
Computation of Pommaret Bases Using Syzygies

Bentolhoda Binaei1, Amir Hashemi1,2, and Werner M. Seiler3

1 Department of Mathematical Sciences, Isfahan University of Technology
Isfahan, 84156-83111, Iran;

2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
Tehran, 19395-5746, Iran

h.binaei@math.iut.ac.ir
Amir.Hashemi@cc.iut.ac.ir

3 Institut für Mathematik, Universität Kassel
Heinrich-Plett-Straße 40, 34132 Kassel, Germany

seiler@mathematik.uni-kassel.de

Abstract. We investigate the application of syzygies for efficiently com-
puting (finite) Pommaret bases. For this purpose, we first describe a non-
trivial variant of Gerdt’s algorithm [10] to construct an involutive basis
for the input ideal as well as an involutive basis for the syzygy module
of the output basis. Then we apply this new algorithm in the context of
Seiler’s method to transform a given ideal into quasi stable position to
ensure the existence of a finite Pommaret basis [19]. This new approach
allows us to avoid superfluous reductions in the iterative computation of
Janet bases required by this method. We conclude the paper by propos-
ing an involutive variant of the signature based algorithm of Gao et al.
[8] to compute simultaneously a Gröbner basis for a given ideal and for
the syzygy module of the input basis. All the presented algorithms have
been implemented in Maple and their performance is evaluated via a
set of benchmark ideals.

1 Introduction

Gröbner bases provide a powerful computational tool for a wide variety of prob-
lems connected to multivariate polynomial ideals. Together with the first algo-
rithm to compute them, they were introduced by Buchberger in his PhD thesis
[2]. Later on, he discovered two criteria to improve his algorithm [3] by omit-
ting superfluous reductions. In 1983, Lazard [15] developed a new approach by
using linear algebra techniques to compute Gröbner bases. In 1988, Gebauer
and Möller [9], by interpreting Buchberger’s criteria in terms of syzygies, pre-
sented an efficient way to improve Buchberger’s algorithm. Furthermore, Möller
et al. [16] extended this idea and described the first signature-based algorithm
to compute Gröbner bases. In 1999, Faugère [6], by applying fast linear algebra
on sparse matrices, found his F4 algorithm to compute Gröbner bases. Then, he
introduced the well-known F5 algorithm [7] that uses two new criteria (F5 and
IsRewritten) based on the idea of signatures and that performs no useless reduc-
tion as long as the input polynomials define a (semi-)regular sequence. Finally,

Gao et al. [8] presented a new approach to compute simultaneously Gröbner
bases for an ideal and its syzygy module.

Involutive bases may be considered as a special kind of non-reduced Gröbner
bases with additional combinatorial properties. They originate from the works
of Janet [14] on the analysis of partial differential equations. By evolving related
methods used by Pommaret [17], the notion of involutive polynomial bases was
introduced by Zharkov and Blinkov [22]. Later, Gerdt and Blinkov [11] gener-
alised these ideas to the concepts of involutive divisions and involutive bases for
polynomial ideals to produce an effective alternative approach to Buchberger’s
algorithm (for the efficiency analysis of an implementation of Gerdt’s algorithm
[10], we refer to the web pages http://invo.jinr.ru). Recently, Gerdt et
al. [12] proposed a signature-based approach to compute involutive bases.

In this article we discuss effective approaches to compute involutive bases
and in particular Pommaret bases. These bases are a special kind of involutive
bases introduced by Zharkov and Blinkov [22]. While finite Pommaret bases do
not always exist, every ideal in a sufficiently generic position has one (see [13]
for an extensive discussion of this topic). A finite Pommaret basis reflects many
(homological) properties of the ideal it generates. For example, many invariants
like dimension, depth and Castelnuovo-Mumford regularity can be easily read
off from it. We note that all these invariants remain unchanged under coordinate
transformations. We refer to [20] for a comprehensive overview of the theory and
applications of Pommaret bases.

We first propose a variant of Gerdt’s algorithm to compute an involutive basis
which simultaneously determines an involutive basis for the syzygy module of
the output basis. Based on it, we improve Seiler’s method [19] to compute a
linear change of coordinates which brings the input ideal into a generic position
so that the new ideal has a finite Pommaret basis. Then, as a related work,
we describe an involutive version of the approach by Gao et al. [8] to compute
simultaneously Gröbner bases of a given ideal and of the syzygy module of the
input basis. All the algorithm described in this paper have been implemented in
Maple and their efficiency is illustrated via a set of benchmark ideals.

This paper is organized as follows. In Section 2, we review basic definitions
and notations related to involutive bases. Section 3 is devoted to a variant of
Gerdt’s algorithm which also computes an involutive basis for the syzygy module
of the output basis. In Section 4, we show how to apply it in the computation of
Pommaret bases. Finally in Section 5, we conclude by presenting an involutive
variant of the algorithm of Gao et al. by combining it with Gerdt’s algorithm.

2 Preliminaries

In this section, we review basic notations and preliminaries needed in the subse-
quent sections. Throughout this paper, we assume that P = k[x1, . . . , xn] is the
polynomial ring over an infinite field k. We consider polynomials f1, . . . , fk ∈ P
and the ideal I = 〈f1, . . . , fk〉 generated by them. The total degree and the
degree w.r.t. a variable xi of a polynomial in f ∈ P are denoted by deg(f)

and degi(f), respectively. In addition, M = {xα1
1 · · ·xαn

n | αi ≥ 0, 1 ≤ i ≤ n}
stands for the monoid of all monomials in P. We use throughout the reverse
degree lexicographic ordering with xn ≺ · · · ≺ x1. The leading monomial of a
given polynomial f ∈ P w.r.t. ≺ is denoted by LM(f). If F ⊂ P is a finite set
of polynomials, LM(F) denotes the set {LM(f) | f ∈ F}. The leading coeffi-
cient of f , denoted by LC(f), is the coefficient of LM(f). The leading term of
f is defined to be LT(f) = LM(f) LC(f). A finite set G = {g1, . . . , gt} ⊂ P
is called a Gröbner basis of I w.r.t ≺ if LM(I) = 〈LM(g1), . . . ,LM(gt)〉 where
LM(I) = 〈LM(f) | f ∈ I〉. We refer e.g. to the book of Cox et al. [4] for further
details on Gröbner bases.

An analogous notion of Gröbner bases may be defined for sub-modules of
Pt for some t, see [5]. In this direction, let us recall some basic notations and
results. Let {e1, . . . , et} be the standard basis of Pt. A module monomial in Pt
is an element of the form xαei for some i, where xα is a monomial in P. So, each
f ∈ Pt can be written as a k-linear combination of module monomials in Pt.
A total ordering < on the set of monomials of Pt is called a module monomial
ordering if the following conditions are satisfied:

– if m and n are two module monomials such that n < m and xα ∈ P is a
monomial then xαn < xβm,

– < is well-ordering.

In addition, we say that xαei divides xβej if i = j and xα divides xβ . Based
on these definitions, one is able to extend the theory of Gröbner bases to sub-
modules of the P-modules of finite rank. Some well-known examples of module
monomial ordering are term over position (TOP), position over term (POT) and
the Schreyer ordering.

Definition 1. Let {g1, . . . , gt} ⊂ P and ≺ a monomial ordering on P. We
define the Schreyer module ordering on Pt as follows: We write xαei ≺s xβej
if either LM(xαgi) ≺ LM(xβgj), or LM(xαgi) = LM(xβgj) and j < i.

Schreyer proposed in his master thesis [18] a slight modification of Buchberger’s
algorithm to compute a Gröbner basis for the syzygy module of a Gröbner basis.

Definition 2. Let us consider G = (g1, . . . , gt) ∈ Pt. The (first) syzygy module
of G is defined to be Syz(G) = {(h1, . . . , ht) | hi ∈ P,

∑t
i=1 higi = 0}.

Let G = {g1, . . . , gt} be a Gröbner basis. By Buchberger’s criterion, each S-
polynomial has a standard representation: SPoly(gi, gj) = ajimjigi−aijmijgj =
hij1g1 + · · ·+hijtgt where aji, aij ∈ k, hijl ∈ P and mji,mij are monomials. Let
Sij = ajimjiei − aijmijej − hij1e1 − · · · − hijtet be the corresponding syzygy.

Theorem 3 (Schreyer’s Theorem). With the above introduced notations, the
set {Sij | 1 ≤ i < j ≤ t} is a Gröbner basis for Syz(g1, . . . , gt) w.r.t. ≺s.

Example 4. Let F = {xy − x, x2 − y} ⊂ k[x, y]. The Gröbner basis of F w.r.t.
x ≺dlex y is G = {g1 = xy − x, g2 = x2 − y, g3 = y2 − y} and the Gröbner basis
of Syz(g1, g2, g3) is {(x,−y + 1,−1), (−x, y2 − 1,−x2 + y + 1), (y, 0,−x)}.

If F = {f1, . . . , fk} is not a Gröbner basis, Wall [21] proposed an effective method
to compute Syz(F). If the extended set G = f1, . . . , fk, fk+1, . . . , ft is a Gröbner
basis of 〈F 〉, then Syz(F) = {As | s ∈ Syz(G)} where A is a matrix such that
G = FA.

We conclude this section by recalling some definitions and results from the
theory of involutive bases (see [10, 20] for more details). Given a set of polyno-
mials, an involutive division partitions the variables into two disjoint subsets of
multiplicative and non-multiplicative variables.

Definition 5. An involutive division L is given on M if for any finite set
U ⊂M and any u ∈ U , the set of variables is partitioned into the subsets of mul-
tiplicative variables ML(u, U) and non-multiplicative variables NML(u, U) such
that the following conditions hold where L(u, U) denotes the monoid generated
by ML(u, U):

1. v, u ∈ U , uL(u, U) ∩ vL(v, U) 6= ∅ ⇒ u ∈ vL(v, U) or v ∈ uL(u, U),
2. v ∈ U , v ∈ uL(u, U) ⇒ L(v, U) ⊂ L(u, U),
3. V ⊂ U and u ∈ V ⇒ L(u, U) ⊂ L(u, V).

We shall write u |L w if w ∈ uL(u, U). In this case, u is called an L-involutive
divisor of w and w an L-involutive multiple of u.

We recall the definitions of the Janet and Pommaret division, respectively.

Example 6. Let U ⊂ P be a finite set of monomials. For each sequence d1, . . . , dn
of non-negative integers and for each 1 ≤ i ≤ n we define

[d1, . . . , di] = {u ∈ U | dj = degj(u), 1 ≤ j ≤ i}.

The variable x1 is Janet multiplicative (denoted by J -multiplicative) for u ∈ U
if deg1(u) = max{deg1(v) | v ∈ U}. For i > 1 the variable xi is Janet multi-
plicative for u ∈ [d1, . . . , di−1] if degi(u) = max{degi(v) | v ∈ [d1, . . . , di−1]}.

Example 7. For u = xd11 · · ·x
dk
k with dk > 0 the variables {xk, . . . , xn} are con-

sidered as Pommaret multiplicative (denoted by P-multiplicative) and the other
variables as Pommaret non-multiplicative. For u = 1 all the variables are multi-
plicative. The integer k is called the class of u and is denoted by cls(u).

Definition 8. The set F ⊂ P is called involutively head autoreduced if for each
f ∈ F there is no h ∈ F \ {f} with LM(h) |L LM(f).

Definition 9. Let I ⊂ P be an ideal and L an involutive division. An involu-
tively head autoreduced subset H ⊂ I is an involutive basis for I if for all f ∈ I
there exists h ∈ H so that LM(h) |L LM(f).

Example 10. For the ideal I = 〈xy, y2, z〉 ⊂ k[x, y, z] the set {xy, y2, z, xz, yz}
is a Janet basis, but there exists only an infinite Pommaret basis of the form
{xy, y2, z, xz, yz, x2y, x2z, . . . , xky, xkz, . . .}. One can show that every ideal has
a finite Janet basis, i. e. the Janet division is Noetherian.

Gerdt [10] proposed an efficient algorithm to construct involutive bases using
a completion process where prolongations of given elements by non-multiplicative
variables are reduced. This process terminates in finitely many steps for any
Noetherian division. In addition, Seiler [19] characterized the ideals having finite
Pommaret bases by relating them to the notion of quasi stability. More precisely,
a given ideal has a finite Pommaret basis iff it is in quasi stable position (or
equivalently if the coordinates are δ-regular) see [19, Prop. 4.4].

Definition 11. A monomial ideal I is called quasi stable if for any monomial
m ∈ I and all integers i, j, s with 1 ≤ j < i ≤ n and s > 0, if xsi | m there exists
an integer t ≥ 0 such that xtjm/x

s
i ∈ I. A homogeneous ideal I is in quasi stable

position if LM(I) is quasi stable.

3 Computation of Involutive Basis for Syzygy Module

We present now an effective approach to compute, for a given ideal, simulta-
neously involutive bases of the ideal and of its syzygy module. We first re-
call some related concepts and facts from [19]. In loc. cit., an involutive ver-
sion of Schreyer’s theorem is stated where S-polynomials are replaced by non-
multiplicative prolongations and an involutive normal form algorithm is used.

More precisely, letH ⊂ Pt be a finite set for some t ∈ N,≺s the corresponding
Schreyer ordering and L an involutive division. We divide H into t disjoint
subsets Hi = {h ∈ H | LM(h) = xαei, x

α ∈ M}. In addition, for each i, let
Bi = {xα ∈ M | xαei ∈ LM(Hi)}. We assign to each h ∈ Hi the multiplicative
variables ML,H,≺(h) = {xi | xi ∈ ML,Bi(x

α) with LM(h) = xαei}. Then, the
definition of involutive bases for sub-modules proceeds as for ideals.

Let H = {h1, . . . , ht} ⊂ P be an involutive basis. Let hi ∈ H be an arbitrary
element and xk a non-multiplicative variable of it. From the definition of invo-
lutive bases, there exists a unique j such that LM(hj)|xk LM(hi). We order the
elements of H in such a way that i < j (which is always possible for a continuous
division [19, Lemma 5.5]). Then we find a unique involutive standard represen-

tation xkhi =
∑t
j=1 p

(i,k)
j hj where p

(i,k)
j ∈ k[ML,H,≺(hj)] and the corresponding

syzygy Si,k = xkei −
∑t
j=1 p

(i,k)
j ej ∈ Pt. We denote the set of all thus obtained

syzygies by HSyz = {Si,k | 1 ≤ i ≤ t;xk ∈ NML,H,≺(hi)}. An involutive division
L is of Schreyer type if all sets NML,H,≺(h) with h ∈ H are again involutive
bases for the ideals defined by them. Both the Janet and the Pommaret divisions
are of Schreyer type.

Theorem 12. ([19, Thm. 5.10]) With the above notations, let L be a continuous
involutive division of Schreyer type w.r.t. ≺ and H an involutive basis. Then
HSyz is an L-involutive basis for Syz(H) w.r.t. ≺s.

We now present a non-trivial variant of Gerdt’s algorithm [10] computing
simultaneously a minimal involutive basis for the input ideal and an involutive
basis for the syzygy module of this basis. It uses an analogous idea as the algo-
rithm given in [1]. However, since we aim at determining also a syzygy module,

we must save the traces of all reductions and for this reason we cannot use the
syzygies to remove useless reductions.

Algorithm 1 InvBasis

Input: A finite set F ⊂ P; an involutive division L; a monomial ordering ≺
Output: A minimal L-basis for 〈F 〉 and an L-basis for syzygy module of this basis.
1: F :=sort(F,≺)
2: T := {(F [1], F [1], ∅, e1, false)}
3: Q := {(F [i], F [i], ∅, ei, false) | i = 2, . . . , |F |}
4: S := {} and j := |F |
5: while Q 6= ∅ do
6: Q :=sort(Q,≺s)
7: select and remove p := Q[1] from Q
8: h := InvNormalForm(p, T,L,≺)
9: if h[1] = 0 then

10: S := S ∪ {h[2]}
11: end if
12: if h[1] = 0 and LM(Poly(p)) = LM(Anc(p)) then
13: Q := {q ∈ Q | Anc(q) 6= Poly(p) or q[5] = true}
14: end if
15: if p[5] = true then
16: q :=Update(q, p) for each q ∈ T
17: end if
18: if h[1] 6= 0 and LM(Poly(p)) 6= LM(h) then
19: for q ∈ T with proper conventional division LM(h[1]) | LM(Poly(q)) do
20: Q := Q ∪ {[q[1], q[2], q[3], q[4], true]}
21: T := T \ {q}
22: end for
23: j := j + 1 and T := T ∪ {(h[1], h[1], ∅, ej , false)}
24: else
25: T := T ∪ {(h[1],Anc(p),NM(p), h[2], false)}
26: end if
27: for q ∈ T and x ∈ NML(LM(Poly(q)),LM(Poly(T)) \NM(q)) do
28: Q := Q ∪ {(x.Poly(q),Anc(q), ∅, x.Rep(q), false)}
29: NM(q) := NM(q) ∪NML(LM(Poly(q)),LM(Poly(T))) ∪ {x}
30: end for
31: end while
32: return (Poly(T), {Rep(p)− eindex(p) | p ∈ T} ∪ S)

The algorithm InvBas relies on the following data structure for polynomials.
To each polynomial f , we associate a quintuple p = (f, g, V,q, f lag). The first
entry f = Poly(p) is the polynomial itself, g = Anc(p) is the ancestor of f
(realised as a pointer to the quintuple associated with the ancestor) and V =
NM(p) is its list of already processed non-multiplicative variables. The fourth
entry q = Rep(p) denotes the representation of f in our current basis, i.e. if q =∑
r∈T∪Q hreindex(r) then f =

∑
r∈T∪Q hr Poly(r) where hr ∈ P and index(r)

gives the position of r in the current list T ∪ Q. The final entry is a boolean
flag. If flag = true then at some stage of the algorithm p has been moved from
T to Q, otherwise flag = false. We denote by Sig(p) = LM≺s(Rep(p)) the
signature of p. By an abuse of notation, Sig(f) also denotes Sig(p). The same
holds for the Rep function. If P is a set of quintuples, we denote by Poly(P)
the set {Poly(p) | p ∈ P}. In addition, the functions sort(X,≺) and sort(X,≺s)
sort X in increasing order according to LM(X) w.r.t. ≺ and {Sig(p) | p ∈ X}
w.r.t. ≺s, respectively. We remark that in the original form of Gerdt’s algorithm
[10] the function sort(Q,≺) was applied to sort the set of all non-multiplicative
prolongations, however, in our experiments we observed that using sort(Q,≺s)
increased the performance of the algorithm.

Obviously, the representation of each polynomial must be updated whenever
the set T ∪ Q changes in a non-trivial way. We remark that elements of Q can
appear non-trivially in the representations of polynomials only if they have been
elements of T at an earlier stage of the algorithm (recall that such a move is
noted in the flag of each quintuple), as all reductions are performed w.r.t. T only.
If updates are necessary, then they are performed by the function Update. In-
volutive normal forms are computed with the help of the following subalgorithm
taking care of the representations.

Algorithm 2 InvNormalForm

Input: A quintuple p; a set of quintuples T ; a division L; a monomial ordering ≺
Output: A normal form of p w.r.t. T and its new representation.
h := Poly(p) and G := Poly(T) and q := Rep(p)
while h contains a monomial m which is L-divisible by g ∈ G do

if m = LM(Poly(p)) and C1(h, g) then
return ([0,Anc(p) Rep(Anc(g))−Anc(g) Rep(Anc(p))])

end if
h := h− (cm/LT(g)).g where c is the coefficient of m in h
q := q− (cm/LT(g)) Rep(g)

end while
return ([h,q])

Here we apply the involutive form of Buchberger’s first criterion [10]. We say
that C1(p, g) is true if LM(Anc(p)) LM(Anc(g)) = LM(Poly(p)).

Theorem 13. If L is a Noetherian continuous involutive division of Schreyer
type then InvBasis terminates in finitely many steps and returns a minimal
involutive basis for its input ideal and also an involutive basis for the syzygy
module of the constructed basis.

Proof. The termination of the algorithm is ensured by the termination of Gerdt’s
algorithm, see [10]. Let us now deal with its correctness. We first note that if
an element p is removed by Buchberger’s criteria, then it is superfluous and by
[10, Thm. 2] the set Poly(T) forms a minimal involutive basis for 〈F 〉. Thus,

it remains to show that R = {Rep(p) − eindex(p) | p ∈ T} ∪ S is an involutive
basis for Poly(T) = {h1, . . . , ht} w.r.t. ≺s. Using Thm. 12, we must show that
the representation of each non-multiplicative prolongation of the elements of
Poly(T) appears in R. Let us consider hi ∈ Poly(T) and a non-multiplicative
variable xk for it. Then, due to the structure of the algorithm, xkhi is created
and studied in the course of the algorithm.

Now, four cases can occur. If xkhi reduces to zero then we can write xkhi =∑t
j=1 p

(i,k)
j hj where p

(i,k)
j ∈ k[ML,H,≺(hj)]. Therefore the representation xkei−∑t

j=1 p
(i,k)
j ej ∈ Pt is added to S and consequently it appears in R. If the involu-

tive normal form of xkhi is non-zero then we can write xkhi =
∑t
j=1 p

(i,k)
j hj+h`

where p
(i,k)
j ∈ k[ML,H,≺(hj)]. In this case, we add h` into T and the represen-

tation component of xkhi is updated to xkei −
∑t
j=1 p

(i,k)
j ej . Then, as we can

see in the output of the algorithm, xkei−
∑t
j=1 p

(i,k)
j ej −e` appears in R as the

syzygy correcponding to xkhi.
The third case that may occur is that xkhi is removed by Buchberger’s first

criterion. Assume that p is the quintuple associated to xkhi and g is another
quintuple so that C1(p, g) is true. It follows that LM(Anc(p)) LM(Anc(g)) =
LM(Poly(p)) holds. We may let xkhi = uAnc(p), Poly(g) = vAnc(g) and
LM(xkhi) = mLM(g) for some monomials u and v and term m (assume that
the polynomials are monic). Thus,

xkhi −mPoly(g) = uAnc(p)−mvAnc(g).

As LM(Anc(p)) LM(Anc(g)) = LCM(LM(Anc(p)),LM(Anc(g))), Buchberger’s
first criterion applied to Anc(p) and Anc(g) yields that Anc(p) Rep(Anc(g)) −
Anc(g) Rep(Anc(p)) is the corresponding syzygy which is added to S.

The last case to be considered is that xkhi is removed by the second if-loop
in the main algorithm. In this case, we conclude that Anc(p) is reduced to zero
and in consequence hi is reduced to zero. So, hi is a useless polynomial and we
do not need to keep xkhi which ends the proof.ut

Remark 14. There also exists an involutive version of Buchberger’s second cri-
terion [10]: C2(p, g) is true if LCM(LM(Anc(p)),LM(Anc(g))) properly divides
LM(Poly(p)). We cannot use this criterion in the InvNormalForm algorithm.
A non-multiplicative prolongation xkhi removed by it is surely useless in the
sense that is not needed for determining the involutive basis of I, but it can
nevertheless be necessary for the construction of its syzygy module.

Example 15. Let us consider the ideal I generated by F = {f1 = z2, f2 =
zy, f3 = xz − y, f4 = y2, f5 = xy − y, f6 = x2 − x+ z} ⊂ k[x, y, z] from [19, Ex.
5.6]. Then, F is a Janet basis w.r.t. z ≺ y ≺ x. Since x, y are non-multiplicative
variables for f1, f2, f3 and x is non-multiplicative variable for f4, f5 then the
following set is a Janet basis for the syzygy module of F : {ye1−ze2, xe1−ze3−
e2, ye2− ze4, xe2− ze5− e2, ye3− ze5 + e4− e2, xe3− ze6 + e5− e3 + e1, xe4−
ye5 − e4, xe5 − ye6 + e2}.

4 Application to Pommaret Basis Computation

In this section we show how to apply the approach presented in the preceeding
section in the computation of Pommaret bases. The Pommaret division is not
Noetherian and ithus a given ideal may not have a finite Pommaret basis. How-
ever, a generic linear change of variables transforms the ideal into quasi stable
position where a finite Pommaret basis exists. Seiler [19] proposed a determin-
istic algorithm to compute such a linear change by performing repeatedly an
elementary linear change and then a test on the Janet basis of the transformed
ideal. Now, to apply the method presented in this paper, we use the InvBasis
algorithm to compute a minimal Janet basis H for the input ideal and at the
same time a Janet basis for Syz(H). Then, for each h ∈ H we check whether
there exists a variable which is Janet but not Pommaret multiplicative. If not,
H is a Pommaret basis and we are done. Otherwise, we make an elementary
linear change of variables, say φ. Then, we apply the following algorithm, Nex-
tInvBasis, to compute a minimal Janet basis for the ideal generated by φ(H)
by applying φ(Syz(H)) to remove superfluous reductions. We describe first the
main procedure.

Algorithm 3 QuasiStable

Input: A finite set F ⊂ P of homogeneous polynomials and a monomial ordering ≺
Output: A linear change Φ so that 〈Φ(F)〉 has a finite Pommaret basis
Φ :=the identity map
J, S :=InvBasis(F,J ,≺) and A :=Test(LM(J))
while A 6= true do

φ := A[3] 7→ A[3] + cA[2] for a random choice of c ∈ k
Temp :=NextInvBasis(Φ ◦ φ(J), Φ ◦ φ(S),J ,≺)
B :=Test(LM(Temp))
if B 6= A then

Φ := Φ ◦ φ and A := B
end if

end while
return (Φ)

The function Test receives a set of monomials forming a minimal Janet basis
and returns true if it is a Pommaret basis, too. Otherwise,, by [19, Prop. 2.10],
there exists a monomial m in the set for which a Janet multiplicative vari-
able (say x`) is not Pommaret multiplicative. In this case, the function re-
turns (false, x`, cls(m)). Using these variables, we construct an elementary linear
change of variables.

The NextInvBasis algorithm is similar to the InvBasis algorithm given
above. However, the new algorithm computes only the involutive basis of the
input ideal generated by a set H. In addition, in the new algorithm, we use
Syz(H) to remove useless reductions. Below, only the differences between the
two algorithms are exhibited.

Algorithm 4 NextInvBasis

Input: A finite set F ⊂ P; a generating set S for Syz(F); an involutive division L; a
monomial ordering ≺

Output: A minimal involutive basis for 〈F 〉
... {Lines 1–6 of InvBasis}
select and remove p := Q[1] from Q
if @s ∈ S s.t LM≺s(s) | Sig(p) then

... {Lines 8–30 of InvBasis}
end if
... {Lines 31/32 of InvBasis}

Lemma 16. Let H ⊂ P and S be a generating set for Syz(H). For any invertible
linear change of variables φ, φ(S) generates Syz(φ(H)).

Proof. Suppose that H = {h1, . . . , ht} and S = {s1, . . . , s`} ⊂ Pt. Let si =
(pi1, . . . , pit). Since pi1h1 + · · ·+ pitht = 0 and φ is a ring homomorphism then
φ(pi1)φ(h1)+ · · ·+φ(pit)φ(ht) = 0 and therefore φ(si) ∈ Syz(φ(H)). Conversely,
assume that s = (p1, . . . , pt) ∈ Syz(φ(H)). This shows that p1φ(h1) + · · · +
ptφ(ht) = 0. By invertibility of φ we have (φ−1(p1), . . . , φ−1(pt)) ∈ Syz(H).
From assumptions, we conclude that (φ−1(p1), . . . , φ−1(pt)) = g1s1 + · · ·+ g`s`
for some gi ∈ P. By applying φ on both sides of this equality, we can deduce
that s is generated by φ(S) and the proof is complete. ut

Theorem 17. The algorithm QuasiStable terminates in finitely many steps
and returns for a given homogeneous ideal a linear change of variables s.t. the
transformed ideal possesses a finite Pommaret basis.

Proof. Seiler [19, Prop. 2.9] proved that for a generic linear change of variables φ,
the ideal 〈φ(F)〉 has a finite Pommaret basis. He also showed that the process of
finding such a linear change, by applying elementary linear changes, terminates
in finitely many steps, see [19, Remark 9.11] (or [13]). These arguments establish
the finite termination of the algorithm. To prove the correctness, using Thm. 13,
we must only show that if p ∈ Q is removed by s ∈ S then it is superfluous.
To this end, assume that F = {f1, . . . , fk} and s = (p1, . . . , pk). Thus, we have
p1f1 + · · · + pkfk = 0. On the other hand, we know that LM≺s

(s) | Sig(p).
W.l.o.g., we may assume that LM≺s

(s) = LM(p1)e1. Therefore, Poly(p) can be
written as a combination g1f1 + · · ·+gkfk such that LM(g1) divides LM(p1). Let
t = LM(p1)/LM(g1). We can write LM(g1)f1 as a linear combination of some
multiplications mfi where m is a monomial such that mei is strictly smaller
than LM(g1)e1. It follows that p has an involutive representation provided that
we study tmfi for each m and i. Since the signature of tmfi is strictly smaller
than tLM(g1)e1 = Sig(p), we are sure that no loop is performed and therefore
p can be omitted. ut

We have implemented the algorithm QuasiStable in Maple 174 and com-
pared its performance with our implementation of the HDQuasiStable al-
gorithm presented in [1] (it is a similar procedure applying a Hilbert driven
technique). For this, we used some well-known examples from computer algebra
literature. All computations were done over Q using the degree reverse lexico-
graphical monomial ordering. The results are represented in the following tables
where the time and memory columns indicate the consumed CPU time in second
and amount of megabytes of used memory, respectively. The dim column refers to
the dimension of the corresponding ideal. The columns corresponding to C1 and
C2 show, respectively, the number of polynomials removed by C1 and C2 criteria.
The seventh column denotes the number of polynomials eliminated by the crite-
rion related to signature applied in NextInvBasis algorithm (see [1] for more
details). The eighth column shows the number of polynomials eliminated by the
Hilbert driven technique which may be applied in NextInvBasis algorithm to
remove useless reductions, (see [1] for more details). The ninth column shows the
number of polynomials eliminated by the syzygy criterion described in NextIn-
vBasis algorithm. The last three columns represent, respectively, the number of
reductions to zero, the number of performed elementary linear changes and the
maximum degree attained in the computations. The computations in this paper
are performed on a personal computer with 2.60 GHz Pentium(R) Core(TM)
Dual-Core CPU, 2 GB of RAM, 32 bits under the Windows 7 operating system.

Weispfenning94 time memory dim C1 C2 SC HD Syz redz lin deg
QuasiStable 4.5 255.5 2 0 0 0 34 10 41 1 14

HDQuasiStable 5.3 261.4 2 0 1 9 46 - 29 1 14

Liu time memory dim C1 C2 SC HD Syz redz lin deg
QuasiStable 6.1 246.7 2 8 0 10 71 47 44 4 6

HDQuasiStable 8.9 346.0 2 6 3 25 125 - 60 4 6

Noon time memory dim C1 C2 SC HD Syz redz lin deg
QuasiStable 74.1 3653.2.2 1 6 7 10 213 83 215 4 10

HDQuasiStable 72.3 3216.9.7 1 4 24 10 351 - 105 4 10

Katsura5 time memory dim C1 C2 SC HD Syz redz lin deg
QuasiStable 95.7 4719.2 5 49 0 0 257 56 115 3 8

HDQuasiStable 120.8 5527.7 5 44 4 6 420 - 122 3 8

Vermeer time memory dim C1 C2 SC HD Syz redz lin deg
QuasiStable 175.5 8227.9 3 5 3 101 158 139 343 3 13

HDQuasiStable 192.5 8243.7 3 3 28 157 343 - 190 3 13

Butcher time memory dim C1 C2 SC HD Syz redz lin deg
QuasiStable 290.6 12957.8 3 135 89 73 183 86 534 3 8

HDQuasiStable 433.1 17005.5 3 178 178 219 355 - 386 3 8

As one sees for some examples, some columns are different. It is worth noting
that this difference may be due to the fact that the coefficients in the linear
changes are chosen randomly and this may affect the behavior of the algorithm.

4 The Maple code of the implementations of our algorithms and examples are avail-
able at http://amirhashemi.iut.ac.ir/softwares

5 Involutive Variant of the GVW Algorithm

Gao et al. [8] described recently a new algorithm, the GVW algorithm, to com-
pute simultaneously Gröbner bases for a given ideal and for the syzygy module
of the given ideal basis. In this section, we present an involutive variant of this
approach and compare its efficiency with the existing algorithms to compute
involutive bases. For a review of the general setting of the signature based struc-
ture that we use in this paper, we refer to [8]. Let {f1, . . . , fk} ⊂ P be a finite
set of non-zero polynomials and {e1, . . . , ek} the standard basis for Pk. Let us
fix an involutive division L and a monomial ordering ≺. Our goal is to compute
an involutive basis for I = 〈f1, . . . , fk〉 and a Gröbner basis for Syz(f1, . . . , fk)
w.r.t. ≺s. Let us consider

V = {(u, v) ∈ Pk × P | u1f1 + · · ·+ ukfk = v with u = (u1, . . . , uk)}

as an P-submodule of Pk+1. For any pair p = (u, v) ∈ Pk×P, LM≺s(u) is called
the signature of p and is denoted by Sig(p). We define the involutive version of
top-reduction defined in [8]. Let p1 = (u1, v1), p2 = (u2, v2) ∈ Pk ×P. When v2
is non-zero, we say p1 is involutively top-reducible by p2 if:

– v1 is non-zero and LM(v2) L-divides LM(v1) and
– LM(tu2) �s LM(u1) where t = LM(v1)/LM(v2).

The corresponding top-reduction is p1 − ctp2 = (u1 − ctu2, v1 − ctv2) where
c = LC(v1)/LC(v2). Such a top-reduction is called regular, if LM(u1 − ctu2) =
LM(u1), and super otherwise.

Definition 18. A finite subset G ⊂ V is called a strong involutive basis for
I if every pair in V is involutively top-reducible by some pair in G. A strong
involutive basis G is minimal if any other strong involutive basis G′ of I satisfies
LM(G) ⊆ LM(G′).

Proposition 19. Suppose that G = {(u1, v1), . . . , (um, vm)} is a strong involu-
tive basis for I. Then G0 = {ui | vi = 0 , 1 ≤ i ≤ m} is a Gröbner basis for
Syz(f1, . . . , fk), and G1 = {v1, . . . , vm} is an involutive basis for I.

Proof. The proof is an easy consequence of the proof of [8, Prop. 2.2]. ut

Let p1 = (u1, v1) and p2 = (u2, v2) be two pairs in V. We say that p1 is covered
by p2 if LM(u2) divides LM(u1) and tLM(v2) ≺ LM(v1) (strictly smaller) where
t = LM(u1)/LM(u2). Also, p is covered by G if it is covered by some pair in G.
A pair p ∈ V is eventually super reducible by G if there is a sequence of regular
top-reductions of p by G leading to (u′, v′) which is no longer regularly reducible
by G but super reducible by G.

Theorem 20. Let G ⊂ V be a finite set such that, for any module monomial
m ∈ Pk, there is a pair (u, v) ∈ G such that LM(u) | m. Then the following
conditions are equivalent:

1. G is a strong involutive basis for I,
2. any non-multiplicative prolongation of any element of G is eventually super

top-reducible by G,
3. any non-multiplicative prolongation of any element in G is covered by G.

Proof. The proof of all implications are similar to the proofs of the corresponding
statements in [8, Thm. 2.4] except that we need some slight changes in the
proof of (3 ⇒ 1). We proceed by reductio ad absurdum. Assume that there
is a pair p = (u, v) ∈ V which is not involutively top-reducible by G and has
minimal signature. Then, by assumption, there exists p1 = (u1, v1) ∈ G such that
LM(u) = tLM(u1) for some t. Select p1 such that tLM(v1) is minimal. Let us
now consider tp1. Two cases may happen: If all variables in t are multiplicative
for p1 then, p − tp1 has a signature smaller than p and by assumption it has
a standard representation leading to a standard representation for p which is a
contradiction. Otherwise, t has a non-multiplicative variable. Then, tp1 is covered
by a pair p3 = (u3, v3) ∈ G. This shows that t3 LM(v3) ≺ tLM(v1) with t3 =
tLM(u1)/LM(u3). Therefore, the polynomial part of t3p3 is smaller than tv1
which contradicts the choice of p1, and this ends the proof. ut

Based on this theorem and similar to the structure of the GVW algorithm,
we describe a variant of Gerdt’s algorithm for computing strong involutive bases.
The structure of the new algorithm is similar to the InvBasis algorithm and
therefore we omit the identical parts.

Algorithm 5 StInvBasis

Input: A finite set F ⊂ P; an involutive division L; a monomial ordering ≺
Output: A minimal strong involutive basis for 〈F 〉
F :=sort(F,≺) and T := {(F [1], F [1], ∅, e1)}
Q := {(F [i], F [i], ∅, ei) | i = 2, . . . , |F |} and H := {}
while Q 6= ∅ do

Q :=sort(Q,≺s) and select/remove the first element p from Q
if p is not covered by G, T or H then

h := InvTopReduce(p, T,L,≺)
if Poly(h) = 0 then

H := H ∪ {Sig(p)}
end if
if Poly(h) = 0 and LM(Poly(p)) = LM(Anc(p)) then

Q := {q ∈ Q | Anc(q) 6= Poly(p)}
end if
if Poly(h) 6= 0 and LM(Poly(p)) 6= LM(Poly(h)) then

... {Lines 19–25 of InvBas}
end if
... {Lines 27–30 of InvBas}

end if
end while
return (Poly(T), H)

Algorithm 6 InvTopReduce

Input: A quadruple p; a set of quadruples T ; a division L; a monomial ordering ≺
Output: A top-reduced form of p modulo T
h := p
while Poly(h) has a term am with a ∈ k and LM(Poly(q)) |L m with q ∈ T do

if m/LM(Poly(q)) Sig(q) ≺s Sig(p) then
Poly(h) := Poly(h)− am/LT(Poly(q)).Poly(q)
Rep(h) := Rep(h)− am/LT(Poly(q)).Rep(q)

end if
end while
return (h)

The proof of the next theorem is a consequence of Thm. 20 and the termi-
nation and correctness of Gerdt’s algorithm.

Theorem 21. If L is Noetherian, then StInvBasis terminates in finitely many
steps returning a minimal strong involutive basis for its input ideal.

We have implemented the StInvBasis algorithm in Maple 17 and com-
pared its performance with our implementation of InvolutiveBasis algorithm
(see [1]) and VarGerdt algorithm (a variant of Gerdt’s algorithm, see [12]).

Liu time memory C1 C2 SC cover redz deg
StInvBasis .390 14.806 - - - 17 20 6

InvolutiveBasis .748 23.830 4 3 2 - 18 6
vargerdt 1.653 64.877 6 3 - - 18 19

Noon time memory C1 C2 SC cover redz deg
StInvBasis 1.870 75.213 - - - 54 42 10

InvolutiveBasis 2.620 105.641 4 15 6 - 50 10
vargerdt 12.32 454.573 6 9 - - 56 10

Haas3 time memory C1 C2 SC cover redz deg
StInvBasis 157.623 6354.493 - - - 490 8 33

InvolutiveBasis 22.345 833.0 0 0 83 - 152 33
vargerdt 137.733 5032.295 0 98 - - 255 33

Sturmfels-Eisenbud time memory C1 C2 SC cover redz deg
StInvBasis 2442.414 120887.953 - - - 634 29 8

InvolutiveBasis 24.70 951.070 28 103 95 - 81 6
vargerdt 59.32 2389.329 43 212 - - 91 6

Weispfenning94 time memory C1 C2 SC cover redz deg
StInvBasis 183.129 8287.044 - - - 588 28 18

InvolutiveBasis 1.09 45.980 0 1 9 - 28 10
vargerdt 4.305 168.589 0 9 - - 38 15

As we observe, the performance of the new algorithm is not in general better
than that of the others. This is due to the signature-based structure of the new
algorithm which does not allow to perform full normal forms.

Acknowledgments.

The research of the second author was in part supported by a grant from IPM
(No. 95550420). The work of the third author was partially performed as part
of the H2020-FETOPEN-2016-2017-CSA project SC2 (712689).

References

1. Binaei, B., Hashemi, A., and Seiler, W. M. Improved computation of involutive
bases. In Proceedings of CASC’16. Cham: Springer, 2016, pp. 58–72.

2. Buchberger, B. Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Innsbruck: Univ. Inns-
bruck, Mathematisches Institut (Diss.), 1965.

3. Buchberger, B. A criterion for detecting unnecessary reductions in the construc-
tion of Gröbner-bases. Lect. Notes Comput. Sci. 72, 3-21 (1979)., 1979.

4. Cox, D., Little, J., and O’Shea, D. Ideals, varieties, and algorithms. 3rd ed.
New York, NY: Springer, 2007.

5. Cox, D. A., Little, J., and O’Shea, D. Using algebraic geometry. 2rd ed.,
vol. 185 of Graduate Texts in Mathematics. Springer, New York, 2005.

6. Faugère, J.-C. A new efficient algorithm for computing Gröbner bases (F4). J.
Pure Appl. Algebra 139, 1-3 (1999), 61–88.

7. Faugère, J.-C. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In Proceedings of ISSAC’02. 2002, pp. 75–83.

8. Gao, S., Volny, F. I., and Wang, M. A new framework for computing Gröbner
bases. Math. Comput. 85, 297 (2016), 449–465.

9. Gebauer, R., and Möller, H. On an installation of Buchberger’s algorithm. J.
Symb. Comput. 6, 2-3 (1988), 275–286.

10. Gerdt, V. P. Involutive algorithms for computing Gröbner bases. In Compu-
tational commutative and non-commutative algebraic geometry. Proceedings of the
NATO Advanced Research Workshop. Amsterdam: IOS Press, 2005, pp. 199–225.

11. Gerdt, V. P., and Blinkov, Y. A. Involutive bases of polynomial ideals. Math.
Comput. Simul. 45, 5-6 (1998), 519–541.

12. Gerdt, V. P., Hashemi, A., and M.-Alizadeh, B. Involutive bases algorithm
incorporating F5 criterion. J. Symb. Comput. 59 (2013), 1–20.

13. Hashemi, A., Schweinfurter, M., and Seiler, W. Deterministic genericity for
polynomial ideals. J. Symb. Comput. 86 (2018), 20–50.

14. Janet, M. Sur les systèmes d’équations aux dérivées partielles. C. R. Acad. Sci.,
Paris 170 (1920), 1101–1103.

15. Lazard, D. Gröbner bases, Gaussian elimination and resolution of systems of
algebraic equations. Lect. Notes Comput. Sci. 162, 146-156., 1983.

16. Möller, H., Mora, T., and Traverso, C. Gröbner bases computation using
syzygies. In Proceedings of ISSAC’92. 1992, pp. 320–328.

17. Pommaret, J. Systems of partial differential equations and Lie pseudogroups.
Gordon and Breach Science Publishers., 1978.

18. Schreyer, F.-O. Die Berechnung von Syzygien mit dem verallgemeinerten Weier-
strass’schen Divisionssatz. Master’s thesis, University of Hamburg, Germany, 1980.

19. Seiler, W. M. A combinatorial approach to involution and δ-regularity. II: Struc-
ture analysis of polynomial modules with Pommaret bases. Appl. Algebra Eng.
Commun. Comput. 20, 3-4 (2009), 261–338.

20. Seiler, W. M. Involution. The formal theory of differential equations and its
applications in computer algebra. Berlin: Springer, 2010.

21. Wall, B. On the computation of syzygies. SIGSAM Bull. 23, 4 (1989), 5–14.
22. Zharkov, A., and Blinkov, Y. Involution approach to investigating polynomial

systems. Math. Comput. Simul. 42, 4 (1996), 323–332.

