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Abstract. We introduce the novel concept of a resolving decomposition
of a polynomial module as a combinatorial structure that allows for the
effective construction of free resolutions. It provides a unifying framework
for recent results of the authors for different types of bases.

1 Introduction

The determination of free resolutions for polynomial modules is a fundamental
task in computational commutative algebra and algebraic geometry. Free resolu-
tions are needed for derived functors like Ext and Tor and many important ho-
mological invariants like the projective dimension or the Castelnuovo-Mumford
regularity are defined via the minimal resolution. Furthermore, the Betti num-
bers contain much geometric and topological information.

Unfortunately, it is rather expensive to compute a resolution. As a rough rule
of thumb one may say that computing a resolution of length ` corresponds to
computing ` Gröbner bases. In many cases one needs only partial information
about the resolution like the Betti numbers simply measuring its size. However,
all classical algorithms require to determine always a full resolution.

In [1] we provided a novel approach by combining the theory of Pommaret
bases and algebraic discrete Morse theory (together with an implementation in
the CoCoALib). It allows for the first time to determine Betti numbers—even
individual ones—without computing a full resolution and thus is for most prob-
lems much faster than classical approaches (see [1, 3] for detailed benchmarks).
Furthermore, it scales much better and can be easily parallelised.

Because of these good properties it is of great interest to generalise this ap-
proach to other situations. In [3], we extended it to Janet bases. While the proofs
remained essentially the same, the use of another involutive division required the
adaption of a number of technical points. Currently we are working on exten-
sions to some alternative bases which do not necessarily come from an involutive
division but provide similar combinatorial decompositions. Again this would re-
quire a number of minor modifications of the same proofs. In a different line of
work [2], we introduced recently modules marked on quasi-stable submodules.
Again one obtains combinatorial decompositions based on multiplicative vari-
ables defined by the Pommaret division, but this time no term order is used.
Nevertheless, we could show that many results of [1] remain true.



The main objective of the current paper is the development of an axiomatic
framework that unifies all the above works. We introduce the novel concept of a
resolving decomposition which is defined via several direct sum decompositions.
It implies in particular the existence of standard representations and normal
forms. We then show that such a decomposition allows for the explicit determi-
nation of a free resolution and of Betti numbers.

The point of such a unification is not that it leads to any new algorithms.
Indeed, we will not present a general algorithm for the construction of resolving
decomposition. Instead one should see our results as a “meta-machinery” which
given any concept of a basis that induces a resolving decomposition delivers
automatically an effective syzygy theory for this kind of basis. For the concrete
case of the resolving decompositions induced by Janet or Pommaret bases, an
implementation of this effective theory is described (together with benchmarks)
in [1, 3]. For other types of underlying bases only fairly trivial modifications of
this implementation would be required.

2 Resolving Decompositions

Let k be an algebraic closed field and P = k[x] with x = (x0, . . . , xn). Let
Pmd =

⊕m
i=1 P(−di)ei be a finitely generated free P-module with grading d =

(d1, . . . , dm) and free generators e1, . . . , em. A module U ⊆ Pmd is called mono-
mial module if it is of the form ⊕mk=1J

(k)ek with J (k) is a monomial ideal in
P. A module term (with index i) is a term of the form xµei. For a monomial
ideal J ⊆ P we define N (J) ⊆ T as the set of terms in T not belonging to J .
For a monomial module U we define N (U) =

⋃m
k=1N (J (k))ek. For an element

f ∈ Pmd we define supp(f) as the set of module terms appearing in f with a
non-zero coefficient: f =

∑
xαeiα∈supp(f)

cαx
αeiα . If B is a set of homogeneous

elements of degree s in Pmd , we write 〈B〉k for the k-vector space generated by B
in (Pmd )s. For a module U ⊆ Pmd we denote by pd(U) the projective dimension
and by reg(U) the (Castelnuovo-Mumford) regularity of U .

Let U ⊆ Pmd be a finitely generated graded submodule and B = {h1, . . . ,hs}
a finite homogeneous generating set of U . For every hi ∈ B we choose a term
xµieki ∈ supp hi denoted by hm hi and call it head module term. In addition to
that we define the head module terms of B, hm(B) := {hm(h) | h ∈ B} and the
head module of U , hm(U) = 〈hmB〉. Note that hm(U) depends on the choice of
B and on the choice of the head module terms in B.

Definition 1. We define a resolving decomposition of the submodule U as a
quadruple (B,hm(B), XB,≺B) with the following five properties:

(i) U = 〈B〉.
(ii) Let h ∈ B be an arbitrary generator. Then, for every module term xµek ∈

supp(h) \ {hm(h)}, we have xµek /∈ hm(U).
(iii) We assign a set of multiplicative variables XB(h) ⊆ x to every head module

term hm(h) with h ∈ B such that we have direct sum decompositions of



both the head module

hm(U) =
⊕
h∈B

k[XB(h)] · hm(h) (1)

and of the module itself

U =
⊕
h∈B

k[XB(h)] · h . (2)

(iv) (Pmd )r = Ur ⊕ 〈N (hm(U))r〉k for all r ≥ 0.
(v) Let {f1, . . . , fs} denote the standard basis of the free module Ps. Given an

arbitrary term xδ ∈ T and an arbitrary generator hα ∈ B, we find for
every term xεei ∈ supp(xδhα) ∩ hm(U) a unique hβ ∈ hm(B) such that

xεei = xδ
′
hm(hβ) with xδ

′ ∈ k[XB(hβ)] by (iii). Then the term order ≺B
on Ps must satisfy xδfα �B xδ

′
fβ.

In the sequel, we will always assume that (B,hm(B), XB,≺B) is a resolving
decomposition of the finitely generated module U = 〈B〉 ⊆ Pmd . In addition to
the multiplicative variables, we define for h ∈ B the non-multiplicative variables
as XB(h) = {x0, . . . , xn} \XB(h).

Remark 2. Resolving decompositions may be considered as a refinement of Stan-
ley decompositions. Indeed, (1) gives us a Stanley decomposition of the head
module of U and (2) of U itself. Consequently, it is easy to compute the Hilbert
functions of hm(U) and of U , respectively. Because of the identical structure
of the two decompositions, these two Hilbert functions are trivially the same
(which may be considered as a term order free version of Macaulay’s theorem in
the theory of Gröbner bases). In addition, (iii) gives us for every f ∈ U a unique
standard representation

f =

s∑
α=1

Pαhα

with Pα ∈ k[XB(hα)]. Condition (iv) implies the existence of unique normal
forms for all homogeneous elements f ∈ Pm. Due to this condition, we find
unique Pα ∈ k[XB(hα)] for every hα ∈ B such that f ′ = f−

∑s
α=1 Pαhα and f ′ ∈

〈N (hm(U))〉k. Another important consequence of the definition of a resolving
decomposition is that (1) implies that every generators in B has a different head
module term.

While for the purposes of this work the mere existence of normal forms is
sufficient, we note that (v) implies that they can be effectively computed. The
choice of head terms and multiplicative variables in a resolving decomposition
induces a natural reduction relation. If f ∈ Pmd contains a term xεei ∈ hm (U),
then there exists a unique generator h ∈ hm(B) such that xεei = xδ hm(h) with

xδ ∈ k[XB(h)] and we have a possible reduction f
B−→ f − cxδh for a suitably

chosen coefficient c ∈ k.



Lemma 3. For any resolving decomposition (B,hm(B), XB,≺B) the transitive

closure
B−→∗ of

B−→ is Noetherian and confluent.

Proof. It is sufficient to prove that for every term xγek in hm(U), there is a

unique g ∈ Pmd such that xγek
B−→∗ g and g ∈ 〈N (hm(U))〉.

Since xγek ∈ hm(U), there exists a unique xδhα ∈ U such that xδ hm(hα) =

xγek and xδ ∈ XB(hα). Hence, xγek
B−→ xγek − cxδhα for a suitably chosen

coefficient c ∈ k. Denoting again the standard basis of Ps by {f1, . . . , fs}, we
associated the term xδfα with this reduction step. If we could proceed infinitely
with further reduction steps, then the reduction process would induce a sequence
of terms in Ps containing an infinite chain which, by condition (v) of Definition 1,
is strictly descending for ≺B. But this is impossible, since ≺B is a well-ordering.

Hence
B−→∗ is Noetherian. Confluence is immediate by the uniqueness of the

element that is used at each reduction step. ut

Furthermore, every resolving decomposition (B,hm(B), XB,≺B) induces nat-
urally a directed graph. Its vertices are given by the elements in B. If xj ∈ XB(h)
for some h ∈ B, then, by definition, B contains a unique generator h′ such that
xj hm h = xµ hm h′ with xµ ∈ k[XB(h′)]. In this case we include a directed edge
from h to h′. We call the thus defined graph the B-graph.

Lemma 4. The B-graph of a resolving decomposition (B,hm(B), XB,≺B) is al-
ways acyclic.

Proof. Assume the B-graph was cyclic. Then we find generators hk1 , . . . ,hkt ∈ B,
which are pairwise distinct, variables xi1 , . . . , xit such that xij ∈ XB(hm(hkj ))
for all j ∈ {1, . . . , t} and terms xµ1 , . . . , xµt such that xµj ∈ k[XB(hm(hkj ))] for
all j ∈ {1, . . . , t} satisfying:

xi1 hm(hk1) = xµ2 hm(hk2),

xi2 hm(hk2) = xµ3 hm(hk3),

...

xit hm(hkt) = xµ1 hm(hk1).

Multiplying with some variables, we obtain the following chain of equations:

xi1 · · ·xit hm(hk1) = xi2 · · ·xitxµ2 hm(hk2)

= xi3 · · ·xitxµ2xµ3 hm(hk3)

...

= xitx
µ2 · · ·xµt hm(hkt)

= xµ1 · · ·xµt hm(hk1)

which implies that xi1 · · ·xit = xµ1 · · ·xµt . Furthermore, condition (v) of Defi-
nition 1 implies in Ps the following chain:

xi1 · · ·xitfk1 �B xi2 · · ·xitxµ2fk2 �B · · · �B xµ1 · · ·xµtfk1 .



Because of xi1 · · ·xit = xµ1 · · ·xµt , we must have throughout equality entailing
that k1 = · · · = kt which contradicts our assumptions. ut

Example 5. Let ≺ be a term order on the free module Pmd , L a continuous
involutive division ([7, Definition 2.1]) and B a finite, L-involutively autoreduced
set ([7, Definition 5.8]) which is a strong L-involutive basis ([7, Definition 5.1]) of
the submodule U ⊆ Pmd it generates. Then B induces a resolving decomposition
of U with hm(B) = {lt(h1), . . . , lt(hs)}. The multiplicative variables XB are
assigned according to the involutive division L and we take as ≺B the Schreyer
order induced by B and ≺. Condition (i) of Definition 1 follows from [7, Corollary
5.5], condition (ii) is a consequence of the fact that B is involutively autoreduced
and condition (iii) follows from [7, Lemma 5.12]. According to [7, Proposition
5.13] every f ∈ Pmd possesses a unique normal form. In Remark 2 we have seen
that this is equivalent to the fourth condition in our definition. Finally, (v) is
satisfied because of [8, Lemma 5.5] and the existence of an L-ordering. Hence an
autoreduced involutive basis always induces a resolving decomposition.

Example 6. Another example for resolving decompositions are the marked mod-
ules introduced in [2]. Marked modules are only defined for quasi-stable modules.
The construction of a marked basis is a bit different from the usual construc-
tion of Gröbner bases. We start with a quasi-stable monomial module V ⊆ Pmd
which is generated by a monomial Pommaret basis H = {xµ1ek1 , . . . x

µseks}.
Then we define a marked basis B = {h1, . . . ,hs} such that hm(hi) = xµieki
and supp(hi − xµieki) ⊆ 〈N (V )deg(xµieki )〉k. Furthermore it is required that
N (V )r induces a k-basis of (Pmd )r/〈B〉r for all degrees r, which implies that
(Pmd )r = 〈B〉r⊕〈N (V )r〉k for all r. The multiplicative variables XB are assigned
according to the multiplicative variables of the Pommaret basis H (for a detailed
treatment see section two in [2]). We see immediately that the conditions (i), (ii)
and (iv) are satisfied. The first part of condition (iii) follows from the fact that
H = hm(B) is a Pommaret basis and the second part follows from the uniqueness
of the reduction process [2, Lemma 5.1]. Finally, we take for ≺B the TOP lift of
the lexicographic order; condition (v) then follows from [2, Lemma 3.6].

Example 7. Even in the case of a monomial module, not every Stanley decom-
position can be extended to a resolving decomposition. For m = 1, n = 4 and
the standard grading, we take as U the homogeneous maximal ideal in P. A
Stanley decomposition of U is then given by the set

B = {h1 = x0,h2 = x1,h3 = x2,h4 = x3,h5 = x4,h6 = x0x1x3,h7 = x0x2x3,

h8 = x0x2x4,h9 = x1x2x4,h10 = x1x3x4,h11 = x0x1x2x3x4}



with multiplicative variables

XB(h1) = {x0, x1, x2}, XB(h2) = {x1, x2, x3}
XB(h3) = {x2, x3, x4}, XB(h4) = {x0, x3, x4}
XB(h5) = {x0, x1, x4}, XB(h6) = {x0, x1, x2, x3}
XB(h7) = {x0, x2, x3, x4}, XB(h8) = {x0, x1, x2, x4}
XB(h9) = {x1, x2, x3, x4}, XB(h10) = {x0, x1, x3, x4}
XB(h11) = {x0, x1, x2, x3, x4} .

It is not possible to find a term order ≺B which makes this Stanley decomposition
to a resolving one, as the corresponding B-graph contains a cycle (note that here
obviously hm(hi) = hi):

x3h1 = x0h4 , x1h4 = x3h2 , x0h2 = x1h1 .

3 Syzygy Resolutions via Resolving Decompositions

Let Pmd0
be a graded free polynomial module with standard basis {e(0)

1 , . . . , e
(0)
m }

and grading d0 = (d
(0)
1 , . . . d

(0)
m ). Furthermore, let (B(0),hm(B(0)), XB(0) ,≺B(0))

be a resolving decomposition of a finitely generated graded module U ⊆ Pmd0
with

B(0) = {h1, . . . ,hs1}. Our first goal is now to construct a resolving decomposition
of the syzygy module Syz(B(0)) ⊆ Ps1 which may be considered as a refined
version of the well-known Schreyer theorem for Gröbner bases.

For every non-multiplicative variable xk of a generator hα, we have a standard

representation xkhα =
∑s1
β=1 P

(α;k)
β hβ and thus a syzygy

Sα;k = xke
(1)
α −

s1∑
β=1

P
(α;k)
β e

(1)
β (3)

where {e(1)
1 , . . . , e

(1)
s1 } denotes the standard basis of the free module Ps1d1

with

grading d1 = (deg(h1), . . . ,deg(hs)). Let B(1) be the set of all these syzygies.

Lemma 8. Let S =
∑s1
l=1 Sle

(1)
l be an arbitrary syzygy of B(0) with coefficients

Sl ∈ P. Then Sl ∈ k[XB(0)(hl)] for all 1 ≤ l ≤ s1 if and only if S = 0.

Proof. If S ∈ Syz(B(0)), then
∑s1
l=1 Slhl = 0. Each f ∈ U can be uniquely written

in the form f =
∑s1
l=1 Plhl with hl ∈ B(0) and Pl ∈ k[XB(0)(hl)]. In particular,

this holds for 0 ∈ U . Thus 0 = Sl ∈ k[XB(0)(hl)] for all l and hence S = 0. ut

For hα ∈ B(0) we denote the non-multiplicative variables by {xiα1 , . . . , xiαrα }
with iα1 < · · · < iαrα . Thus B(1) = ∪s1j=1{Sj;ijk | 1 ≤ k ≤ i

j
rj}.

Theorem 9. For every syzygy Sα;iαk ∈ B
(1) we set

hm(Sα;iαk ) = xiαk e(1)
α



and
XB(1)(Sα;iαk ) = {x0, . . . xn} \ {xiα1 , . . . , xiαk−1

} .

Furthermore, we define ≺B(1) as the Schreyer order associated to B(0) and ≺B(0) .
Then the quadruple (B(1),hm(B(1)), XB(1) ,≺B(1)) is a resolving decomposition of
the syzygy module Syz(B(0)).

Proof. We first show that (B(1),hm(B(1)), XB(1) ,≺B(1)) is a resolving decompo-
sition of 〈B(1)〉. In a second step, we show that 〈B(1)〉 = Syz(B(0)).

The first condition of Definition 1 is trivially satisfied. By construction it is
obvious to see that

hm(〈B(1)〉) =

s1⊕
i=1

〈XB(0)(hi)〉e(1)
i . (4)

A term xµe
(1)
l ∈ supp(Sα;k − xke(1)

α ) must satisfy by (3) that xµ ∈ k[XB(0)(hl)]

and hence xµe
(1)
l /∈ hm(〈B(1)〉) which implies condition (ii). The first part of

condition (iii) is again easy to see. It is obvious that

〈XB(0)(hα)〉e(1)
α =

rα⊕
k=1

k[XB(1)(Sα,iαk )]xiαk e(1)
α .

If we combine this equation with (4) the first part of the third condition follows.
The second part of this condition is a bit harder to prove. We take an arbi-

trary f ∈ 〈B(1)〉 and construct a standard representation for this module element.
We construct this representation according to hm(〈B(1)〉). We take the biggest

term xµe
(1)
α ∈ supp(f) ∩ hm(B(1)) with respect to the order ≺B(0) . There must

be a syzygy Sα;i, such that xi | xµ and xµ/xi ∈ k[XB(1)(Sα;i)]. We reduce f by
this element and get

f ′ = f − cx
µ

xi
Sα;i

for a suitable constant c ∈ k such that the term xµe
(1)
α is no longer in the support

of f ′. Every term xλe
(1)
β newly introduced by xµ

xi
Sα;i which also lies in hm(B(1))

is strictly less than xµe
(1)
α according to condition (v) of Definition 1 and equation

(3) defining the syzygies Sα;i. Now we repeat this procedure until we arrive at
an f ′′ such that supp(f ′′) ∩ hm (〈B(1)〉) = ∅. It is clear that we reach such an f ′′

in a finite number of steps, since the terms during the reduction decrease with

respect to ≺B(0) which is a well-order. We know that now all xεe
(1)
α ∈ supp(f ′′)

have the property that xε ∈ XB(0)(hα). Therefore we get that f ′′ = 0 due to
Lemma 8, which finishes the proof of this condition.

The above procedure provides us with an algorithm to compute arbitrary
normal forms and hence condition (iv) of Definition 1 follows immediately. For

the last condition we note that now each head term xie
(1)
α is actually the leading

term of Sα;i with respect to the order ≺B(0) . Hence the corresponding Schreyer
order satisfies the last condition of Definition 1. ut



As with the usual Schreyer theorem, we can iterate this construction and
derive this way a free resolution of U . By contrast to the classical situation,
it is however now possible to make precise statements about the shape of the
resolution (even if we do not obtain explicit formulae for the differentials).

Theorem 10. Let β
(k)
0,j be the number of generators h ∈ B(0) of degree j having

k multiplicative variables and set d = min {k | ∃j : β
(k)
0,j > 0}. Then U possesses

a finite free resolution

0→
⊕
P(−j)rn+1−d,j → · · · →

⊕
P(−j)r1,j →

⊕
P(−j)r0,j → U → 0 (5)

of length n+ 1− d where the ranks of the free modules are given by

ri,j =

n+1−i∑
k=1

(
n+ 1− k

i

)
β
(k)
0,j−i.

Proof. According to Theorem 9, (B(1),hm(B(1)), XB(1) ,≺B(1)) is a resolving de-
composition for the module Syz1(U). Applying the theorem again, we can con-
struct a resolving decomposition of the second syzygy module Syz2(U) and so on.
Recall that for every index 1 ≤ l ≤ m and for every non-multiplicative variable
xk ∈ XB(0)(hα(l)) we have |XB(1)(Sl;k)| < |XB(0)(hα(l))|.

If D is the minimal number of multiplicative variables for a head module
term in B(0), then the minimal number of multiplicative variables for a head
term in B(1) is D + 1. This observation yields the length of the resolution (5).
Furthermore deg(Sk;i) = deg(hk) + 1, e. g. from the jth to the (j + 1)th module
the degree from the basis element to the corresponding syzygies grows by one.

The ranks of the modules follow from a rather straightforward combinatorial

calculation. Let β
(k)
i,j denote the number of generators of degree j of the i-th

syzygy module Syzi(U) with k multiplicative variables according to the head
module terms. By definition of the generators, we find

β
(k)
i,j =

k−1∑
t=1

β
(n+1−t)
i−1,j−1

as each generator with less multiplicative variables and degree j−1 in the resolv-
ing decomposition of Syzi(B(0)) contributes one generator with k multiplicative

variables. A lengthy induction allows us to express β
(k)
i,j in terms of β

(k)
0,j :

β
(k)
i,j =

k−i∑
t=1

(
k − l − 1

i− 1

)
β
(t)
0,j−i.

Now we are able to compute the ranks of the free modules via

ri,j =

n+1∑
k=1

β
(k)
i,j =

n+1∑
k=1

k−i∑
t=1

(
k − t− 1

i− 1

)
β
(t)
0,j−i =

n+1−i∑
k=1

(
n+ 1− k

i

)
β
(k)
0,j−i.

The last equality follows from a classical identity for binomial coefficients. ut



Theorem 10 allows us to construct recursively resolving decompositions for
the higher syzygy modules. In the sequel, we denote the corresponding resolving
decomposition of the syzygy module Syzj(U) by (B(j),hm(B(j)), XB(j) ,≺B(j)). To

define an element of B(j), we consider for each generator hα ∈ B(0) all ordered
integer sequences k = (k1, . . . , kj) with 0 ≤ k1 < · · · < kj ≤ n of length |k| = j
such that xki ∈ XB(0)(hα) for all 1 ≤ i ≤ j. We denote for any 1 ≤ i ≤ j
by ki the sequence obtained by eliminating ki from k. Then the generator Sα;k
arises recursively from the standard representation of xkjSα;kj according to the

resolving decomposition (B(j−1),hm(B(j−1)), XB(j−1) ,≺B(j−1)):

xkjSα;kj =

s1∑
β=1

∑
l

P
(α;k)
β;l Sβ;l. (6)

The second sum is over all ordered integer sequences l of length j−1 such that for
all entries `i the variables x`i is non-multiplicative for the generator hβ ∈ B(0).
Denoting the free generators of the free module which contains the jth syzygy

module by e
(j)
α,l, such that α ∈ {1, . . . , s1} and l is an ordered subset of XB(0)(hα)

of length j − 1 we get the following representation for Sα,k:

Sα;k = xkje
(j)
α;kj
−

s1∑
β=1

∑
l

P
(α;k)
β;l e

(j)
β;l.

Corollary 11. In the situation of Theorem 10, set d = min {k | ∃j : β
(k)
0,j > 0}

and q = deg(B(0)) = max{deg(h) | h ∈ B(0)}. Then we obtain the following
bounds for the projective dimension, the Castelnuovo-Mumford regularity and
the depth, respectively, of the submodule U :

pd(U) ≤ n+ 1− d , reg(U) ≤ q , depth(U) ≥ d .

Proof. The first estimate follows immediately from the resolution (5) induced by
the resolving decomposition (B(0),hm(B(0)), XB(0) ,≺B(0)) of U . The last estimate
is a simple consequence of the first one and the graded form of the Auslander-
Buchsbaum formula. Finally, the ith module of this resolution is obviously gen-
erated by elements of degree less than or equal to q+ i. This observation implies
that U is q-regular and thus the second estimate. ut

Remark 12. The resolving decomposition (B(1),hm(B(1)), XB(1) ,≺B(1)) construc-
ted in Theorem 9 is always a Janet basis of the first syzygy module with respect
to the term order ≺B(0) . This is simply due to the fact that the choice of the mul-
tiplicative variables in the resolving decomposition of the syzygy module made
in Theorem 9 is actually inspired by what happens for the Janet division. Hence
in the special case that the resolving decomposition is induced by a Pommaret
or a Janet basis, it is easy to see that also the resolving decompositions of the
higher syzygy modules are actually induced by Pommaret or Janet bases for
a Schreyer order constructed as in Theorem 9. Since a Janet basis which only



consists of variables is simultaneously an involutive basis for the alex division
(see [5] for the definition), the same is true for resolving decompositions induced
by alex bases.

At this point, one can also see some advantages of our general framework.
Our previous results require that the used involutive division is of Schreyer type.
This assumption ensures that we obtain at each step again an L-involutive basis
for the syzygy module with respect to a Schreyer order. In our new approach,
we automatically obtain Janet basis, as we can choose the head terms and the
multiplicative variables as we like. Consequently, we can now use an involutive
basis B for an arbitrary involutive division L as starting point for the construc-
tion of a resolution, provided its L-graph is acyclic (which is always the case if L
is continuous). The construction will not necessarily lead to L-involutive bases
of the syzygy modules, but for most applications this fact is irrelevant.

4 An Explicit Formula for the Differential

As in Section 3 let Pmd0
be a graded free module with free generators e

(0)
1 , . . . e

(0)
m

and grading d0 = (d
(0)
1 , . . . d

(0)
m ). We always work with a finitely generated graded

module U ∈ Pmd0
with a resolving decomposition (B(0),hm(B(0)), XB(0) ,≺B(0))

where B(0) = {h1, . . . ,hs1}.
First we give an alternative description of the complex underlying the res-

olution (5). Let W =
⊕s1

α=1 Pwα and V =
⊕n

i=0 Pvi be two free P-modules
whose ranks are given by the size of the resolving decomposition (B(0),hm(B(0)),
XB(0) ,≺B(0)) and by the number of variables in P, respectively. Then we set
Ci = W ⊗P ΛiV where Λ• denotes the exterior product. A P-linear basis of Ci
is provided by the elements wα ⊗ vk where vk = vk1 ∧ · · · ∧ vki for an ordered
sequence k = (k1, . . . , ki) with 0 ≤ k1 < · · · < ki ≤ n. Then the free subcomplex
S• ⊂ C• generated by all elements wα ⊗ vk with k ⊆ XB(0)(hα) corresponds to

(5) upon the identification e
(i+1)
α;k ↔ wα ⊗ vk. Let ki+1 ∈ XB0(hα) \ k, then the

differential comes from (6),

dS(wα ⊗ vk,ki+1) = xki+1wα ⊗ vk −
∑
β,l

P
(α;k,ki+1)
β;l wβ ⊗ vl ,

and thus requires the explicit determination of all the higher syzygies (6).
In this section we present a method to directly compute the differential with-

out computing higher syzygies. It is based on ideas of Sköldberg [9, 10] and gen-
eralises the theory which we developed in [1, 3] for the special case of a resolution
induced by a Pommaret or a Janet basis for a given term order.

Definition 13. A graded polynomial module U has head linear syzygies, if it
possesses a finite presentation

0 −→ ker η −→W =

s⊕
α=1

Pwα
η−→ U −→ 0 (7)



with a finite generating set H = {h1, . . . ,ht} of ker η where one can choose for
each generator hα ∈ H a head module term hm(hα) of the form xiwα.

Sköldberg’s construction begins with the following two-sided Koszul complex
(F , dF ) defining a free resolution of U . Let V be a k-linear space with basis
{v0, . . . ,vn} (with n+ 1 still the number of variables in P) and set Fj = P ⊗k
ΛjV ⊗k U which obviously yields a free P-module. Choosing a k-linear basis
{ma | a ∈ A} of U , a P-linear basis of Fj is given by the elements 1⊗ vk ⊗ma

with ordered sequences k of length j. The differential is now defined by

dF (1⊗ vk ⊗ma) =

j∑
i=1

(−1)i+1
(
xki ⊗ vki ⊗ma − 1⊗ vki ⊗ xkima

)
. (8)

Here it should be noted that the second term on the right hand side is not yet
expressed in the chosen k-linear basis of U . For notational simplicity, we will
drop in the sequel the tensor sign ⊗ and leading factors 1 when writing elements
of F•.

Sköldberg uses a specialisation of head linear terms. He requires that for a
given term order ≺ the leading module of ker η in the presentation (7) must be
generated by terms of the form xiwα. In this case he says that U has initially
linear syzygies. Our definition is term order free.

Under the assumption that the module U has initially linear syzygies via a
presentation (7), Sköldberg [10] constructs a Morse matching leading to a smaller
resolution (G, dG). He calls the variables

crit (wα) = {xj | xjwα ∈ lt ker η} ;

critical for the generator wα; the remaining non-critical ones are contained in
the set ncrit (wα). Then a k-linear basis of U is given by all elements xµhα with
hα = η(wα) and xµ ∈ k[ncrit (wα)].

According to [9] we define Gj ⊆ Fj as the free submodule generated by those
vertices vkhα where the ordered sequences k are of length j and such that every
entry ki is critical for wα. In particular W ∼= G0 with an isomorphism induced
by wα 7→ v∅hα.

The description of the differential dG is based on reduction paths in the
associated Morse graph (for a detailed treatment of these notions, see [1, 9] or [6])
and expresses the differential as a triple sum. If we assume that, after expanding
the right hand side of (8) in the chosen k-linear basis of U , the differential of
the complex F• can be expressed as

dF (vkhα) =
∑

m,µ,γ

Qk,α
m,µ,γvm(xµhγ) ,

then dG is defined by

dG(vkhα) =
∑
l,β

∑
m,µ,γ

∑
p

ρp
(
Qk,α

m,µ,γvm(xµhγ)
)

(9)



where the first sum ranges over all ordered sequences l which consists entirely of
critical indices for wβ . Moreover the second sum may be restricted to all values
such that a polynomial multiple of vm(xµhγ) effectively appears in dF (vkhα)
and the third sum ranges over all reduction paths p going from vm(xµhγ) to
vlhβ . Finally ρp is the reduction associated with the reduction path p satisfying

ρp
(
vm(xµhγ)

)
= qpvlhβ

for some polynomial qp ∈ P.
It turns out that Sköldberg uses the term order ≺ only for distinguishing the

critical and non-critical variables. Therefore it is straightforward to see that his
construction also works for modules which have head linear syzygies. We simply
replace the definition of critical and non-critical variables. We define

crit (wα) = {xj | xjwα ∈ hm(H)} ,

where H is chosen as in Definition 13. Again the remaining variables are con-
tained in the set ncrit(wα).

In the sequel we will show that for a finitely generated graded module U with
resolving decomposition (B(0),hm(B(0)), XB(0) ,≺B(0)) the resolution constructed
by Sköldberg’s method is isomorphic to the resolution which is induced by the
resolving decomposition if we choose the head linear syzygies properly. Firstly
we obtain the following trivial assertion.

Lemma 14. If the graded submodule U ⊆ Ps1d0
possesses a resolving decompo-

sition (B(0),hm(B(0)), XB(0) ,≺B(0)), then it has head linear syzygies. More pre-
cisely, we can set crit(wα) = XB(0)(hα), i.e. the critical variables of the gener-
ator wα are the non-multiplicative variables of hα = η(wα).

The lemmata which we subsequently cite from [1] are formulated for a Pom-
maret basis, which is an involutive basis. Nevertheless we can apply them directly
in our setting, if not stated otherwise, because their proofs remain applicable for
resolving decompositions. The reason for this is that they only need the existence
of unique standard representations and the division of variables into multiplica-
tive and non-multiplicative ones. Some of the proofs in [1] explicitly use the class
of a generator in B(0), a notion arising in the context of Pommaret bases. When
working with resolving decompositions, one has to replace it by the maximal
index of a multiplicative variable.

The reduction paths can be divided into elementary ones of length two. There
are essentially three types of reductions paths [1, Section 4]. The elementary
reductions of type 0 are not of interest [1, Lemma 4.5]. All other elementary
reductions paths are of the form

vk(xµhα) −→ vk∪i(
xµ

xi
hα) −→ vl(x

νhβ) .

Here k∪ i is the ordered sequence which arises when i is inserted into k; likewise
k \ i stands for the removal of an index i ∈ k.



Type 1: Here l = (k∪ i)\j, xν = xµ

xi
and β = α. Note that i = j is allowed. We

define ε(i; k) = (−1)|{j∈k|j>i}|. Then the corresponding reduction is

ρ(vkx
µhα) = ε(i; k ∪ i)ε(j; k ∪ i)xjv(k∪i)\j

(xµ
xi

hα
)
.

Type 2: Now l = (k ∪ i) \ j and xνhβ appears in the involutive standard

representation of
xµxj
xi

hα with the coefficient λj,i,α,µ,ν,β ∈ k. In this case, by
construction of the Morse matching, we have i 6= j. The reduction is

ρ(vkx
µhα) = −ε(i; k ∪ i)ε(j; k ∪ i)λj,i,α,µ,ν,βv(k∪i)\j(x

νhβ) .

These reductions follow from the differential (8): The summands appearing
there are either of the form xkivkima or of the form vki(xkima). For each of
these summands, we have a directed edge in the Morse graph ΓAF• . Thus for an
elementary reduction path

vk(xµhα) −→ vk∪i
(xµ
xi

hα
)
−→ vl(x

νhβ) ,

the second edge can originate from summands of either form. For the first form
we then have an elementary reduction path of type 1 and for the second form
we have type 2.

To show that the resolution induced by a resolving decomposition is isomor-
phic to the resolution constructed via Sköldberg’s method we need a classical
theorem concerning the uniqueness of free resolutions.

Theorem 15. [4, Theorem 1.6] Let U be a finitely generated graded Pmd -module.
If F is the graded minimal free resolution of U and G an arbitrary graded free
resolution of U , then G is isomorphic to the direct sum of F and a trivial complex.

Assume that we have two graded free resolutions F , G of the same module U
with the same shape (which means that the homogeneous components of the free
modules in the two resolutions have always the same dimensions: dimk (Fi)j =
dimk (Gi)j). Then Theorem 15 implies that the two resolutions are isomorphic.
For the next theorem, we note the following important observation. The bases
of the free modules in the resolution G of Sköldberg are given by the generators
vkhα with k ⊆ XB(0)(hα).

Theorem 16. Let F be the graded free resolution which is induced by the resolv-
ing decomposition (B(0),hm(B(0)), XB(0) ,≺B(0)) and G the graded free resolution
which is constructed by the method of Sköldberg when the head linear syzygies are
chosen such that crit(hα) = XB(0)(hα) for every hα ∈ B(0). Then the resolutions
F and G are isomorphic.

Proof. According to the observation made above, it is obvious that the two
resolutions F and G have the same shape. Together with Theorem 15, the claim
follows then immediately. ut



For completeness, we repeat some simple results from [1]. They will show us,
that the differentials of both resolutions are very similar. In fact we show for the
resolution constructed via Sköldberg’s method, that we can find head module
terms in the higher syzygies which are equal to the head module terms of the
resolving decompositions of the higher syzygies of the induced free resolution.

Lemma 17. [1, Lemma 4.3] For a non-multiplicative index1 i ∈ crit (hα) let

xihα =
∑s1
β=1 P

(α;i)
β hβ be the standard representation. Then we have dG(vihα) =

xiv∅hα −
∑s1
β=1 P

(α;i)
β v∅hβ.

The next result states that if one starts at a vertex vi(x
µhα) with certain

properties and follows through all possible reduction paths in the graph, one
will never get to a point where one must calculate an involutive standard rep-
resentation. If there are no critical (i. e. non-multiplicative) variables present at
the starting point, then this will not change throughout any reduction path. In
order to generalise this lemma to higher homological degrees, one must simply
replace the conditions i ∈ ncrit (hα) and j ∈ ncrit (hβ) by ordered sequences k, l
with k ⊆ ncrit (hα) and l ⊆ ncrit (hβ).

Lemma 18. [1, Lemma 4.4] Assume that i ∪ supp(µ) ⊆ ncrit (hα). Then for
any reduction path p = vi(x

µhα) → · · · → vj(x
νhβ) we have j ∈ ncrit (hβ). In

particular, in this situation there is no reduction path p = vi(x
µhα) → · · · →

vkhβ with k ∈ crit (hβ).

The next corollary asserts that we can choose in Sköldberg’s resolution head
module terms in such a way that there is a one-to-one correspondence to the head
terms of the syzygies contained in the free resolution induced by the resolving
decomposition. This corollary is a direct consequence of Lemma 18.

Corollary 19. Let (k1, . . . , kj) = k ⊆ crit hα, then

xklvk\klhα ∈ supp(dG(vkhα)).

In [1] and [3] we show a method to effectively compute graded Betti numbers
via the induced free resolution of Janet and Pommaret bases and the method
of Sköldberg. We show that we can compute the graded Betti numbers with
computing only the constant part of the resolution. With this method it is also
possible to compute only a single Betti number without compute the complete
constant part of the free resolution. The reason for that is that Sköldberg’s
formula allows to compute a differential in the free resolution independently of
the rest of the free resolution. Furthermore the theorem about the induced free
resolution gives us a formula to compute the ranks of these resolution. These
methods are also applicable for an arbitrary resolving decomposition due to the
fact that we proved Theorem 10 and the form of the differential (9).

1 For notational simplicity, we will identify sets X of variables with sets of the corre-
sponding indices and thus simply write i ∈ X instead of xi ∈ X.
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