis

(
ψ(F )

)
13 Ψ←− ψ ◦ Ψ

14 while F ⪰L F̃ do
15 Ψ←− ψ ◦ Ψ

16 F̃ ←− ReducedGröbnerBasis
(
ψ(F̃ )

)
17 F ←− F̃

18 M←−
{
elem. moves related to obstr. to quasi-stability of ⟨ltF ⟩

}
19 return Ψ

In our experiments, it turned out that these moves may inded lead to termination
problems. We encountered surprisingly often situations where only a very small num-
ber of elementary moves was related to an obstruction, but the selected machine learn-
ing model proposed another move. Unfortunately, this move did not change the leading
ideal and thus the algorithm ran into an infinite loop. We therefore designed Algo-
rithm 4 which is modified in two respects. (i) If only one elementary move is related to
an obstruction, it always applies this move without asking the machine learning model.
This reflects that in such a situation one can expect that after this move a quasi-stable
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position will be reached and thus the question of choosing a move does not arise. (ii) If
the machine learning model proposes a move which is not related to an obstruction,
then the algorithm uses this move only tentatively. This means that it checks after-
wards whether the move has lead to a new set of leading terms which is larger than the
old one with respect to the ordering ≺L introduced in (2.7). Only if this is the case, it
continues with the transformed set. Otherwise, it rejects the move and instead uses the
democratic strategy to choose the next move. This modification makes the algorithm
consistent with the termination proof in (Hashemi et al., 2018) – which is based on
producing a sequence of leading ideals which is strictly increasing with respect to the
ordering ≺L – and thus ensures termination of the adapted algorithm.

Figure 7: Number of transformations re-
quired to achieve a quasi-stable position.

We applied Algorithm 4 to the 9.509 test ide-
als not in quasi-stable position and counted for
each how many elementary moves were neces-
sary to reach a quasi-stable position. In this ex-
periment, we used the support vector machine
as machine learning model, as it has almost the
same accuracy as the multilayer perceptron, but
requires less computation time. Figure 7 shows
a histogram depicting how many ideals needed
how many transformations to reach a quasi-stable
position. 90% of the ideals require at most four
transformations with 55% needing two or three;
more than eight transformations were never nec-
essary. This indicates that most of our test ideals are not far away from a quasi-stable
position. We also monitored the effect of the modifications introduced in the design of
Algorithm 4. About two thirds of the ideals reached a situation where only one elemen-
tary move was related to an obstruction; one may conjecture that this typically happens
for the last transformation. Given the observation from Remark 2.14 that moves not
related to obstructions are rarely optimal, it is surprising that it happened also for about
two thirds of the ideals that the support vector machine proposed in at least one iteration
such a move. But on average only about every fourth such move could be accepted.

4. Conclusions

Our preliminary experiments already indicate that the problem of obtaining a quasi-
stable position is well suited for the use of machine learning models and definitely
better than the coarse human heuristics used so far. This is not very surprising, as
the latter ones are based only on an analysis of the leading terms, whereas our feature
vector takes the complete support of all generators into account.

Of course, the here presented results still have to be confirmed by further experi-
ments with polynomials in a larger number of variables, say n = 5 and n = 6. Such
experiments will also provide some information how our approach scales with n. It
is clear that both the preparation of the training data and the determination of the hy-
perparameters will become significantly more expensive with an increasing number of
variables and features. But once the models are trained, the costs of applying them
should be neglectable compared to the costs of the required Gröbner bases.
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The performance of both Algorithm 4 and the machine learning models are not yet
completely satisfactory. In particular, the large number of instances where the machine
learning model proposes a move which is not related to an obstruction to quasi-stability
is surprising and requires further study. As currently only about one fourth of these
moves can be accepted, they lead to a considerable waste of computation time.

We have not yet analysed how good our choice of the used features is. Only sup-
port vector machines offer here a simple possibility by looking at the support vectors
defining the hyperplanes separating the different classes. While one can observe there
differences in the relative importance of the various features, it turned out that at least
for this model all features are relevant and used for the classification. Thus it seems
that our choice of features was not so bad, but we plan to confirm this in the future with
a more rigorous statistical analysis of all used models. Hopefully, such an analysis
will also provide some insight into the inner working of the models, i. e. offer some
explanations how they reach their decisions. This in turn may allow us to come up with
better human heuristics applicable for an arbitrary number of variables.

Recall from the discussion in the Introduction that a key aspect in determining a
quasi-stable position is to preserve as much sparsity as possible during the transforma-
tions, as otherwise all subsequent computations are getting rather expensive. Currently,
this additional goal is neglected in our scoring which is solely based on the size of the
Pommaret span. As we could see in Figure 6, sometimes two different moves provide
Pommaret spans of almost the same size. In such a situation, the move producing the
slightly smaller span might preserve more sparsity and thus might be preferable from
the point of view of the full process of determining a quasi-stable position. We plan to
include sparsity considerations into the scoring and to perform a multi-objective opti-
misation in the training phase. In fact, our features have already been selected in such a
way that they should provide the necessary information for estimating also the sparsity
of the transformed ideal.
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