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Abstract

Free resolutions are an important tool in algebraic geometry for the structural analysis
of modules over polynomial rings and their quotient rings. Minimal free resolutions
are unique up to isomorphism and induce homological invariants in the form of Betti
numbers. It is known that Pommaret bases of ideals in the polynomial ring induce finite
free resolutions and that the Castelnuovo-Mumford regularity and projective dimension
can be read off already from the Pommaret basis. In this article, we generalize this con-
struction to Pommaret-like bases, which are generally smaller. We apply Pommaret-
like bases also to infinite resolutions over quotient rings. Over Clements–Lindström
rings, we derive bases for the free modules in the resolution using only the Pommaret-
like basis. Finally, restricting to monomial ideals in a non-quotient polynomial ring,
we derive an explicit formula for the differential of the induced resolution.
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1. Introduction

Involutive Bases have their origin in the works by Janet on the analysis of systems
of (linear) partial differential equations (Janet, 1920, 1929). As in Gröbner basis the-
ory, Janet used monomial, and thus combinatorial, structures as a tool with which more
complex (differential) algebraic structures can be analysed. Inspired by Janet’s—and
also Pommaret’s (Pommaret, 1978)—works, Zharkov and Blinkov developed involu-
tive bases for polynomial ideals (Zharkov and Blinkov, 1996). Gerdt and Blinkov
(1998) studied different types of involutive bases, introducing the framework of invo-
lutive divisions in the process. The most well-known involutive divisions—the Janet
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and Pommaret divisions—go back to Janet’s works. Further involutive divisions have
been studied; see, e.g., (Semenov, 2006; Hashemi et al., 2019).

Like Gröbner bases, involutive bases induce free resolutions of the ideals they gen-
erate. For some types of involutive divisions, the syzygy modules in this resolution
are generated by involutive bases of the same type (Seiler, 2009b). In the case of the
Pommaret division, homological invariants like projective dimension and Castelnuovo-
Mumford regularity can be read off directly from the original Pommaret basis. Not ev-
ery monomial ideal possesses a finite Pommaret basis; those that do are termed quasi-
stable. For the resolution induced by the Pommaret basis of a quasi-stable monomial
ideal, an explicit formula is known (Seiler, 2009b); however, this resolution is not nec-
essarily minimal. This formula generalizes the well-known resolution formula found
by Eliahou and Kervaire (1990), which only applies when the Pommaret basis coin-
cides with the minimal generating set of the ideal. A polynomial ideal is said to be in
quasi-stable position when it possesses a finite Pommaret basis for the given coordi-
nates; moreover, this position is a generic one (Seiler, 2009a). For a comprehensive
study and applications of the theory of involutive bases to commutative algebra and the
geometric theory of partial differential equations, we refer to (Seiler, 2010).

Our contributions concern the use of relative involutive-like bases for the compu-
tation and analysis of free resolutions. For this, we focus on (relative) Pommaret and
Pommaret-like bases. While Pommaret bases capture many homological properties of
ideals in quasi-stable position (Seiler, 2010), the resolutions induced by them need not
be minimal, because already the basis of the ideal might not be a minimal generating
system. We show that Pommaret-like bases represent a significant improvement in this
respect. Another aspect we investigate is the application to monomial ideals. For these,
we are able to identify different classes of (relatively) quasi-stable ideals for which
Pommaret-like bases induce the minimal free resolution. Even for other cases, the in-
duced resolution has useful properties like Gröbner-reducedness in all higher syzygy
modules. For a subclass of quasi-stable monomial ideals, we obtain closed formulas
for the differential of the induced resolution, thereby significantly generalizing the for-
mula by Eliahou and Kervaire (1990) for stable monomial ideals. Moreover, we relate
our results to a resolution formula for square-free Borel ideals in zero-dimensional
Clements–Lindström rings found by Gasharov et al. (2011).

The article is organized as follows. Section 2 aims to recall well-known facts about
involutive bases, syzygies and free resolutions. Section 3 starts by analysing the reso-
lutions induced by relative Pommaret bases. We focus on obtaining minimal Pommaret
bases for the syzygy modules in each homological degree and observe phenomena that
distinguish the relative situation from the case of resolutions over an ordinary polyno-
mial ring. Pommaret-like bases are generally smaller than their Pommaret counterparts
and provide better chances to get minimal resolutions. Section 4 studies resolutions in-
duced by these bases. To carry out an analogous study over quotient rings, we introduce
relative involutive-like divisions in Section 5. Section 6 analyses Pommaret-like in-
duced resolutions over Clements–Lindström rings. We get a combinatorial formula for
the bigraded Betti numbers of the induced resolutions. In Section 7, we obtain for some
classes of monomial ideals explicit formulas for the differential of the Pommaret-like
induced resolution, generalizing e.g. constructions by Eliahou and Kervaire (1990) and
by Seiler (2010); Albert et al. (2015). Finally, some conclusions are given in Section 8.
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2. Preliminaries

Let P = K[x1, . . . , xn] = K[X] be the polynomial ring in n variables over a field K,
I ⊴ P an ideal of P and P/I the quotient ring defined by I.

As a K-vector space, P has the basis T = {xµ1
1 · · · x

µn
n | µ1, . . . , µn ∈ N0} of terms,

which are products of non-negative integer powers of the variables. To each term t =
xµ = xµ1 · · · x

µn
n ∈ T we associate its total degree deg(t) =

∑n
i=1 µi and its multidegree

µ = (µ1, . . . , µn) ∈ Nn
0. We write degi(t) = µi for the degree of t in the variable xi. A

term ordering on T is denoted by ≺ and throughout we shall assume that x1 ≺ · · · ≺ xn.
The leading term of a given polynomial 0 , f ∈ P with respect to ≺ is denoted by
lt( f ). If F ⊂ P is a finite set of polynomials, we denote by lt(F) the set {lt( f ) | f ∈ F}.
A finite set G ⊂ I is called a Gröbner basis for I with respect to ≺, if its leading term
ideal satisfies lt (I) = ⟨lt( f ) | f ∈ I⟩ = ⟨lt(G)⟩. There is a well-known notion of term
orderings and Gröbner bases in finitely generated free P-modules; for the leading term
of an element v , 0 in such a module we write lt(v). We refer e. g. to (Cox et al., 2015;
Adams and Loustaunau, 1994; Mora, 2005, 2016) for more details on Gröbner bases.

For an integer d ≥ 0, we collect the subset of all terms of degree d in the set
Td ⊂ T . Td generates the finite dimensional K-vector space Pd of polynomials homo-
geneous of degree d: Pd = ⟨Td⟩K. This induces the standard grading of P. For a given
multidegree µ = (µ1, . . . , µn), we write Pµ = ⟨xµ⟩K for the one-dimensional K-vector
space of monomials supported on the term xµ. The direct sumP = ⊕µ∈Nn

0
Pµ induces the

multigrading of P. We work with ideals that are homogeneous or multihomogeneous;
the latter are exactly the monomial ideals.

The main idea of an involutive division is to assign to each generator h in a basis H
a subset ML(h,H) ⊆ X of multiplicative variables and to consider only P-linear com-
binations of the generators where each generator h ∈ H is multiplied by a coefficient
depending only on the variables in ML(h,H). In contrast to Gröbner bases, not every
monomial basis of a monomial ideal is automatically an involutive basis. The rule for
the assignment of the multiplicative variables is called an involutive division.

Definition 2.1. An involutive division L on T ⊂ P associates to any finite set U ⊂ T
of terms and any term u ∈ U a set of L-non-multipliers L̄(u,U) given by the terms con-
tained in a prime monomial ideal. The variables generating this prime ideal are called
the non-multiplicative variables NML(u,U) ⊆ X of u ∈ U. The set of L-multipliers
L(u,U) is given by the order ideal T \ L̄(u,U); it is a subring of P generated by the
set of multiplicative variables ML(u,U) = X \ NML(u,U). For any term u ∈ U, its
involutive cone is defined as CL(u,U) = u · L(u,U). For an involutive division, the
involutive cones must satisfy the following conditions:

(i) For two terms v , u ∈ U with CL(u,U) ∩ CL(v,U) , ∅, we have u ∈ CL(v,U) or
v ∈ CL(u,U).

(ii) If a term v ∈ U lies in an involutive cone CL(u,U), then L(v,U) ⊂ L(u,U).
(iii) For any term u in a subset V ⊂ U, we have L(u,U) ⊆ L(u,V).

We write u |L w for a term u ∈ U and an arbitrary term w ∈ T , if w ∈ CL(u,U). In this
case, u is called an L-involutive divisor of w and w an L-involutive multiple of u.

Conditions (i) and (ii) ensure that involutive cones can intersect only trivially. Con-
dition (iii) is often called the filter axiom. Obviously, it suffices for defining an invo-
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lutive division to say what are the (non-)multiplicative variables for each term u in a
finite set U. Note that involutive divisibility u |L w implies ordinary divisibility, but not
vice versa.

As with Gröbner bases, involutive bases are defined via monomial structures. For
monomial ideals, we define involutive bases as follows.

Definition 2.2. For a finite set of terms U ⊂ T and an involutive division L on T , the
involutive span of U is the union CL(U) =

⋃
u∈U CL(u,U). The set U is an L-involutive

basis of the ideal generated by it, if CL(U) = T ·U and the union is disjoint, i. e. every
term in CL(U) has a unique involutive divisor. An involutive division L is Nœtherian,
if every monomial ideal in P possesses an L-involutive basis. The L-involutive basis H
of a monomial ideal I is minimal, if any other L-involutive basis H′ of I contains H
as a subset.

For involutive divisions that are continuous (Seiler, 2010, Def. 4.1.3) or even con-
structive (Seiler, 2010, Def. 4.1.7), the following useful properties hold:

Proposition 2.3. (Seiler, 2010, Prop. 4.1.4) For a continuous involutive division L, a
finite set of terms U ⊂ T is an L-involutive basis of the monomial ideal ⟨U⟩ if and only
if, for each u ∈ U and x ∈ NML(u,U), we have xu ∈ CL(U).

We call the criterion implied by Proposition 2.3 the criterion of local involutivity.

Proposition 2.4. (Seiler, 2010, Cor. 4.2.4) For a constructive Nœtherian involutive
division L, every monomial ideal has a unique minimal L-involutive basis.

Given a finite set H of polynomials, a term ordering ≺ and an involutive division
L, we call H an L-involutive basis, if lt(H) is an L-involutive basis of lt(I) and the
generators h ∈ H have pairwise disjoint leading terms. We assign to each polyno-
mial h ∈ H the multiplicative variables ML(lt (h), lt (H)) and define the involutive cone
CL,H,≺(h) := hK[ML(lt (h), lt (H))]. An L-involutive basis H of an ideal I induces then
a disjoint decomposition I =

⊕
h∈H CL,H,≺(h) as K-linear spaces. In particular, each

ideal element f ∈ I has a unique involutive standard representation f =
∑

h∈H ph ·h, in
which the coefficients ph ∈ K[ML(lt (h), lt (H))] additionally fulfil lt(ph) · lt(h) ≤ lt( f ).
H is a minimal L-involutive basis of I, if lt(H) is a minimal L-involutive basis of lt(I).
Note that any involutive basis is also a Gröbner basis.

Two involutive divisions are particularly important in applications: The Janet and
Pommaret division, respectively. The Janet division was, like the Pommaret division,
already introduced by Janet (Janet, 1929, pp. 16-17). Let U ⊂ T be a finite set of terms.
For each sequence d1, . . . , dn of non-negative integers and for each index 1 ≤ i ≤ n, we
introduce the corresponding Janet class as the subset

U[di,...,dn] =
{
u ∈ U | deg j (u) = d j, i ≤ j ≤ n

}
⊆ U . (2.1)

The variable xn is called Janet multiplicative (J-multiplicative) for the term u ∈ U,
if it holds degn (u) = max {degn (v) | v ∈ U}. For i < n, xi is Janet multiplicative for
u ∈ U[di+1,...,dn], if degi (u) = max {degi (v) | v ∈ U[di+1,...,dn]}. The Janet division is Nœthe-
rian, continuous, and constructive. We sometimes write MinJB(I) for the minimal
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Janet basis of a given monomial ideal I. We write MJ(u,U) for the set of Janet multi-
plicative variables of a term u ∈ U, and by NMJ(u,U) we denote the non-multiplicative
variables.
Example 2.5. Consider the ideal I = ⟨x1x2

3, x2x3, x2
1x3⟩ ⊂ K[x1, x2, x3]. The given

minimal generating set is not a Janet basis of I, but enlarging the generating set by the
term x2x2

3, we obtain the Janet basis {x1x2
3, x2x3, x2

1x3, x2x2
3} of I.

We now proceed to the Pommaret division. The class of a term 1 , xµ ∈ T with µ =
(µ1, . . . , µn) is defined as the index cls (xµ) = min {i | µi , 0}. A variable xi is Pommaret
multiplicative for xµ, if i ≤ cls (xµ). All variables are Pommaret multiplicative for
the trivial term 1. We write MP(u) for the set of Pommaret multiplicative variables
of a term u ∈ T , and by NMP(u) we denote the non-multiplicative variables. Note
that the thus defined Pommaret division is global, i. e. the assignment of multiplicative
variables is independent of any finite set U ⊂ T . In contrast to the Janet division, the
Pommaret division is not Nœtherian, as e. g. the ideal I = ⟨x1x2⟩ does not possess a
finite Pommaret basis (it does not contain an element of class 2). Nevertheless, the
Pommaret division is continuous and constructive. If a monomial ideal I possesses a
Pommaret basis, we sometimes write MinPB(I) for its minimal Pommaret basis.

For sufficiently large fields K, the non-Nœtherianity of the Pommaret division is
only a problem of the used coordinates. After a generic linear change of variables any
ideal I ⊆ P admits a finite Pommaret basis (Seiler, 2010, Thm. 4.3.15). In this case, I
is said to be in quasi-stable position. An in-depth study of this question can be found
in (Hashemi et al., 2018) together with a deterministic algorithm for the explicit con-
struction of “good” coordinates for any given ideal I ⊂ P. For Pommaret bases, we
will always consider the degree reverse lexicographical ordering ≺ with x1 ≺ · · · ≺ xn,
as it is the only class-respecting term ordering (Seiler, 2010, Lem. A.1.8). As gener-
ally a monomial ideal does not remain monomial after a linear change of variables,
Pommaret bases exist only for a special class of monomial ideals.

Definition 2.6. A monomial ideal I is called quasi-stable, if for any term xµ ∈ I and
for any index i with cls(xµ) < i ≤ n an exponent s ≥ 0 exists such that xs

i xµ/xcls(xµ) ∈ I.
A polynomial ideal I is in quasi-stable position, if lt(I) is quasi-stable.

Quasi-stable ideals appear in many places (and are known under many different
names like ideals of Borel type, ideals of nested type or weakly stable ideals). Be-
sides the above combinatorial definition, they can be characterised by many algebraic
properties. For our purposes, the following characterisation is relevant.

Proposition 2.7. (Seiler, 2010, Prop. 5.3.4) A monomial ideal I possesses a finite
Pommaret basis, if and only if it is quasi-stable.

There are two important generalisations of the concept of involutive divisions:
Firstly, relative involutive divisions, which are defined relative to a given monomial
ideal I , {0}. Given a usual involutive division L, one can derive its relative coun-
terpart LI, which then induces a theory of involutive bases in the quotient ring P/I.
The details are documented in (Hashemi et al., 2021, Sec. 5). Secondly, involutive-like
divisions are defined by the assignment of non-multiplicative pure variable powers in-
stead of non-multiplicative variables (Hashemi et al., 2023, Sec. 6). The prototype of
an involutive-like division is the Janet-like division (Gerdt and Blinkov, 2005b,a):
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Definition 2.8. Let U ⊂ T be a finite set of terms. For any term u ∈ U and a Janet
non-multiplicative variable xi ∈ NMJ(u,U), the power xki

i with

ki = min
{
degi (v) − degi (u) | v, u ∈ U[di+1,...,dn], degi (v) > degi (u)}

is called a non-multiplicative power of u for the Janet-like division. The set of all
non-multiplicative powers of u ∈ U is denoted by NMP(u,U). The elements of the set

NM(u,U) = {v ∈ T | ∃w ∈ NMP(u,U) : w | v}

are called the J-non-multipliers for u ∈ U. The terms outside of it are the J-multipliers
for u. An element u ∈ U will be called a Janet-like divisor of w ∈ T , if w = u · v with
v a J-multiplier for u.

A Janet-like head autoreduced and finite set U ⊂ T is called Janet-like basis of the
monomial ideal ⟨U⟩, if every term t ∈ ⟨U⟩ ∩ T has a Janet-like divisor in U. A finite
set of polynomials F ⊂ P \ {0} is a Janet-like basis of I = ⟨F⟩, if we have lt( f ) , lt(g)
for all f , g ∈ F and lt(F) forms a Janet-like basis for lt(I).

The Pommaret-like division was defined in (Hashemi et al., 2023, Def. 6.11).

Definition 2.9. The Pommaret-like division P assigns to each term t ∈ T contained in
a finite set of terms U ⊂ T non-multiplicative powers as follows:

1. The Janet non-multiplicative variables xa with a > cls(t),

2. The Janet non-multiplicative powers xpb
b with b > cls(t).

Note that no non-multiplicative power is assigned to any variable xb with b ≤ cls (t).

Let F = {f1, . . . , fr} ⊆ P
s be an enumerated finite subset of a finitely generated free

module Ps. The syzygy module of F is a submodule of Pr defined by

Syz(F) =

(g1, . . . , gr)T ∈ Pr |

r∑
i=1

gifi = 0

 .
For subsets F ⊆ (P/I)s, we write SyzP/I(F) to emphasize that we are working over
the quotient ring.

We use syzygies to construct free resolutions of homogeneous ideals I ⊴ P. A
free resolution F of I is given by finitely generated free P-modules F0, F1, . . . and
homogeneous P-linear maps δ0, δ1, δ2, . . . as in the following diagram

F : · · ·
δm+2
−→ Fm+1

δm+1
−→ Fm

δm
−→ Fm−1

δm−1
−→ · · ·

δ2
−→ F1

δ1
−→ F0

δ0
−→ I → 0,

such that im(δ0) = I and im(δm+1) = ker(δm) for all m ∈ N0. The collection {δm}m≥0
of maps is called the differential of the resolution. Leaving aside degree shifts, we can
write Fm = P

rm for m ≥ 0. Each map δm is completely described by the images δ(ei),
i ∈ {1, . . . , rm}; equivalently, δm is represented by a matrix Dm ∈ P

rm−1×rm , whose i-th
column is exactly δm(ei). Note that we interpret the module I as a submodule of P1,
so the matrix D0 describing δ0 is of format (r0 × 1). Moreover, Dm ·Dm+1 = 0 for all m.

6



The above discussion now implies the next observation: G = {δ0(e1), . . . , δ0(er0 )}
is a homogeneous generating set of I and the columns of D1 form a homogeneous
generating set G1 of Syz(G). Generally, the set Gm of columns of Dm is a homogeneous
generating set of the iterated syzygy module Syzm(G).

Finally, we note that also for ideals J ⊴ P/I in a quotient ring over a homo-
geneous ideal I, resolutions by finitely generated free P/I-modules exist. For these
resolutions, δ0(F0) = J/I and all modules Fm, m ≥ 0, are direct sums of copies of
P/I. Otherwise, the terminology is the same.

Since we work with homogeneous ideals I, the matrices in any free resolution of
I have homogeneous polynomials as entries. A free resolution is minimal if all entries
in the matrices are either 0 or of positive degree. Up to isomorphism, there is exactly
one minimal free resolution for each ideal I. Since the ranks of the involved free
modules Fm in a minimal free resolution are invariant under isomorphisms, they are a
homological invariant of I. They are called (bigraded) Betti numbers of I.

Assume that in a minimal free resolution F of I, Fm = ⊕d≥0P(−d)βm,d for m > 1;
then the numbers βm,d = βm,d(I) are the Betti numbers of I. By Hilbert’s syzygy the-
orem, the minimal free resolution of I ⊴ P is of finite length. Thus, the collection
{βm,d(I)}m,d≥0 of non-zero Betti numbers of I is finite. By minimality of F, the se-
quence (min {d ≥ 0 | βm,d(I) > 0})m≥0 is increasing; thus we can present the non-zero
Betti numbers in a matrix (bd,m)0≤d≤r,0≤m≤s = (βm,d+m(I)) ∈ N(r+1)×(s+1)

0 for some posi-
tive integers s = s(I), r = r(I), such that there are neither trailing zero rows nor trailing
zero columns.

Consider a homogeneous ideal I ⊴ P and a minimal free resolution of it, yielding
the numbers r(I) and s(I) of rows and columns in its Betti table. Then reg(I) = r(I)
is the Castelnuovo–Mumford regularity, or simply regularity, of I, and projdim(I) =
s(I) is its projective dimension.

The minimal P/I-free resolutions of homogeneous ideals J ⊴ P/I are in general
infinite in the sense that infinitely many non-zero Betti numbers exist. Thus, ideals
in P/I in general do not have a finite regularity or a finite projective dimension. As
a succinct way of writing the infinitely many Betti numbers, we use Poincaré series.
They are formal power series in two independent variables—say u and s—such that the
coefficient of a term umsd is given by the Betti number βm,d(J).

Consider an L-involutive basis H ⊂ P of a polynomial ideal I = ⟨H⟩ with respect
to a continuous involutive division L. The set lt(H) is an L-involutive basis of the
leading ideal lt(I). One can construct an acyclic directed graph, the L-graph, with
node set lt(H) and arrows from lt(hi) to lt(h j) whenever there is a non-multiplicative
variable x ∈ NML(lt(hi), lt(H)) such that lt(h j) is an L-divisor of x lt(hi) (Seiler, 2010,
Lem. 5.4.5). Now consider the following method of enumerating lt(H): As first element
lt(h1), take any leading term whose node in the L-graph is not the target of any arrow.
Deleting lt(h1) and its associated arrows from the graph, we obtain another acyclic
graph, and as the second element lt(h2) in the enumeration we take a leading term
whose node is not the target of any arrow in the modified graph. Continuing in this
manner, we obtain an L-ordering of lt(H).

Adapting Schreyer’s construction (Schreyer, 1980), one can use the L-involutive
basis H, ordered according to an L-ordering, to construct a Gröbner basis GSyz of
Syz(H) that has as leading terms the module terms xei with x ∈ NML(lt(hi), lt(H)).
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If L is of Schreyer type (Seiler, 2010, Def. 5.4.8), GSyz is again an L-involutive basis,
and the construction can be iterated to yield a linear, but generally non-minimal, free
resolution of ⟨H⟩. The Pommaret and Janet divisions are of Schreyer type (Seiler, 2010,
Lem. 5.4.9). We use Schreyer-type constructions also for relative involutive bases.

The resolution induced by the Pommaret basis of a homogeneous ideal I in quasi-
stable position can be used to determine the Castelnuovo–Mumford regularity and
projective dimension of I without computing the minimal free resolution of I. The
Castelnuovo–Mumord regularity is simply the largest degree of a generator in the Pom-
maret basis; the projective dimension is the maximal number of non-multiplicative
variables that an element of the Pommaret basis can have. For further details, see
(Seiler, 2010, Sec. 5.5).

For a quasi-stable monomial ideal I, we refer to (Seiler, 2010, Thm. 5.4.18) for an
explicit formula for the differential of the resolution induced by the monomial Pom-
maret basis. It is immediate from (Seiler, 2010, Eq. (5.53)) that the resolution is mini-
mal if and only if I is stable. The formula can be read off from the weighted P-graph
of the basis, which includes for each arrow hi → h j not only the variable x ∈ NMP(hi)
with xhi ∈ CP(h j), but also the cofactor t ∈ K[MP(h j)] such that xhi = th j.

3. Resolutions induced by relative Pommaret bases

Let us recall the definition from (Hashemi et al., 2021) of the concept of an involu-
tive division LI relative to a monomial ideal I of Schreyer type. As our aim is to define
a related notion better suited to the computation of free resolutions, we repeat it here
for the reader’s convenience.

Definition 3.1. Let I ⊴ P be a polynomial ideal and LI an involutive division relative
to lt(I) induced by a continuous involutive division L on T . We say that LI is of
Schreyer type if, whenever H is an LI-involutive basis of ⟨H⟩ + I relative to I and G
is an L-involutive basis of I, we have that for all xµ ∈ lt(H) the monomial set

B =
({

lcm(xν, xµ)
xµ

| xν ∈ lt(G)
}
\ lt(I)

)
∪

(
NMLI (xµ, lt(H))

)
(3.1)

is an Llt(I)-involutive basis of the ideal ⟨B⟩ + lt(I) relative to lt(I).

The following example shows that Definition 3.1 is not optimal:

Example 3.2. In P = K[x, y], consider the ideals I = ⟨x3, y3⟩ and J = ⟨x2, xy, y2⟩

from (McCullough and Peeva, 2015, Ex. 5.2). Note that the monomial ideals I and
J are quasi-stable. The minimal Pommaret basis of I is G = {x3, x3y, x3y2, y3} and
the minimal Pommaret basis of J relative to I is H = {x2, xy, y2}. We can now apply
(Hashemi et al., 2021, Prop. 5.14) to obtain a Pommaret basis for SyzP/I(H)—note that
G and H are already ordered according to a PI-ordering. Precisely, the enumerations
are g1 = x3, g2 = x3y, g3 = x3y2, g4 = y3 and h1 = x2, h2 = xy, h3 = y2.

Using (Hashemi et al., 2021, Thm. 5.13), we compute a Pommaret basis of the first
syzygy module of H relative to I, being a subset of the free P/I-module (P/I)3 with
the canonical basis {e(1)

1 , e
(1)
2 , e

(1)
3 } (the superscript encodes the homological degree.) We

underline the leading module terms.
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• As A-syzygies, we obtain A1 = xe(1)
1 , A2 = xye(1)

1 , and A3 = xy2e(1)
1 for h1,

A4 = x2e(1)
2 , A5 = x2ye(1)

2 , and A6 = y2e(1)
2 for h2, as well as A7 = ye(1)

3 for h3.

• As syzygies from non-multiplicative prolongations, we obtain S1 = ye(1)
1 − xe(1)

2

for h1 and S2 = ye(1)
2 − xe(1)

3 for h2.
We notice immediately that the relative Pommaret basis {A1, . . . ,A7,S1,S2} is not min-
imal, as the leading terms of the syzygies A2, A3, A5, A6 are redundant.

As seen in Example 3.2, for relative Pommaret divisions, Definition 3.1 implies that
the relative Pommaret bases computed for the syzygy modules of an P/I-free resolu-
tion are generally non-minimal. Furthermore, relative Janet divisions are in general not
of Schreyer type if one applies Definition 3.1—see (Hashemi et al., 2021, Ex. 5.15).
While it is true that the definition ensures that relative divisions of Schreyer type are
suitable for the computation of free resolutions, the construction is not optimal. The
reason for this is that the set B in Equality (3.1) is not chosen optimally. Indeed, it is in
general not autoreduced with respect to classical (non-restricted) division, as the multi-
pliers of the form lcm(xν, xµ)/xµ, which are needed for the A-syzygies, may be divisible
by non-multiplicative variables. Thus, we propose the following adapted definition.

Definition 3.3. Let I and LI be as in Definition 3.1. Then LI is of strong Schreyer
type if, whenever H is an LI-involutive basis of ⟨H⟩ + I relative to I and G is an
L-involutive basis for I, then for all xµ ∈ lt(H), the set

M
(
xµ, lt(H), lt(G)

)
∪ NMLI

(
xµ, lt(H)

)
is an LI-involutive basis for the monomial ideal it generates relative to lt(I) where the
set of multiplicative A-multipliers M(xµ, lt(H), lt(G)) is defined by

M
(
xµ, lt(H), lt(G)

)
=

{
lcm(xν, xµ)

xµ
| xν ∈ lt(G)

}
\
(
lm(I) +

〈
NMLI

(
xµ, lt(H)

)〉)
. (3.2)

Note that the set M
(
xµ, lt(H), lt(G)

)
∪NMLI

(
xµ, lt(H)

)
from Definition 3.3 is a subset

of the set B defined in Equality (3.1).

Proposition 3.4. Let I ⊴ P be a polynomial ideal in quasi-stable position and P the
Pommaret division on T . Then the relative involutive division Plt(I) induced by P is of
strong Schreyer type.

Proof. Let G be the Pommaret basis of I and let H be a Pommaret basis of the
ideal ⟨H⟩ + I relative to I. For each xµ ∈ lt(H), we have to show that the set
B′ = M(xµ, lt(H), lt(G)) ∪ NMPlt(I) (xµ) is a Pommaret basis of the ideal it generates
relative to lt(I). We know that B′ ⊆ B, where B is defined as in Equality (3.1). More-
over, from the definitions, it is easy to see that ⟨B, lt(I)⟩ = ⟨B′, lt(I)⟩. We still have
to show that B′ is a relative Pommaret basis. Note that B contains a Pommaret basis
and each term in t ∈ B \ B′ is divisible by a variable x j with j > cls(xµ), i.e., by
a non-multiplicative variable for xµ. Assume that j is the maximal index having this
property. Then, t ∈ CP(x j). We can deduce that B′ also contains a Pommaret basis.
Also, it is clear that the Pommaret cones CP(x j) and CP(t), where x j ∈ NMP(xµ) and
t ∈ K[MP(xµ)] ∩ B′, have empty intersection (look at the x j-degrees). Finally, we need
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to show that all Pommaret cones CP(t), CP(s), where s , t ∈ K[MP(xµ)] ∩ B′, have
empty intersection. For this, first note that cls(s) = cls(s) and cls(t) = cls(t), where
s, t ∈ lt(G) are the terms inducing the multipliers s, t for xµ. Indeed, s and t are Pom-
maret multiplicative for xµ, and so the only indices i for which degi(s) > degi(xµ) is
possible are indices i ≤ cls(xµ). And there must be an index with this property, as
otherwise s|xµ, which is impossible. The minimal such index then obviously is just
cls(s), and similarly for t. Hence, a non-empty intersection of the Pommaret cones of
s and t would imply a non-empty intersection of the Pommaret cones s and t. This is
impossible, because s, t are elements of the Pommaret basis of the ideal lt(I).

Remark 3.5. The Janet division JI relative to a monomial ideal I is not of strong
Schreyer type, even when I is quasi-stable: Consider I = ⟨x2

1x2
3, x

3
3, x2x2

3⟩ = ⟨G⟩ and
H = {x1, x2}. I is a stable ideal, and H is a Janet basis relative to I. Consider the term
xµ = x1. The set M(xµ,H,G) ∪ NMJI (xµ,H) is given by {x1x2

3} ∪ {x2}. This is not a
Janet basis relative to I, because the variable x3 is non-multiplicative for x2 in this set,
but x2x3 does not possess a Janet divisor in the same set.

Proposition 3.4 ensures that we get minimal Pommaret bases in each step of the
resolution computation. We use Schreyer orderings for these Pommaret bases, which
depend on P-orderings. There is an easy procedure by which P-orderings can be ob-
tained automatically for the next syzygy module. Indeed, for any given generator of
the current module, we need to take first the multiplicative A-syzygies in the order that
is induced by the ordering on G. Then we take the non-multiplicative variables in as-
cending order. We do this for each generator sequentially, and we obtain a minimal
Pommaret basis, already P-ordered, for the next syzygy module.
Example 3.6. Consider I = ⟨x2, xy, y2⟩ and J = ⟨x3, y3⟩ = ⟨x3, x3y, x3y2, y3⟩ as in
Example 3.2. Applying Proposition 3.4 repeatedly, we obtain relative Pommaret bases
for the next iterated syzygy modules as follows. Note that that the columns of Dk
represent the minimal relative Pommaret basis for the k-th iterated syzygy module.

D2 =


x2 y 0 0 0 0 0
0 −x y2 0 0 0 0
0 −1 0 x y 0 0
0 0 xy 0 −x2 y2 0
0 0 x2 0 0 xy y2

 ,D3 =



x y 0 0 0 0 0 0 0
0 −x2 y2 0 0 0 0 0 0
0 0 x y 0 0 0 0 0
0 −x 0 0 x2 y 0 0 0
0 0 y 0 0 −x y2 0 0
0 0 0 −x 0 0 x2 y 0
0 0 0 0 0 0 0 −x y


,

D4 =



x2 y 0 0 0 0 0 0 0 0 0
0 −x y2 0 0 0 0 0 0 0 0
0 0 x2 y 0 0 0 0 0 0 0
0 0 0 −x y2 0 0 0 0 0 0
0 −1 0 0 0 x y 0 0 0 0
0 0 xy 0 0 0 −x2 y2 0 0 0
0 0 0 −1 0 0 0 x y 0 0
0 0 0 0 xy 0 0 0 −x2 y2 0
0 0 0 0 x2 0 0 0 0 xy y2


, . . .
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Remark 3.7. Example 3.6 shows that constants can appear in some homological de-
gree k of the Pommaret-induced resolution even if there are no constants in the differ-
ential at the previous homological degree k − 1. This is for instance the case for the
homological degree 4 in Example 3.6: the matrix D4 contains constants even though D3
does not. This behaviour of the induced resolution is new, compared to the Pommaret-
induced resolutions for P-modules: in (Seiler, 2010, Lem. 5.5.1), it is shown that a
Pommaret-induced resolution over P is minimal if and only if the first differential does
not contain any constant terms.

Example 3.8. In P = K[x, y, z], consider the ideals I = ⟨z3⟩, J = ⟨xyz, y2z, yz2,I⟩.
With the usual notations, we verify by computation that the Pommaret-induced resolu-
tion is the minimal P/I-free resolution of the P/I-module J/I:

D0 =
(
xyz y2z yz2

)
, D1 =

 y z 0 0
−x 0 z 0
0 −x −y z

 , D2 =


z 0 0 0
−y z2 0 0
x 0 z2 0
0 xz yz z2

 ,

D3 =


z2 0 0 0
y z 0 0
−x 0 z 0
0 −x −y z

 , D4 = D2.

4. Resolutions induced by Pommaret-like bases

For analysing free resolutions induced by Pommaret-like bases, a necessary first
step is to understand resolutions over the polynomial ring P of quasi-stable monomial
ideals I generated by a Pommaret-like basis H. If H is also a Pommaret basis, then
the structure of the induced resolution is known (Seiler, 2010). In the case that I is a
monomial ideal, the resolution is minimal if and only if H is the minimal generating
set of I, see (Seiler, 2010). Note that if I is not monomial, this result does not hold
in general, see e.g. (Seiler, 2010, Ex. 5.5.9). As a first step to a similar result for
Pommaret-like bases, some combinatorial characterization of monomial ideals whose
minimal generating set is also a Pommaret-like basis are helpful.

Remark 4.1. If a Pommaret-like basis H of a monomial ideal I is given, then ordering
the elements ascendingly with respect to the lexicographic ordering with x1 ≺ · · · ≺ xn

gives a P-ordering, because for each h ∈ H and xp j

j ∈ NMPP(h,H), the Pommaret-like
divisor u ∈ H of xp j

j · h fulfils deg j(u) = deg j(h) + p j and degℓ(u) = degℓ(h) for ℓ > j.
Thus, h ≺lex u. From this P-ordering, one can derive a Schreyer ordering in the syzygy
module which has non-multiplicative powers as leading terms.

A Pommaret-like basis H of an ideal I ⊴ P in quasi-stable position induces a
free resolution of I over P, and at each homological degree, the corresponding syzygy
module is generated by a Pommaret-like basis (Hashemi et al., 2023). There are special
classes of ideals for which this induced resolution is in fact the minimal free resolu-
tion. One class of ideals for which this is true is the class of componentwise linear
ideals (provided that the ideal is in componentwise quasi-stable position (Hashemi
et al., 2018, Thm. 19)). We can apply (Seiler, 2010, Thm. 5.5.2) to see this, even
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though that result is concerned with Pommaret bases, because Pommaret bases are a
special kind of Pommaret-like bases. Moreover, for stable monomial ideals the induced
Pommaret-like resolution is also minimal because the Pommaret resolution is (Seiler,
2010, Prop. 5.5.6). The following result shows that the class of monomial ideals for
which the Pommaret-like resolution is minimal is larger than the class of ideals for
which the Pommaret resolution is minimal i.e., stable monomial ideals:

Theorem 4.2. Let {0} , I ◁ P be a quasi-stable monomial ideal such that its minimal
basis is simultaneously its minimal Pommaret-like basis H ⊂ I∩T . Moreover, assume
that for each Pommaret-like non-multiplicative power xp j

j of t with respect to the set H,
it holds (t/xcls(t))xp j

j ∈ I. Then the free resolution of I over P induced by the basis H
is the minimal free resolution of I over P.

Before we prove Theorem 4.2, we need the following lemma.

Lemma 4.3. Let H ⊂ T be a minimal Pommaret-like basis generating the ideal I =
⟨H⟩. The condition (xp j

j · t)/xcls(t) ∈ I in Theorem 4.2 is equivalent to the statement that
the unique Pommaret-like divisor s ∈ H of xp j

j · t fulfils cls((xp j

j · t)/s) ≤ cls(s).

Proof. Let k = cls(t) and let s be the unique Pommaret-like divisor in H of (xp j

j · t).
Note that j > k. Moreover, since H is minimal, f = (xp j

j · t)/s , 1. By the defini-
tion of Pommaret-like non-multiplicative powers, it is clear that (xp j

j · t)|x1=···=x j−1=1 =

s|x1=···=x j−1=1. Hence we have cls( f ) < j. Now, if cls( f ) ≤ cls(s), then k = cls( f ),
and xk is multiplicative for s. From this we see (xp j

j · t)/xk ∈ I. Conversely, if if
cls( f ) > cls(s), then s · f is an element of the minimal Pommaret basis of I, and
k = cls(s). Thus (s · f )/xk < I and consequently (xp j

j · t)/xk < I.

Proof of Theorem 4.2. We show that no non-zero constant terms appear in the matrices
describing the differentials of the induced resolution. Write the resolution as

F : · · ·
d3
−→ Pb2

d2
−→ Pb1

d1
−→ P|H|

d0
−→ I → 0.

The matrix D0 describing d0 consists of one row containing the elements of H as en-
tries. Hence, no constant terms appear there. As the next step, we show that in the
matrix D1 describing d1 there are no constant terms. By construction and using the fact
that I is a monomial ideal, each column of D1 contains only two non-zero entries: xpa

a
(a non-multiplicative power of a term t ∈ H) and a cofactor f ∈ T such that

t · xpa
a = s · f , (4.1)

where s ∈ H is the unique term such that t · xpa
a ∈ CP(s,H). Since the set H is by

assumption the minimal monomial generating set of I, we have f , 1. Hence, no
column of D1 contains any constant term and the whole D1 is free of constant terms.

The columns of D1 represent a minimal Pommaret-like basis of the first syzygy
module Syz(H) ⊂ P|H| of H. The leading module terms xµe(1)

i of this syzygy module are
exactly of the form xpa

a e(1)
i where xpa

a is a non-multiplicative power of the i-th element
of H. They are found in the i-th row of D1. There may be other non-zero entries in the
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said row, but they are cofactors f as given in Equality (4.1). Moreover, in the situation
of Equality (4.1), it is clear that cls(t) ≤ cls(s) and hence, by Lemma 4.3,

cls( f ) ≤ cls(s). (4.2)

From this it follows that cls( f ) < cls(xpb
b ) for all non-multiplicative powers xpb

b of s.
We will use this property in the next step.

The matrix D2 has as many rows as D1 has columns. Each column of D2 con-
tains at least the non-zero entry xpc

c , a non-multiplicative power of a generator of the
leading module of Syz(H). Since this leading term module is generated by module
terms whose monomial parts are the non-multiplicative powers of the set H, also the
non-multiplicative powers of this leading term module will have monomial parts of the
same form. These non-multiplicative powers are obviously not constants. The further
non-zero entries of a column of D2 result from the involutive-like standard representa-
tion of the vector xpc

c ·c, where c is a column of D1, with respect to the set of all columns
of D1. We focus on the possible non-zero entries that can be generated by the cancella-
tions which happen in the i-th row. During the involutive-like reduction process, it can
happen that an intermediate result has a non-zero entry there, but this entry will be of
the form f · p, where p is some polynomial and f is a term with the properties given
in (4.2). In the column of D2 encoding the involutive-like reduction we are studying at
present, a non-zero entry (other than the one already analysed) can be created in row j
only if the j-th column c j of D1 has as its leading module term xpb

b e(1)
i , where xpb

b is as
studied in Equality (4.2). The class condition given in Equality (4.2) now guarantees
that the non-zero entry generated in the j-th row of the column of D2 will be free of
constant terms. What is more, all terms in the support of this entry will have class less
or equal to cls( f ). Now, since the indices i and j in the discussion above were arbitrary,
we have proved that also the matrix D2 does not contain any constant terms.

The last thing we need to prove is that, also in D2, we have a condition on the
classes of terms analogous to that given in Equality (4.2). If we can show this, then an
iteration of the arguments used for the analysis of D2 can be applied to all successive
matrices in the resolution.

To prove this class condition, again consider the j-th row of D2, where a non-
zero entry q with cls(q) ≤ cls( f ) is located resulting from a step in an involutive-like
reduction which uses the leading module term xpb

b e(1)
i of the j-th column of D1. We

need to compare this class with the classes of all leading module terms of Syz2(H) of
the form u · e(2)

j . But these leading module terms arise from non-multiplicative powers

of the leading module term xpb
b e(1)

i in the leading module of Syz(H), and hence u = xpd
d

for some index b < d ≤ n. Using Equality (4.2), it is now clear that cls(q) ≤ cls( f ) <
cls(xpb

b ) < cls(xpd
d ), i.e., the class condition we need is fulfilled.

Below, we continue by giving two examples for minimal free resolutions induced
by Pommaret-like bases.

Example 4.4. Here, we show that the class of monomials satisfying the conditions of
Theorem 4.2 is larger than the class of monomial ideals for which we can construct
minimal free resolutions as proved in (Seiler, 2010). Let a, b, c ≥ 1 be any three
positive integers and let I = ⟨xa, yb, zc⟩ be an irreducible monomial ideal given by its
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minimal generating system H = {xa, yb, zc}, which is easily seen to be also a Pommaret-
like basis. Moreover, H satisfies the additional assumptions of Theorem 4.2. Hence, it
induces a minimal Pommaret-like free resolution of I. The matrices of the differentials
are given as follows:

D0 =
(
xa yb zc

)
, D1 =

 yb zc 0
−xa 0 zc

0 −xa −yb

 , D2 =

 zc

−yb

xa

 .
Example 4.5. In the polynomial ring K[w, x, y, z] with w ≺ x ≺ y ≺ z, consider the
monomial ideal I = ⟨H⟩ with

H = {w9x3y2z2, x5y2z2,w7y4z2, x3y4z2, y6z2, x3y2z4, y4z4, z8}.

(The elements have been ordered lexicographically from lowest to highest.) One can
verify that H is simultaneously the minimal generating system of I and a Pommaret-
like basis satisfying the additional assumptions of Theorem 4.2. Hence, it induces a
minimal Pommaret-like free resolution of I. The matrices of the differentials are given
as follows:

D0 =
(
w9x3y2z2 x5y2z2 w7y4z2 x3y4z2 y6z2 x3y2z4 y4z4 z8

)
,

D1 =



x2 y2 z2 0 0 0 0 0 0 0 0 0 0 0
−w9 0 0 y2 z2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x3 y2 z2 0 0 0 0 0 0
0 −w9 0 −x2 0 −w7 0 0 y2 z2 0 0 0 0
0 0 0 0 0 0 −w7 0 −x3 0 z2 0 0 0
0 0 −w9 0 −x2 0 0 0 0 0 0 y2 z4 0
0 0 0 0 0 0 0 −w7 0 −x3 −y2 −x3 0 z4

0 0 0 0 0 0 0 0 0 0 0 0 −x3y2 −y4


,

D2 =



y2 z2 0 0 0 0 0 0 0
−x2 0 z2 0 0 0 0 0 0

0 −x2 −y2 0 0 0 0 0 0
w9 0 0 z2 0 0 0 0 0
0 w9 0 −y2 0 0 0 0 0
0 0 0 0 y2 z2 0 0 0
0 0 0 0 −x3 0 z2 0 0
0 0 0 0 0 −x3 −y2 0 0
0 0 0 0 w7 0 0 z2 0
0 0 w9 x2 0 w7 0 −y2 0
0 0 0 0 0 0 w7 x3 0
0 0 −w9 −x2 0 0 0 0 z4

0 0 0 0 0 0 0 0 −y2

0 0 0 0 0 0 0 0 x3



, D3 =



z2 0
−y2 0
x2 0
−w9 0

0 z2

0 −y2

0 x3

0 −w7

0 0


.

We shall notice that Theorem 4.2 does not completely cover the class of quasi-
stable monomial ideals whose Pommaret-like bases induce minimal free resolutions.
In other words, there exist quasi-stable monomial ideals that do not satisfy the the-
orem’s assumptions but whose Pommaret-like bases nevertheless induce the minimal
free resolution:
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Example 4.6. In the polynomial ring K[x, y, z], consider the monomial ideal I with
minimal generating set G = {xy, y3, xz, y2z, z2}. As one can check, G is a Pommaret-
like basis. The generator t = xy has the non-multiplicative powers y2 and z. While it
is true that (t/x) · y2 = y3 ∈ I, we have (t/x) · z = yz < I. Only if we increase the
exponent of the variable z to 2, i.e., higher than the non-multiplicative power, we reach
the term yz2 ∈ I. The Pommaret-like basis G induces a minimal free resolution with
differential represented by the following matrices:

D0 =
(
xy y3 xz y2z z2

)
, D1 =


y2 z 0 0 0 0
−x 0 z 0 0 0
0 −y 0 y2 z 0
0 0 −y −x 0 z
0 0 0 0 −x −y2

 , D2 =



z 0
−y2 0

x 0
−y z
0 −y2

0 x


.

We finish this section with a result that is useful for relating resolutions induced by
Pommaret-like bases to other free resolutions.

Proposition 4.7. Let {0} , I , P be a polynomial ideal in quasi-stable position and
H its minimal Pommaret-like basis. Then the free resolution induced by H consists of
reduced Gröbner bases for all syzygy modules Syzm(H), m ≥ 1. In other words, in each
homological degree m ≥ 1, the set of columns of the matrix describing the differential
is the unique reduced Gröbner basis of Syzm(H) for the chosen module term order.

Proof. For m ≥ 1 let Dm be the matrix in the induced free resolution that represents
the differential map δm. By (Hashemi et al., 2023, Thm. 7.7), the set of columns of
D1, say C(D1), is a Pommaret-like basis of Syz(H). The leading terms of this basis are
given by Z = {xpa

a · ei | hi ∈ H ∧ xpa
a ∈ NMPP(hi,H)}, and |C(D1)| = |Z|. Since Z is the

minimal generating set for the module it generates, C(D1) is a minimal Gröbner basis.
It is reduced because all non-leading module terms arise as coefficients in an involutive-
like reduction computation. More precisely, if the first syzygy generators induced by
H do not form a reduced set, then there exists a Pommaret-like multiplicative term t
for xµi ∈ H which is divisible by a Pommaret-like non-multiplicative term s for xµi ,
leading to a contradiction. Thus we have shown the claim for m = 1. Note that C(D1)
is in particular again a Pommaret-like basis. The claim now follows by induction on m
and using (Hashemi et al., 2023, Thm. 7.7).

5. Relative involutive-like divisions

In this section, we introduce a combination of the concepts of relative involutive
divisions and involutive-like divisions. For a detailed explanation of relative involutive
divisions, see (Hashemi et al., 2021); for the definition and properties of involutive-like
divisions, see (Hashemi et al., 2023, Sec. 6).

Definition 5.1. Let {0} , I ⊴ P be a nonzero monomial ideal. An involutive-like
division LI relative to I associates to any finite set U ⊂ T \ I of terms and any
term u ∈ U a set of LI-non-multipliers LI(u,U) given by the terms contained in an
irreducible monomial ideal. The powers generating this irreducible ideal are called
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the non-multiplicative powers and the set of these powers is denoted by NMPLI (u,U).
The set of LI-multipliers LI(u,U) is given by the order ideal T \ LI(u,U). For any
term u ∈ U, its relative involutive-like cone is defined as CLI (u,U) = u · LI(u,U) \ I.
For a relative involutive-like division, the relative involutive-like cones must satisfy the
following conditions:

1. For two terms v , u ∈ U with CLI (u,U) ∩ CLI (v,U) , ∅, we have u ∈ CLI (v,U)
or v ∈ CLI (u,U).

2. If a term v ∈ U lies in an involutive cone CLI (u,U), then LI(v,U) ⊂ LI(u,U).

Remark 5.2. As discussed in (Hashemi et al., 2023, Def. 6.1), it is not possible to
include in Definition 5.1 an analogon to the filter axiom.

It is straightforward to prove that from an involutive-like division L on T , one can
derive a relative involutive-like division LI by using the same rule for the assignment
of non-multiplicative powers as for L and merely adapting the cones to make them
subsets of T \ I. One can do this, in particular, for the important special case of the
Janet-like division J.

Definition 5.3. Let I ◁P be a nonzero monomial ideal and let U ⊂ T \I be a finite set
of terms. Let u ∈ U be a term. Then the non-multiplicative powers of u with respect to
U, I and the relative Janet-like division JI are defined as follows:

NMPJI (u,U) = NMPJ(u,U) \ (I : u). (5.1)

Therefore and in other words, the relative Janet-like division uses the same rule for the
assignment of non-multiplicative powers as the Janet-like division J, but it excludes
variable powers that form part of the ideal quotient associated to the term u in question.

If xa is a variable for which a relative Janet-like non-multiplicative power for u
exists, then we write the exponent of this power as p(JI, u,U, a).

Remark 5.4. The relative Janet-like division JI is an involutive-like division relative
to I. This fact can be easily proven by using the properties of the Janet-like division J.
Also other properties like the continuity of the Janet-like division J are inherited by JI.

The definition of the Pommaret-like division PI relative to a monomial ideal I
should aim to guarantee that the following properties are fulfilled:

1. Cones should be disjoint, if they are not contained in each other.
2. For u ∈ U, no non-multiplicative powers should be assigned for x1, , . . . , xcls(u).
3. For J ⊃ I, a relative Pommaret-like basis should exist if and only if J is quasi-

stable relative to I (see Definition 5.8 below).
4. A unique minimal relative Pommaret-like basis should exist for any monomial

ideal that is quasi-stable relative to I.
5. The minimal relative Pommaret-like basis should be as small as possible.

These considerations lead to the following definition.

Definition 5.5. Let {0} , I ⊴ P be a nonzero monomial ideal. The Pommaret-
like division PI relative to I assigns to each term u ∈ T contained in a finite set of
terms U ⊂ T \ I non-multiplicative powers as follows: For each xa with a > cls(u),
if xa ∈ NMJ(u,U), then set p(PI, u,U, a) = p(JI, u,U, a). If xa ∈ MJ(u,U) and
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there does not exist any exponent s ∈ N with u · xs
a ∈ I, set p(PI, u,U, a) = 1. No

other variable gets assigned a non-multiplicative power with respect to the relative
Pommaret-like division PI. In particular, no variable xb with b ≤ cls(u) is assigned a
relative Pommaret-like non-multiplicative power for the term u.

Proposition 5.6. The relative Pommaret-like division PI is a relative involutive-like
division.

Proof. Let u , v ∈ U be two terms in the finite subset U ⊂ T \ I. Let k =
max{cls(u), cls(v)}. If k = n = cls(u) = cls(v), disjointness of the relative Pommaret-
like cones is easily seen, as also in the case where k = n but one of cls(u), cls(v) is
less than n. If k < n and the projections u|x1=···=xk=1, v|x1=···=xk=1 are equal, then either
disjointness or containment of the relative Pommaret-like cones is also easily seen. It
remains the case when k < n but the projections on the subring K[xk+1, . . . , xn] are
not equal. There, note that from any two elements u′ = su and v′ = tv, where s and
t are PI-multiplicative terms, we get in the subring that the projections of s and t are
Janet-like multipliers of the projections of u and v. Hence the projections of the rela-
tive Pommaret-like cones of u and v on the same subring are either contained one in the
other or they are disjoint. If they are disjoint, the same also holds true for the full cones
in the whole ring P. If they are contained one in the other, then checking the k-degrees
of u and v will yield that the full cones are either disjoint or contained. A containment
will hold if and only if the term with larger class, without loss of generality v, has a
smaller or equal xk-degree compared to that of the other term and the projection of the
cone of v in the subring is a superset of the other cone projection.

Definition 5.7. Let {0} , I ⊴ P be a nonzero monomial ideal and let J ⊃ I be a
further monomial ideal inP. Let LI be an involutive-like division relative to I. A finite
set of terms H ⊂ T ∩ (J \ I) is called an LI-involutive like basis of J relative to I if
every term t ∈ T ∩ (J \ I) has a unique LI involutive-like divisor in the set H.

We recall the following definition from (Hashemi et al., 2021, Def. 7.1).

Definition 5.8. Let I ⊆ J ⊴ P be two monomial ideals. We say thatJ is quasi-stable
relative to I, if for all terms xµ ∈ J \ I and for all indices i with cls(xµ) < i ≤ n there
exists an exponent s ≥ 0 such that either xs

i xµ ∈ I or xs
i xµ/xcls(xµ) ∈ J .

Theorem 5.9. Let I ⊂ J ⊴ P be two monomial ideals. Then there exists a Pommaret-
like basis of J relative to I if and only if J is quasi-stable relative to I.

Proof. First assume that J is quasi-stable relative to I. By (Hashemi et al., 2021,
Prop. 7.4), we know that there exists a relative Pommaret basis H of J . Since relative
Pommaret-like cones are always supersets of relative Pommaret cones, the set H is also
a relative Pommaret-like basis of J , but not necessarily a minimal one.

Now assume that there exists a Pommaret-like basis H ⊂ T ∩ (J \I) of J relative
to I. Arguing by reductio ad absurdum, suppose that J is not quasi-stable relative
to I. In particular, H is a generating set of J relative to I. Since J is not quasi-stable
relative to I, there is a term 1 , h ∈ H and an index j > k = cls(h) such that for
every exponent s ∈ N we have (h/xk)xs

j < J and hxs
j < I. Consider the Janet class
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C = H[deg j+1(h),...,degn(h)]. Among the terms in C, there is one with maximal x j-degree.
Let this degree be denoted by d.

Now, since H is a relative Pommaret-like basis, the term h · x
d−deg j(h)
j has a PI-

divisor u in H. By definition of the PI-like division, u must be an element of the
Janet class H[d,deg j+1(h),...,degn(h)]. Moreover, it must be a divisor (in the non-involutive

sense) of h · x
d−deg j(h)
j , so there is a term t ∈ T with h · x

d−deg j(h)
j = u · t. Now, if

there were an exponent e ∈ N with u · xe
j ∈ I, then also u · t · xe

j ∈ I and hence

h · x
e+d−deg j(h)
j ∈ I, in contradiction to the assumptions made for h. Hence, such an

exponent e does not exist. Moreover, by construction, x j ∈ MJ(u,H). Additionally, it is
not possible that cls(u) ≥ j, because otherwise u would be a divisor of (h/xk)x

d−deg j(h)
j ,

again in contradiction to the assumptions made for h.
By the statements just shown and by Definition 5.5, one PI-non-multiplicative

power of u with respect to H is x1
j . Now, u·x j ∈ J\I, and it cannot have any PI-divisor

in H, since such a divisor would be an element of a Janet class H[d+1,deg j(h),...,degn( j)]. But
this Janet class is empty by the maximality property of d. All in all, we have shown
that there is a term in J \I which has no PI-like divisor in the set H. This contradicts
the assumption that H is a relative Pommaret-like basis of J .

Example 5.10. Consider the ideals I = ⟨x6, y6, z6⟩ and J = ⟨I, xy, yz⟩ taken from
(Gasharov et al., 2011, Ex. 4.12). The set H = {xz, yz} is a Pommaret-like basis of J
relative to I. Indeed, for the Janet division MJ(yz,H) = {x, y, z} and MJ(xz,H) = {x, z}.
The set of Janet-like non-multiplicative powers of xz is NMPJ(xz,H) = {y}. Note
that for each term h ∈ H and for each variable, by multiplying h with a high enough
power of the variable, we get a term in I. Hence, the relative Pommaret-like non-
multiplicative powers of the terms in H are NMPPI (yz,H) = ∅, NMPPI (xz,H) = {y}.
Now, it is clear that all non-multiplicative multiples of xz are in the relative Pommaret-
like cone of yz and H is a relative Pommaret-like basis as claimed.

Example 5.10 can be generalized. Gasharov et al. (2011) studied the (infinite)
free resolution of a special type of squarefree ideal in a particular quotient ring, a
so-called Clements–Lindström ring. In the rest of this paper, we give an alternative
approach to construct such a resolution via relative Pommaret-like bases. As the first
step, we show in Proposition 5.13 that the minimal generating set of a square-free Borel
monomial ideal is a relative minimal Pommaret-like basis. In this direction, we need
two definitions. The first is taken from (Gasharov et al., 2011). The second goes back
essentially to Clements and Lindström (1969). We adapt both to our conventions on
variable orderings. Below, for a term s, we refer to supp(s) as the set of all variables
appearing in s. Furthermore, for a given monomial ideal I, Min(I) stands for its
minimal generating set of terms.

Definition 5.11. We call a monomial ideal I ⊴ P generated by squarefree terms
squarefree Borel, if for any (necessarily squarefree) term s ∈ Min(I) the following
holds: For any variable xi ∈ supp(s) and any index j with i < j ≤ n such that x j <
supp(s), we have (s/xi) · x j ∈ I.

18



Definition 5.12. We call an irreducible, non-zero monomial ideal I ◁ P is Clements–
Lindström, if Min(I) is of the form {xai

i , x
ai+1
i+1 , . . . , x

an
n } with 2 ≤ an ≤ an−1 ≤ · · · ≤

ai+1 ≤ ai. We call P/I a Clements–Lindström ring.

Proposition 5.13. Let I be a zero-dimensional Clements–Lindström ideal and let H
be the minimal generating set of a square-free Borel monomial ideal. Then the ideal
J = ⟨I,H⟩ is quasi-stable relative to I and the set H is the minimal Pommaret-like
basis of J relative to I.

Proof. As a zero-dimensional Clements–Lindström ideal, I = ⟨xa1
1 , . . . , x

an
n ⟩ with a1 ≥

· · · ≥ an ≥ 2. The square-free minimal generating set H ofJ is disjoint from I. Hence,
it is the minimal generating set of J relative to I. Exclude in the following the trivial
special case H = {1}. H fulfils the square-free Borel property. Hence, for any term
1 , h ∈ H and any index j > k = cls(h) such that x j < supp(h), there is another term
u1 ∈ H dividing (h/xk)x j. Since H is a minimal generating set, we have cls(u1) ≤ j. If
either cls(u1) = j or

supp(u1) ⊇ {x j} ∪ {xa ∈ supp(h) | a > j}

then we have are done and obtained the desired term u1. Otherwise, we repeat this
process, by finding u2 ∈ H such that u2 divides (h/xcls(u1))xℓ with ℓ > j and xℓ ∈
supp(h). We know that for i, the constructed term ui fulfils the condition cls(ui) ≤ j.
It is clear to see that the sequence of u1, u2, . . . is finite. Assume that um is the last
constructed term. If supp(um) ⊇ {x j} ∪ {xa ∈ supp(h) | a > j} then we are done.
Otherwise, we have cls(um) = j and supp(um) ⊉ {x j} ∪ {xa ∈ supp(h) | a > j}.
Repeating the mentioned process on um leads to a contradiction to the minimality of
H. Thus, at the end, for each index j with j > cls(h), we arrive at a term v such that
supp(v) ∩ {xcls(v), . . . , xn} = {x j} ∪ {xa ∈ supp(h) | a ≥ cls(v)}.

Now, for a given index j > cls(h), assume that the term v satisfies the above
equality. Both h and v are in the Janet class H[deg j+1(h),...,degn(h)] and this shows that
x j ∈ NMJ(h,H) and x j is a PI-non-multiplicative power of h with respect to H. On the
other hand, we know that each variable xa ∈ supp(h) with a > cls(h) lies in MJ(h,H),
because H is square-free and dega(h) = 1. Additionally, for each such variable xa, of
course there is an exponent e ∈ N such that hxe

a ∈ I, because I is zero-dimensional.
Hence, for such variable xa, no PI-non-multiplicative power exists for h. These argu-
ments imply that x j · h ∈ CPI (v). Applying a local involution argument, we see that H
is a relative Pommaret-like basis of J .

Remark 5.14. A close inspection of the proof of Proposition 5.13 shows that the propo-
sition holds also under slightly weaker conditions. Let k ∈ {1, . . . , n} be defined as
min{cls(h) | h ∈ H}. Then the proposition also holds if I is an irreducible quasi-stable
ideal for which some power of xk+1 is a minimal generator.

6. Pommaret-like free resolutions over Clements–Lindström rings

Since relative Pommaret-like bases are a special kind of relative Gröbner bases,
they induce free resolutions via the relative Schreyer Theorem (Hashemi et al., 2021).

19



If we assume that the ambient quotient ring isP/I, where I is a quasi-stable monomial
ideal, and if we complete the relative Pommaret-like basis to a relative Pommaret basis,
then the induced resolution will consist of Pommaret bases for the syzygy modules
in each homological degree. In this section, we will show that if we restrict to the
class of irreducible quasi-stable monomial ideals, then we can skip the completion step
from Pommaret-like basis to Pommaret basis: The relative Pommaret-like basis will
then induce a free resolution which consists of Pommaret-like bases for each syzygy
module. This resolution is in general closer to a minimal free resolution than that
induced by relative Pommaret bases. Up to a permutation of coordinates, the class
of irreducible quasi-stable monomial ideals is equivalent to the class of Clements–
Lindström ideals. We will formulate our results in the most general form possible,
but for simplicity one can think of the ring in which computations take place as a
Clements–Lindström ring P/⟨xak

k , . . . , x
an
n ⟩ with ak ≥ · · · ≥ an ≥ 2. We shall note that a

variant of the next proposition in the non-relative setting was given in (Hashemi et al.,
2023, Thm. 7.7).

Proposition 6.1. Let I be an irreducible quasi-stable monomial ideal and consider
the ring P/I. Let H be a Pommaret-like basis relative to I of the (polynomial) ideal
J ⊃ I. If H is ordered according to a P-ordering, then a Pommaret-like basis of
SyzP/I(H) is given by the S -polynomials of H induced by non-multiplicative multiples
of the leading terms and the A-polynomials induced by multiplicatively annihilating
leading terms of H modulo I. Iteration of this result implies that a free resolution is
induced consisting of relative Pommaret-like bases in each homological degree.

Proof. We only sketch a proof, as it is similar to that of the corresponding results
in (Hashemi et al., 2021, Thm. 5.13 and Prop. 5.14) where relative Pommaret bases
are treated. As in the proof of (Hashemi et al., 2021, Prop. 5.14), quasi-stability of
I is needed to ensure the relative quasi-stability of the leading module of the first
syzygy module SyzP/I(H); the irreduciblity of I implies that the leading module terms
have pure powers as their polynomial parts, from which it is easily seen that the set of
these leading terms form a relative Pommaret-like basis. Moreover, the proof uses
the continuity of the Pommaret-like division (Hashemi et al., 2023, Prop. 6.15) (for
the P-ordering) and the relative Schreyer Theorem (Hashemi et al., 2021, Thm. 3.12).
Note that “gaps” can appear in the lists of leading module terms in some syzygy module
components. These gaps appear for the variables where one can reach I by multiplying
by a power of that variable. That one can reach I implies that relative quasi-stability is
not destroyed by these gaps.

Remark 6.2. Only those A-polynomials whose annihilating factor is not identical to a
generator of I contribute non-zero syzygies (Hashemi et al., 2021, Cor. 4.9).

As in the non-relative case, we are interested in a description of at least a part of the
class of monomial ideals J ⊃ I quasi-stable relative to I whose relative Pommaret-
like bases induce minimal free resolutions by the process of Proposition 6.1. Recall that
an estimate for the classes of “tail” terms compared to the classes of leading module
terms was central to the proof of Theorem 4.2. In order to be able to use a similar
argument, we need to impose even stricter assumptions on the relative Pommaret-like
basis generatingJ than we had to impose in Theorem 4.2. The reason for this is that in
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the relative case, the contributions of A-polynomials have an effect which amounts to a
"non-increasing" property for the classes of leading module terms in the resolution.

Example 6.3. Continuing with Example 4.5, in K[w, x, y, z]/⟨x10, y10, z10⟩, we consider
the monomial ideal J = ⟨H⟩ minimally generated by the relative Pommaret-like basis

H =
{

w9x3y2z2, x5y2z2, w7y4z2, x3y4z2, y6z2, x3y2z4, y4z4, z8
}
.

Note that y2 · x5y2z2 − x2 · x3y4z2 = 0 (compare the fourth column of the matrix D1 in
Example 4.5); moreover, x5 · x5y2z2 = 0 = x7 · x3y4z2. We obtain the three elements
S1 = y2e2 − x2e4, S2 = x5e2, and S3 = x7e4 of the first syzygy module of H. Observe
that y2 is a Pommaret-like non-multiplicative power of S2. Multiplying and reducing,
we see that y2S2−x5S1−S3 = 0. Thus, a constant appears in the Pommaret-like induced
resolution, which is consequently not minimal.

Theorem 6.4. Let {0} , I ◁P be an irreducible quasi-stable monomial ideal and J ⊃
I a larger monomial ideal generated by a minimal Pommaret-like basis H ⊂ (J\I)∩T
relative to I. Assume that H is simultaneously the minimal monomial generating set of
J relative to I. Moreover, let H be such that for each t ∈ H and xpa

a ∈ NMPPI (t,H),
the unique PI-divisor s ∈ H of t · xpa

a is of greater class than t i. e. cls(s) > cls(t). Then
the free resolution of J over P/I induced by the basis H is minimal.

Moreover, for each m ≥ 1, the set of columns of the matrix Dm describing the
differential consists of the unique relative reduced Gröbner basis of Syzm

P/I(H) for the
chosen module monomial ordering.

Proof. We need to show that the matrices describing the differentials do not contain any
constant terms. By assumption, H , {1} and hence it does not contain any constant.
We now analyse the matrices D1,D2, . . . iteratively. For every h ∈ H, the matrix D1
contains as leading module terms the non-multiplicative powers of h as well as, for
k = cls(h), a factor xdk−degk(h)

k if xdk
k is a minimal generator of I. The tail terms in

D1 arise by division of terms h · xp j

j , where xp j

j is a non-multiplicative power, by their
unique Pommaret-like divisor s in H:

h · xp j

j = s · u. (6.1)

Since H is the minimal relative generating set of J , these tail terms are not constant.
Moreover, by assumption, we have cls(s) > cls(h) and in turn cls(u) = cls(h). A tail
term u will be found in the row corresponding to the generator s ∈ H, and the leading
terms in that row will be of class ≥ cls(s), and so u has strictly smaller class than
the leading terms in the same row. Note that columns of D1 belonging to annihilating
factors do not have any tail term. Summarizing, D1 does not contain any constant terms
and all tail terms have a strictly smaller class than the leading terms in the same row.

It is now straightforward to proceed analogously as in the proof of Theorem 4.2,
showing by induction on the homological degree that no constant terms appear in the
resolution, and thus to show its minimality.

Central to this induction proof is the fact that tail terms always have strictly smaller
class than leading terms in the same row. The reducedness of the Gröbner bases in each
degree is an obvious consequence.

21



As a consequence, we see below that using this theorem and Proposition 5.13, we
are able to describe minimal free resolutions for the class of monomial ideals consid-
ered in Proposition 5.13.

Corollary 6.5. Let I be a zero-dimensional Clements–Lindström ideal and let H be the
minimal generating set of a square-free Borel monomial ideal. Then the free resolution
induced by H is the minimal.

Proof. A close inspection of the proof of Proposition 5.13 shows that the elements of
H fulfil the class condition imposed in Theorem 6.4 and this completes the proof.

Example 6.6. Let us continue Example 5.10 by considering the ideals I = ⟨x6, y6, z6⟩

and J = ⟨I, xz, yz⟩. The set H = {xz, yz} is the minimal generating system of the ideal
J relative to I, and it is simultaneously a relative Pommaret-like basis, as proven in
Example 5.10. Since cls(xz) < cls(yz), the additional conditions of Theorem 6.4 are
also fulfilled. Hence, H induces an infinite minimal free resolution of J over P/I,
with the first differential matrices given by:

D0 =
(
xz yz

)
, D1 =

(
x5 y z5 0 0
0 −x 0 y5 z5

)
,

D2 =


x y z5 0 0 0 0 0 0
0 −x5 0 y5 z5 0 0 0 0
0 0 −x5 0 −y z 0 0 0
0 0 0 x 0 0 y z5 0
0 0 0 0 x 0 0 −y5 z

 .
Remark 6.7. The minimal free resolution given in (Gasharov et al., 2011, Cons. 4.4)
for square-free borel ideals relative to a zero-dimensional Clements–Lindström ring is
necessarily isomorphic to the Pommaret-like resolution of the same ideal, since both
resolutions are minimal.

In fact, one can always find an isomorphism that consists only of permutations of
basis elements. One can prove this by assigning leading terms to the syzygies defined
in (Gasharov et al., 2011, Eq. 4.10). This assignment can be done in such a way that the
leading terms for each homological degree will coincide with the leading terms in the
Pommaret-like resolution. The sets of leading terms being equal, we can conclude that
the syzygies of (Gasharov et al., 2011, Eq. 4.10) form Gröbner bases in each homo-
logical degree; the reducedness can then be shown in a straightforward manner using a
basic result on Borel monomial ideals.

The uniqueness of the reduced Gröbner basis then shows that the resolution of
(Gasharov et al., 2011, Cons. 4.4) and the Pommaret-like resolution coincide. This
also gives an explicit formula for the differential, depending only on the data contained
in the first two matrices D0 and D1.

The next example shows that our construction covers many elementary cases:

Example 6.8. Let a1, . . . , an be positive integers. By fixing i ∈ {1, . . . , n}, let 1 ≤ bi < ai

be another integer. Then, relative to the irreducible monomial ideal I = ⟨xa1
1 , . . . , x

an
n ⟩,

the set H = {xbi
i } is a relative Pommaret-like basis of J = ⟨H,I⟩ and the induced
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resolution over P/I is the obvious 2-periodic minimal free resolution with differentials
described by the following matrices:

D0 =
(
xbi

i

)
, D1 =

(
xai−bi

i

)
, D2 =

(
xbi

i

)
= D0.

A final, more or less “generic”, example, shows the general behavior of the con-
struction:

Example 6.9. If I = ⟨y4, z5⟩ and J = ⟨I, x2y3, xy2z2, y3z2, z3⟩, then we conclude that
H = {x2y3, xy2z2, y3z2, z3} is the minimal relative generating set of J , and it is simul-
taneously a relative Pommaret-like basis satisfying the additional conditions of Theo-
rem 6.4. Hence, it induces a minimal free resolution ofJ over P/I, with the first maps
of the differential represented by the following matrices:

D0 =
(
x2y3 xy2z2 y3z2 z3

)
, D1 =


y z2 0 0 0 0 0
0 0 y z 0 0 0
0 −x2 −x 0 y z 0
0 0 0 −xy2 0 −y3 z2

 ,

D2 =



y3 z2 0 0 0 0 0 0 0 0
0 −y z3 0 0 0 0 0 0 0
0 0 0 y3 z 0 0 0 0 0
0 0 0 0 −y z4 0 0 0 0
0 −x2 0 xy2 0 0 y3 z 0 0
0 0 x2z2 0 x 0 0 −y z4 0
0 0 0 0 0 xy2z2 0 0 y3z2 z3


.

In the remainder of this section, we will derive formulae for the Betti numbers of
ideals generated by relative Pommaret-like bases over factor rings of the form P/I,
where I is an irreducible quasi-stable monomial ideal. We understand this to include
also the case I = {0}, and hence all resolutions induced by Pommaret-like bases over
the ordinary polynomial ring P = P/{0} = K[x1, . . . , xn]. The results can also be
applied to non-minimal free resolutions induced by Pommaret-like bases, but then one
gets only formulae for the ranks of the free modules in these non-minimal resolutions,
which yield, degree by degree, upper bounds for the Betti numbers of the resolved
ideals.

Definition 6.10. Let I = ⟨xak
k , x

ak+1
k+1 , . . . , x

an
n ⟩ be an irreducible quasi-stable monomial

ideal. Then we write cls(I) = k and supp(I) = {xk, xk+1, . . . , xn}.

Let now J ⊇ I be any homogeneous polynomial ideal in quasi-stable position
relative to I with respect to the degrevlex term ordering, and let H be its minimal
relative Pommaret-like basis. We construct a basis for the bigraded free P/I-module
supporting the induced resolution, only using the Pommaret-like basis of the leading
ideal of J relative to I.

The resolution induced by H is supported on freeP/I-modules. The first freeP/I-
module M0 has a basis that we enumerate as {eα | hα ∈ H}. Write tα = lt(hα) for each
hα ∈ H. As always, we order H according to a P-ordering. The next free module M1
has a basis whose cardinality equals that of the minimal Pommaret-like basis of Syz(H)
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with respect to the Schreyer module term order—note that this is a reduced Gröbner
basis. Hence, the free basis of M1 is in bijection with the elements of this Gröbner
basis; in other words, it is in bijection with the leading module terms of the Gröbner
basis. These leading module terms are given as follows (cf. Proposition 6.1):

• xpa
a · eα, where xpa

a ∈ NMPPI (tα, lt(H)),

• xai−degi(tα)
i ·eα, where xi ∈ supp(tα)∩supp(I) and there is no PI-nonmultiplicative

power for tα at xi. (If ℓ = cls(tα) ≥ cls(I), then this case will always include
xaℓ−degℓ(tα)
ℓ

· eα.)

Since the two cases are mutually exclusive, and each concerns leading module terms
whose polynomial parts are pure variable powers, we can identify each leading mod-
ule term by its position and the variable involved. Thus, a free basis of M1 can be
enumerated as

{eα,xi | xi ≥ cls(tα) ∧ (xi ∈ NMPI (tα, lt(H)) ∨ xi ∈ supp(tα) ∩ supp(I))}.

We keep the condition “xi ≥ cls(tα)” for clarity, even though it could be omitted, being
implicit in the other conditions. At this stage, it is useful to introduce notations for the
leading ideals in each module component of M1, because we can use them to describe,
by an iteration, all further leading terms in the resolution. Set

Jα = ⟨x
di
i | x

di
i · eα ∈ lt(Syz(H))⟩.

These ideals are irreducible and we will use the notation supp(Jα) for the set of vari-
ables appearing in their respective generating sets.

Consider now the leading terms of the Pommaret-like basis of Syz2(H), which are
in bijection to a free basis of the next module in the resolution, M2. Each of them is
induced by a leading term of the basis of Syz(H). Such a leading term, xdi

i · eα, say,
induces exactly the following leading terms in Syz2(H):

• xd j

j · eα,xi , where x j ∈ supp(Jα) and j > i,

• xai−di
i · eα,xi , if xi ∈ supp(I).

Note that the polynomial part of the new leading term will be supported on a variable
whose index is not less than that of the polynomial part of the term which induces
it. We can now list the free basis of M2: Leading terms induced as in the first case
correspond to basis elements eα,xi x j , whereas leading terms induced as in the second
case correspond to basis elements eα,x2

i
.

We can iterate this construction. For the r-th module in the resolution, Mr, it yields
a basis consisting of elements of the form eα,xµ , where xµ is a term of degree r with
cls(xµ) ≥ cls(tα). Moreover, xµ is supported on supp(Jα), and if for each xi ∈ supp(I)
we substitute 1 into xµ, we get a squarefree term supported on supp(Jα) \ supp(I).

From this description of the free bases, we obtain the following formula for the total
Betti numbers of the resolution, where we write Sα for supp(Jα) and S for supp(I):
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For r = 0, rank(M0) = |H|; for r ≥ 1,

rank(Mr) =
∑
hα∈H
Sα∩S,∅

min{r, |Sα\S|}∑
j=0

(
|Sα \ S|

j

)
·

(
|Sα ∩ S| + r − j − 1
|Sα ∩ S| − 1

)

+
∑
hα∈H
Sα∩S=∅

[
r ≤ |Sα|

](|Sα|
r

)
,

(6.2)

where the product of binomial coefficients counts the number of terms xµ of degree r
supported on Jα with the additional restriction of being squarefree outside supp(I).
Moreover, the Kronecker–Iverson symbol

[
r ≤ |Sα|

]
yields 1 when the statement en-

closed in the square brackets is true and 0 otherwise.
We turn to the bigraded Betti numbers, which we will compute in the form of a

Poincaré series, i. e. a formal power series in two variables, which we name s and u.
The first variable encodes homological degrees and the second encodes degrees as
given by the ordinary grading of the polynomial ring P. Recall that each basis ele-
ment eα,xµ has homological degree deg(xµ). Its polynomial degree is the sum of deg(tα)
(recall tα = lt(hα)) and the degrees of the polynomial parts of all leading module terms
involved in the building up of the syzygy Sα,xµ ∈ Syzdeg(xµ)(H). These polynomial
parts are pure powers of variables from supp(Jα). Moreover, their indices form a non-
decreasing sequence. There can be repeated indices in this sequence, and if an index
j is repeated, it means that the next syzygy is formed from the annihilation of the cur-
rent leading term. So if a module term with polynomial part xc j

j is to annihilate, the
next leading term will have polynomial part xa j−c j

j (recall that I is generated by the
terms xa j

j ). More repetitions of the same index will cause the involved leading terms
to have polynomial parts oscillating between xc j

j and xa j−c j

j . This means that the con-
tribution of x j-terms to the overall polynomial degree of S α,xµ depends, on one hand,
on the parity of µ j, and the remaining part is just h j · ⌊µ j/2⌋. Since Jα is generated by
terms xd j

j , we get the following formula for the Poincaré series of our resolution, where
we write Sα for supp(Jα) and S for supp(I):∑

hα∈H

udeg(tα) ·

1 + ∑
B⊆Sα

(
|Sα|

|B|

)
s|B|

∏
xb∈B

udb
∏

x j∈Sα∩S

1
1 − s2ua j


 . (6.3)

Example 6.11. Let us continue with Example 6.9 where we had I = ⟨y4, z5⟩ and H =
{x2y3, xy2z2, y3z2, z3}. We will use Equality (6.2) to compute the Betti numbers of the
ideal generated by H relative to I and then compare it with the results of Example 6.9.

We write hα = x2y3, hβ = xy2z2, hγ = y3z2, and hδ = z3. An analysis of the
Pommaret-like non-multiplicative powers of these generators shows that Jα = {y, z2},
Jβ = {y, z}, Jγ = {y, z}, and Jδ = {z2}. Since supp(I) = {x, y}, we have supp(Jα) =
supp(Jα) ∩ supp(I), and the same equality holds also for the other indices. Thus,
Equality (6.2) reduces to

rank(Mr) =
∑
hα∈H

(
| supp(Jα)| + r − 1
| supp(Jα)| − 1

)
,
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and this gives, since we have three generators with | supp(J•)| = 2 and one generator
with | supp(J•)| = 1, the formula

rank(Mr) = 3
(
1 + r

1

)
+

(
r
0

)
= 4 + 3r,

which is for r ∈ {1, 2, 3} in perfect agreement with the results of Example 6.9.

7. An explicit formula for the differential

In this section, we will give explicit formulae for the differentials of resolutions of
some monomial ideals induced by Pommaret-like bases over the ordinary polynomial
ring P = K[x1, . . . , xn]. These formulas will generalize those given in (Seiler, 2010)
for resolutions induced by Pommaret bases. While in (Seiler, 2010), such a formula
was found for all quasi-stable ideals and their minimal Pommaret bases, we will here
restrict our attention to a smaller class of ideals. Our first goal is to establish a subclass
of quasi-stable ideals whose minimal Pommaret-like basis satisfy conditions analogous
to those found in (Seiler, 2010, Lem. 5.4.17) for minimal Pommaret bases of arbitrary
quasi-stable ideals. For this subclass, we will then have the technical tools needed to
give an explicit formula for the differential of the induced resolution.

Definition 7.1. Let H = {hα | α ∈ A} ⊂ T be the minimal Pommaret-like basis of the
quasi-stable ideal I = ⟨H⟩where A is a finite index set. For each α ∈ A, and for each of
its Pommaret-like non-multiplicative powers xpa

a = xp(P,hα,H,a)
a , there exists exactly one

generator hβ ∈ H with xpa
a · hα ∈ CP(hβ). For such a configuration of terms, we write

∆(α, a) = β (7.1)

for the index of the Pommaret-like divisor, and

tα,a = (xpa
a · hα)/hβ (7.2)

for the Pommaret-like multiplicative cofactor involved.

Lemma 7.2. Let H = {hα | α ∈ A} ⊂ T be the minimal Pommaret-like basis of the
quasi-stable ideal I = ⟨H⟩. The associated function ∆ and the terms tα,a (as given in
Definition 7.1) satisfy the following properties:

1. The inequality cls(hα) ≤ cls(h∆(α,a)) ≤ a holds for all non-multiplicative indices
a > cls(hα).

2. Let b > a > cls(hα) be two non-multiplicative indices.
• The variable xb is non-multiplicative for h∆(α,a) and the non-multiplicative

power of h∆(α,a) at xb equals that of hα at xb.
• If cls(h∆(α,b)) ≥ a, then ∆(∆(α, a), b) = ∆(α, b) and xpa

a · tα,b = tα,a · t∆(α,a),b.

Proof. Property (1.) follows from the minimality of the Pommaret-like basis H: h∆(α,a)
is a divisor of xpa

a · hα and thus its class must be at least as high as that of hα; it cannot
be higher than a, because otherwise h∆(α,a) would be a strict Pommaret-like divisor of
hα, contradicting minimality.
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Property (2.) splits into two items. The first item follows from Property (1.) and
the definition of the Pommaret-like division, as the terms h∆(α,a) and hα must agree
in their x j-degrees for all j > a. Now if, to prove the second item, we additionally
assume cls(h∆(α,b)) ≥ a, then – since xpb

b ·h∆(α,a) and xpb
b ·hα agree in their x j-degrees for

all indices j > a – the same must be true for h∆(∆(α,a)),b and h∆(α,b). We also know that
dega(h∆(α,b)) ≤ dega(hα) < dega(xpb

b ·h∆(α,a)). By the class assumption on h∆(α,b), we can
now conclude that h∆(α,b) is the unique Pommaret-like divisor in H of xpb

b ·h∆(α,a). Hence,
we have shown ∆(∆(α, a), b) = ∆(α, b). The remaining statement is a consequence of
the following chain of equalities:

xpa
a · tα,b · h∆(α,b) = xpa

a · (xpb
b · hα) = xpb

b · (xpa
a · hα)

= xpb
b · tα,a · h∆(α,a) = tα,a · x

pb
b · h∆(α,a)

= tα,a · t∆(α,a),b · h∆(∆(α,a),b) = tα,a · t∆(α,a),b · h∆(α,b).

For arbitrary minimal Pommaret bases, the associated ∆ functions satisfy a com-
mutativity property of the form

∆(∆(α, a), b) = ∆(∆(α, b), a) (7.3)

whenever both of these terms are defined, i. e. when the involved variable indices
a, b are always non-multiplicative (Seiler, 2010, Lem. 5.4.17). In general, minimal
Pommaret-like bases do not have this property. What is more, for Pommaret bases, also
the equality tα,a · t∆(α,a),b = tα,b · t∆(α,b),a holds in this situation. By contrast, there are
minimal Pommaret-like bases for which the commutativity property holds, but not the
equality just mentioned. This is caused by differences of degrees of non-multiplicative
powers for the same variable.

Example 7.3. Consider the minimal Pommaret-like basis H = {hα, hβ, hγ, hδ, hϵ} with
hα = xy, hβ = y4, hγ = xz, hδ = y2z, and hϵ = z3. Its associated ∆ function satisfies
the commutativity property of Equality (7.3). For this only one condition needs to be
checked:

∆(∆(α, y), z) = δ = ∆(∆(α, z), y).

However, we have tα,y = x, t∆(α,y),z = y2, tα,z = y, and t∆(α,z),y = x, so that tα,y · t∆(α,y),z =

xy2 , xy = tα,z · t∆(α,z),y. This is caused by a difference in the degrees of the non-
multiplicative powers at the variable y between hα (degree 3) and hγ (degree 2).

We now define a subclass of quasi-stable ideals having ∆-functions with properties
useful for the analysis of their Pommaret-like resolutions:

Definition 7.4. Let H = {hα | α ∈ A} ⊂ T be the minimal Pommaret-like basis of
the quasi-stable ideal I = ⟨H⟩. The ideal I together with the basis H is called ∆-
commuting if the associated function ∆ and the terms tα,a (as given in Definition 7.1)
satisfy the following properties:

1. If b > a > cls(hα) are two non-multiplicative indices and cls(h∆(α,b)) < a, then
the exponent of the non-multiplicative power of h∆(α,b) at the variable xa equals
that of the non-multiplicative power of hα at the variable xa.
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2. We have ∆(∆(α, a), b) = ∆(∆(α, b), a).
3. We have tα,a · t∆(α,a),b = tα,b · t∆(α,b),a.

For ∆-commuting quasi-stable ideals, we are able to give an explicit formula for
the differential of the resolution induced by the minimal Pommaret-like basis. As is
usual for such formulas, the summands obey a certain sign rule, and for this we need
the following definition:

Definition 7.5. Let xi ∈ Y ⊆ {x1, . . . , xn}. Then we write

sgn(xi,Y) = (−1)|{x j∈Y | j>i}|.

Theorem 7.6. Let H = {hα | α ∈ A} ⊂ T be the minimal Pommaret-like basis of
the ∆-commuting quasi-stable ideal I = ⟨H⟩. We write NMP(hα,H) = {xp j

j | j >
cls(hα)}. The Pommaret-like induced resolution of I is supported on free generators of
the form ehα,xµ , where the xµ are square-free terms supported on {x j | j > cls(hα)}. The
differential δ of the resolution is given by δ(eα,1) = hα, and, for deg(xµ) > 0,

δ(eα,xµ ) =
∑

x j∈supp(xµ)

sgn(x j, supp(xµ)) ·
(
xp j

j eα,xµ/x j − tα, je∆(α, j),xµ/x j

)
. (7.4)

In this formula, we interpret all summands to be zero which involve a non-existent free
generator eβ,xν , i. e. an expression of this form for which supp(xν) ⊈ {x j | j > cls(hβ)}.

The proof is a straightforward adaptation of the one of (Seiler, 2010, Thm. 5.4.18),
replacing non-multiplicative variables by their associated non-multiplicative powers
where appropriate and therefore omitted.

Corollary 7.7. Let I = ⟨H⟩ be a ∆-commuting quasi-stable ideal minimally generated
by the set H ⊂ T , for which H is also a Pommaret-like basis. Then the Pommaret-like
resolution of I induced by H is minimal.

Proof. By minimality of H, we have tα,a , 1 for the terms defined in Definition 7.1.
Now, the minimality of the induced resolution is a trivial consequence of the explicit
differential formula 7.4, which applies because all assumptions of Theorem 7.6 are
fulfilled for I and H.

Example 7.8. Let us continue Example 4.5. We have the minimal Pommaret-like basis

H = {hα = w9x3y2z2, hβ = x5y2z2, hγ = w7y4z2, hδ = x3y4z2,

hϵ = y6z2, hζ = x3y2z4, hη = y4z4, hθ = z8}.

Using Formula 7.4, we obtain the following values of the differential δ of the induced
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resolution for basis elements of homological degrees 2 and 3:

δ(eα,xy) = y2eα,x − x2eα,y +w9eβ,y
δ(eα,xz) = z2eα,x − x2eα,z +w9eβ,z
δ(eα,yz) = z2eα,y −w9eζ,y − y2eα,z +w9eδ,z
δ(eβ,yz) = z2eβ,y −x2eζ,y − y2eβ,z +x2eδ,z
δ(eγ,xy) = y2eγ,x − x3eγ,y +w7eδ,y
δ(eγ,xz) = z2eγ,x − x3eγ,z +w7eδ,z
δ(eγ,yz) = z2eγ,y − y2eγ,z +w7eϵ,z
δ(eδ,yz) = z2eδ,y − y2eδ,z +x3eϵ,z
δ(eζ,yz) = z4eζ,y − y2eζ,z +x3eη,z

δ(eα,xyz) = z2eα,xy −y2eα,xz + x2eα,yz −w9eβ,yz

δ(eγ,xyz) = z2eγ,xy −y2eγ,xz + x3eγ,yz −w7eδ,yz.

The P-graph of this Pommaret-like basis is given in Figure 1.

Example 7.9. Let us continue Example 4.6. Thus, we consider the minimal Pommaret-
like basis H = {xy, y3, xz, y2z, z2} and we write hα = xy, hβ = y3, hγ = xz, hδ = y2z, and
hϵ = z2. Using Formula 7.4, we obtain the following values of the differential δ of the
induced resolution for basis elements of homological degree 2:

δ(eα,yz) = zeα,y −yeγ,y − y2eα,z +xeβ,z
δ(eγ,yz) = zeγ,y − y2eγ,z +xeδ,z.

The P-graph of this Pommaret-like basis is given in Figure 2.

In the remainder of this section, we aim to find a family of quasi-stable monomial
ideals as large as possible such that for each ideal in the family, the resolution in-
duced by its minimal Pommaret-like basis admits an explicit differential formula akin
to Equality (7.4). For a given minimal Pommaret-like basis H = {hα | α ∈ A}, we
would like to find terms uα, j,µ such that the Pommaret-like induced resolution of the
ideal ⟨H⟩ is described by the formula

δ(eα,xµ ) =
∑

x j∈supp(xµ)

sgn(x j, supp(xµ)) ·
(
xp j

j eα,xµ/x j − uα, j,µe∆(α, j),xµ/x j

)
. (7.5)

In particular, we still work with resolutions supported on module basis elements eα,xµ
where xµ is a square-free term supported on {xcls(hα), . . . , xn}, and deg(xµ) is the homo-
logical degree of the basis element. Moreover, the leading terms of the involved syzy-
gies have polynomial parts xp(a,hα,H)

a , i.e., they are Pommaret-like non-multiplicative
powers of some original basis element. Thus we can associate the multidegree hα ·∏

xa∈supp(xµ) xp(a,hα,H)
a to the basis element eα,xµ .
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α

β

δ

γ

ϵ

ζ

η

θ

x2; w9

y2; w9

z2; w9

y2; x2z2; x2

x3; w7

y2; w7

z2; w7

y2; x3

z2; x3

z2; y2

y2; x3

z4; x3y2

z4; y4

Figure 1: P-graph of Pommaret-like basis of Example 7.8. Each arrow is labelled with a Pommaret-like
non-multiplicative power of the basis element belonging to the source. This non-multiplicative power is
printed bold. Moreover, the label contains the associated cofactor, which is Pommaret-like multiplicative for
the basis element belonging to the target of the arrow.

α β

γ δ

ϵ

y2; x

z; y z; y

y2; x

z; x
z; y2

Figure 2: P-graph of Pommaret-like basis of Example 7.9. See Figure 1 for instructions on how to read it.
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The original ideal is monomial or, in other words, multihomogeneous; thus, so is
the induced resolution. The terms uα, j,µ need to ensure the multihomogeneity. The
resolution is assumed to be Pommaret-like induced; hence, the leading terms, which
are given by non-multiplicative powers, determine the multidegrees of all involved
syzygies. The differential δ is 0-multihomogeneous. Hence all terms in δ(eα,xµ ) must
be exactly of multidegree hα

∏
xa∈supp(xµ) xp(a,hα,H)

a . This is true for the terms xp j

j eα,xµ/x j

since the multidegree of eα,xµ/x j is hα
∏

xa∈supp(xµ)
a, j

xp(a,hα,H)
a . For each index j, a natural

candidate for uα, j,µ is tα, j since xp j

j · hα = tα, j · h∆(α, j) and thus, the multidegree of

tα, je∆(α, j),xµ/x j is hα · x
p j

j ·
∏

xa∈supp(xµ)
a, j

xp(a,h∆(α, j),H)
a . Consider now the term

vα, j,µ =
∏

xa∈supp(xµ)
a, j

xp(a,hα,H)−p(a,h∆(α, j),H)
a ∈ K[x±1

1 , . . . , x
±1
n ].

If tα, j · vα, j,µ ∈ T , then the terms uα, j,µ = tα, j · vα, j,µ make (7.5) multihomogeneous.
It is not hard to see that ∆-commuting quasi-stable ideals satisfy these conditions.

Before proving that Equality (7.5) indeed describes the Pommaret-like induced res-
olution, we first need to make explicit the P-orderings that we use in each homological
degree of the Pommaret-like induced resolution.

Remark 7.10. Let H = {hα | α ∈ A} ⊂ T be a minimal Pommaret-like basis and let
eα,xµ , eβ,xν with deg(xµ) = deg(xν) = d be two basis elements of the free module Fd in
the induced resolution. We work with the following P-ordering: eα,xµ precedes eβ,xν if
and only if either hα precedes hβ in the P-ordering of H, or α = β and xµ ≺revlex xν.

Definition 7.11. Let H = {hα | α ∈ A} ⊂ T be the minimal Pommaret-like basis of
the quasi-stable ideal I = ⟨H⟩. The ideal I together with the basis H is called weakly
∆-commuting if the associated function ∆ and the terms tα,a (as given in Definition 7.1)
satisfies the following property: If b > a > cls(hα) are two non-multiplicative indices
and cls(h∆(α,b)) < a, then we have ∆(∆(α, a), b) = ∆(∆(α, b), a).

Lemma 7.12. Let xµ be a squarefree monomial and let x j, x j ∈ supp(xµ) = Y with
i < j be two variables that divide xµ. Then sgn(xi,Y) · sgn(x j,Y \ {xi}) = −sgn(x j,Y) ·
sgn(xi,Y \ {x j})

Proof. Without loss of generality, we may assume that x j has the highest index in
supp(xµ). Then, sgn(x j,Y \ {xi}) = sgn(x j,Y) = 1. Thus, we need to show that
sgn(xi,Y) = −sgn(xi,Y \ {x j}). But this is clear, as x j ∈ Y and j > i.

Theorem 7.13. Let H = {hα | α ∈ A} be the minimal Pommaret-like basis of the
weakly ∆-commuting quasi-stable monomial ideal ⟨H⟩. Let the terms uα, j,µ be given
such that Equality (7.5) together with δ(eα,1) = hα defines a 0-multihomogeneous map
δ of homological degree −1. Then δ is the differential of the Pommaret-like induced
resolution of ⟨H⟩.

Proof. Let ∂ denote the differential of the Pommaret-like induced resolution. We need
to show that δ = ∂. First, note that the two maps are defined on the same free module(s).
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It is clear by definition that δ0 = ∂0. Assume that we can prove that δ2 = 0. Then,
elements of the form δ(eα,x j ) are in Syz1(H), and, more generally, if deg(xµ) = d, we
have δ(eα,xµ ) ∈ Syzd(H). We work with the term ordering induced by the P-ordering on
the basis H. For each d ∈ N0, we consider the set Gd = {δ(eα,xµ ) | deg(xµ) = d + 1}; we
denote by Fd the analogous set for the differential ∂. If we can show that lt(Gd) = lt(Fd)
for all d, and that Gd is autoreduced with respect to these leading terms, then since Fd

is a reduced Gröbner basis and by the uniqueness of reduced Gröbner bases, it must
hold that Gd = Fd.

We first show that δ2 = 0. So let eα,xµ be a module generator with deg(xµ) ≥ 2.
We claim that S = δ2(eα,xµ ) = 0. S is a sum of module monomials supported on
module basis elements of the form eβ,xµ/xi x j , where {xi, x j} ∈ supp(xµ) (assume i <
j), and β lies in the index set I(i, j) = {α,∆(α, i),∆(α, j),∆(∆(α, i), j)}. (Note that, if
∆(∆(α, j), i) exists, then it is equal to ∆(∆(α, i), j).) As module monomials supported
on basis elements of the form eβ,xµ/xi x j and eβ,xµ/xk xℓ , where {i, j} , {k, ℓ}, cannot cancel,
it remains only to be seen that the summands supported on basis elements eβ,xµ/xi x j ,
with i and j now fixed, cancel. As δ is multihomogeneous, we only need to determine
the existing summands and show that their signs sum to zero.

The index set I(i, j) has at least 3 distinct elements, as α < ∆(α, i) < ∆(∆(α, i), j) in
the P-order of the Pommaret-like basis H. We now distinguish two main cases:

If |I(i, j)| = 4, then ∆(α, j) , ∆(∆(α, i), j) and hence ∆(∆(α, j), i) = ∆(∆(α, i), j).
These four nodes form a square in the P-graph. For each node, S contains exactly two
summands. The sum of the signs of the monomials supported on eβ,xµ/xi x j is as follows,
where Y = supp(xµ):
• For β = α:

sgn(xi,Y)sgn(x j,Y \ {xi}) + sgn(x j,Y)sgn(xi,Y \ {x j}),

• For β = ∆(α, i):

sgn(x j,Y)(−1)sgn(xi,Y \ {x j}) + (−1)sgn(xi,Y)sgn(x j,Y \ {xi}),

• For β = ∆(α, j):

sgn(xi,Y)(−1)sgn(x j,Y \ {xi}) + (−1)sgn(x j,Y)sgn(xi,Y \ {x j}),

• For β = ∆(∆(α, i), j):

(−1)sgn(xi,Y)(−1)sgn(x j,Y \ {xi}) + (−1)sgn(x j,Y)(−1)sgn(xi,Y \ {x j}).

The monomials in each of the four cases sum to zero by Lemma 7.12 and multihomo-
geneity of δ.

If |I(i, j)| = 3, then, as α < ∆(α, j) and ∆(α, j) , ∆(α, i), we must have ∆(α, j) =
∆(∆(α, i), j). The three nodes in I(i, j) form a triangle in the P-graph. For each node,
S contains exactly two summands, but no others, as e∆(α, j),xµ/x j = 0 by convention,
because cls(h∆(α, j)) ≥ i. The sum of the signs of the monomials supported on eβ,xµ/xi x j

is as follows, where Y = supp(xµ):
• For β = α: As in the case |I(i, j)| = 4.
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• For β = ∆(α, i): As in the case |I(i, j)| = 4.
• For β = ∆(α, j) = ∆(∆(α, i), j):

(−1)sgn(xi,Y)(−1)sgn(x j,Y \ {xi}) + sgn(xi,Y)(−1)sgn(x j,Y \ {xi}).

The monomials in each of the three cases sum to zero by Lemma 7.12 and multihomo-
geneity of δ. Thus we have shown δ2 = 0.

Now we proceed by analysing leading terms and showing autoreducedness. For
S = δ(eα,xµ ) ∈ Gd, define x̂ = x ĵ as the variable with maximal index dividing xµ.
Then lt(S) = x

p ĵ

ĵ
eα,xµ/x ĵ

, because terms of the form xνeα,• precede terms of the form
xρe∆(α,•),• in the P-ordering and xµ/x ĵ is the revlex-smallest term among terms of the
form xµ/xi. So lt(S) equals the leading term of the element ∂(eα,xµ ) as desired. It
remains to show autoreducedness. Assume that lt(S) divides a term in the support of
T = δ(eβ.xν ). Necessarily, deg(xν) = deg(xµ). If β = α, then it is clear that lt(S) does not
divide any term of the form xζe∆(β,•),... in the support of T, as ∆(β, •) , β = α. Assume
it divides a term in the support of T of the form xpa

a eα,xν/xa . Then we must have a = ĵ
and xν = xµ, i.e., S = T. If β , α, then it is clear that lt(S) does not divide any term
of the form xpa

a eβ,xν/xa in the support of T, as β , α. Assume now that lt(S) divides a
term of the form uβ,re∆(β,r),xν/xr in the support of T. Then we must have ∆(β, r) = α and
xν/xr = xµ/x ĵ. The latter relation implies x ĵ < supp(xν). Thus, the definition of uβ,r
gives deg ĵ(uβ,r) = deg ĵ(tβ,r). But, as ∆(β, r) = α, tβ,r is Pommaret-like multiplicative for
hα, and so deg ĵ(uβ,r) < p( ĵ, hα,H) = deg ĵ(lt(S)), contradicting the assumed divisibility.
Thus the collection of all the δ(eα,xµ ) is indeed autoreduced as claimed.

Example 7.14. Consider the minimal Pommaret-like basis H = {hα = xy, hβ = y4, hγ =
xyz, hδ = y2z, hϵ = z3} ⊂ K[x, y, z]. It induces a minimal free resolution with differential
represented by the following matrices:

D0 =
(
xy y4 xyz y2z z2

)
, D1 =


y3 z 0 0 0 0
−x 0 z 0 0 0
0 −1 0 y z2 0
0 0 −y2 −x 0 z2

0 0 0 0 −xy −y2

 , D2 =



z 0
−y3 0

x 0
−y2 z2

0 −y
0 x


.

One checks easily that the P-graph of H is, up to labels, the same as in Figure 2.
Thus, H is weakly ∆-commuting. However, it is not ∆-commuting, because, even
though ∆(α, z) = γ and cls(hγ) = x < z, the non-multiplicative powers of hα and
hγ differ, being y3 and y, respectively. Thus we cannot use Theorem 7.6 for finding
the differential, but must resort to using Theorem 7.13. Assume we wanted to use
Theorem 7.6. Then we would obtain the expression

zeα,y − eγ,y − y3eα,z + xeβ,z.

This does not correspond to the first column of D2. Using Theorem 7.13, the coefficient
of eγ,y is multiplied by the correction term y2, which is exactly the quotient of the non-
multiplicative powers at y of hα and hγ, respectively. This way, we obtain the correct
differential value

δ(eα,yz) = zeα,y − y2eγ,y − y3eα,z + xeβ,z.
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Example 7.15. Consider the minimal Pommaret-like basis H = {hα = x3y, hβ =
y5, hγ = x3z, hδ = xy3z, hϵ = y4z, hζ = z4} ⊂ K[x, y, z]. It is not weakly ∆-commuting,
because ∆(∆(α, y), z) = ϵ , δ = ∆(∆(α, z), y). In fact, ∆(∆(∆(α, z), y), y) = ϵ and the
P-graph of H contains a pentagon.

8. Conclusion

The Pommaret involutive division is known to be well suited to the analysis of free
resolutions and homological invariants of polynomial ideals in quasi-stable position. In
this article, we studied the resolutions obtained by using several generalizations of this
division: The relative Pommaret division and the Pommaret-like division, respectively.
These divisions allowed us to study on the one hand ideals in quotient rings and on the
other hand to obtain smaller resolutions which are closer to the minimal one. At the
same time, we showed that the combinatorial properties of the Pommaret division are
preserved. Our results not only enlarge the scope of the study of involutive bases, but
also open new opportunities for enhancing the efficiency of involutive algorithms for
the computation of free resolutions.

We showed that the induced free resolutions have good algorithmic properties like
Gröbner-reducedness in all higher syzygy modules. Moreover, for special types of
quasi-stable monomial ideals, we showed that the induced resolutions are even mini-
mal. For some ideal types we obtained explicit formulas for the differential which only
depend on the data needed to compute the original Pommaret-like bases.

One may expect that the resolutions induced by Pommaret-like bases can be proven
to be induced by mapping cones (see (Herzog and Takayama, 2002) for a definition),
as it is the case for the resolutions induced by Pommaret bases (Albert et al., 2015).
Moreover, it may be worthwhile to investigate whether the Pommaret-like induced res-
olution is cellular, for instance using the techniques described by Iglesias and Sáenz de
Cabezón (2021).

In this work, we focused on resolutions over the ordinary polynomial ring and over
Clements–Lindström rings, as the latter ones have found much attention in recent years.
However, the presented techniques are valid for any quotient ring defined by an ideal
in quasi-stable position. A natural direction for further research is to find more general
classes of such quotient rings for which the induced resolution has special properties,
in particular for which one can show that it is minimal.

We finally mention that the here developed tools are also of interest for the analysis
of Hilbert and Quot schemes. For the classical case, the use of the Pommaret division
in this context was pioneered by Bertone et al. (2013) and further developed by Albert
et al. (2020). The extension to the relative case was recently exploited for the first time
in (Bertone et al., 2023).

Acknowledgements

The second author would like to thank Rodrigo Iglesias for pointing out an error in
an earlier version and for helping to find Example 7.15. The research of the first author
was in part supported by a grant from IPM (No. 1401130214).

34



References

Adams, W.W., Loustaunau, P., 1994. An introduction to Gröbner bases. volume 3.
Providence, RI: American Mathematical Society.

Albert, M., Bertone, C., Roggero, M., Seiler, W., 2020. Computing Quot schemes via
marked bases over quasi-stable modules. J. Alg. 550, 432–470.

Albert, M., Fetzer, M., Sáenz-de Cabezón, E., Seiler, W.M., 2015. On the free resolu-
tion induced by a Pommaret basis. J. Symb. Comput. 68, 4–26.

Bertone, C., Cioffi, F., Orth, M., Seiler, W.M., 2023. Open covers and lex points of
Hilbert schemes over quotient rings via relative marked bases. arXiv:2203.11770.

Bertone, C., Lella, P., Roggero, M., 2013. A Borel open cover of the Hilbert scheme.
J. Symb. Comp. 53, 119–135.

Clements, G.F., Lindström, B., 1969. A generalization of a combinatorial theorem of
Macaulay. J. Comb. Theory 7, 230–238.

Cox, D.A., Little, J., O’Shea, D., 2015. Ideals, varieties, and algorithms. An introduc-
tion to computational algebraic geometry and commutative algebra. 4th revised ed.
Cham: Springer.

Eliahou, S., Kervaire, M., 1990. Minimal resolutions of some monomial ideals. J.
Algebra 129, 1–25.

Gasharov, V., Murai, S., Peeva, I., 2011. Applications of mapping cones over
Clements-Lindström rings. J. Algebra 325, 34–55.

Gerdt, V.P., Blinkov, Y.A., 1998. Involutive bases of polynomial ideals. Math. Comput.
Simul. 45, 519–541.

Gerdt, V.P., Blinkov, Y.A., 2005a. Janet-like Gröbner bases, in: Computer Algebra in
Scientific Computing, CASC 2005. Springer, pp. 184–195.

Gerdt, V.P., Blinkov, Y.A., 2005b. Janet-like monomial division., in: Computer Alge-
bra in Scientific Computing, CASC 2005. Springer, pp. 174–183.

Hashemi, A., Orth, M., Seiler, W.M., 2021. Relative Gröbner and involutive bases for
ideals in quotient rings. Math. Comput. Sci. 15, 453–482.

Hashemi, A., Orth, M., Seiler, W.M., 2023. Recursive structures in involutive bases
theory. J. Symb. Comput. 118, 32–68.

Hashemi, A., Parnian, H., Seiler, W.M., 2019. Nœther bases and their applications.
Bull. Iran. Math. Soc. 45, 1283–1301.

Hashemi, A., Schweinfurter, M., Seiler, W.M., 2018. Deterministic genericity for
polynomial ideals. J. Symb. Comput. 86, 20–50.

35

http://arxiv.org/abs/2203.11770


Herzog, J., Takayama, Y., 2002. Resolutions by mapping cones. Homology Homotopy
Appl. 4, 277–294.

Iglesias, R., Sáenz de Cabezón, E., 2021. Cellular reductions of the Pommaret-Seiler
resolution for quasi-stable ideals. ACM Commun. Comput. Algebra 55, 102–106.

Janet, M., 1920. Sur les systèmes d’équations aux dérivées partielles. C. R. Acad. Sci.,
Paris 170, 1101–1103.

Janet, M., 1929. Leçons sur les Systèmes d’Équations aux Dérivées Partielles. Cahiers
Scientifiques, Fascicule IV, Gauthier-Villars, Paris.

McCullough, J., Peeva, I., 2015. Infinite graded free resolutions, in: Commutative al-
gebra and noncommutative algebraic geometry. Volume I: Expository articles. Cam-
bridge: Cambridge University Press, pp. 215–257.

Mora, T., 2005. Solving polynomial equation systems. II. Macaulay’s paradigm and
Gröbner technology. volume 99 of Encycl. Math. Appl. Cambridge: Cambridge
University Press.

Mora, T., 2016. Solving polynomial equation systems. Vol. IV. Buchberger theory and
beyond. volume 158. Cambridge: Cambridge University Press.

Pommaret, J., 1978. Systems of partial differential equations and Lie pseudogroups.
Gordon and Breach Science Publishers.

Schreyer, F., 1980. Die Berechnung von Syzygien mit dem verallgemeinerten Weier-
strass’schen Divisionssatz. Master’s thesis. University of Hamburg, Germany.

Seiler, W.M., 2009a. A combinatorial approach to involution and δ-regularity. I: Invo-
lutive bases in polynomial algebras of solvable type. Appl. Algebra Eng. Commun.
Comput. 20, 207–259.

Seiler, W.M., 2009b. A combinatorial approach to involution and δ-regularity. II: Struc-
ture analysis of polynomial modules with Pommaret bases. Appl. Algebra Eng.
Commun. Comput. 20, 261–338.

Seiler, W.M., 2010. Involution. The formal theory of differential equations and its
applications in computer algebra. Berlin: Springer.

Semenov, A., 2006. On connection between constructive involutive divisions and
monomial orderings., in: Computer Algebra in Scientific Computing, CASC 2006.
Springer, pp. 261–278.

Zharkov, A.Y., Blinkov, Y.A., 1996. Involution approach to investigating polynomial
systems. Math. Comput. Simul. 42, 323–332.

36


	Introduction
	Preliminaries
	Resolutions induced by relative Pommaret bases
	Resolutions induced by Pommaret-like bases
	Relative involutive-like divisions
	Pommaret-like free resolutions over Clements–Lindström rings
	An explicit formula for the differential
	Conclusion

