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Abstract. We propose a new point of view of the Spencer cohomology appearing in the
formal theory of differential equations based on a dual approach via comodules. It allows us
to relate the Spencer cohomology with standard constructions in homological algebra and, in
particular, to express it as a Cotor. We discuss concrete methods for its construction based
on homological perturbation theory and resolutions.

1. Introduction

This paper ties three fairly different areas of research, viz. differential equations, (co)homo-
logical algebra, and symbolic computation, together. While many people working in these
individual areas will find the sections concerning their particular area quite familiar (and per-
haps a bit too elementary), we expect that they will find the other sections much less familiar
(and perhaps a bit too dense). We have made an attempt to provide a basic background
for all areas upon which we touch and hope that this will encourage more multidisciplinary
research in these areas.

The definition of involutivity for a system of partial differential equations has had a very
long and convoluted history. First works on overdetermined systems go back at least to
Clebsch and Jacobi. In the middle of the 19th century the analysis of homogeneous linear
first order systems in one unknown function was a very popular subject (nowadays this has
been superseded by the geometric view of the Frobenius theorem). Most older textbooks like
[13, 26] contain a chapter on this theory (with references to the original works).

The late 19th and early 20th century saw a flurry of activities in this field extending the
theory to more and more general systems. One line of research lead to the Janet-Riquier
theory [46, 70, 86, 87] with its central notion of a passive system. We will later meet some
ideas from this theory in the combinatorial approach to involution. Another line of research
culminated in the Cartan-Kähler theory of exterior differential systems [11, 14, 50] (a dual
version based on vector fields instead of differential forms was developed by Vessiot [88]).
In this approach one usually speaks of involutive systems, although Weber attributed this
terminology to Lie in his encyclopedia article [89].

Roughly between 1950 and 1970 a more sophisticated point of view emerged combining
many elements of the old approaches with new and more abstract techniques. Ehresmann’s
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theory of jet spaces [20, 21, 22] allows for an intrinsic geometric treatment of differential
equations without resorting to differential forms. Formal integrability, i. e. the existence of
formal power series solutions, may then be interpreted as a straightforward geometric concept.

Somewhat surprisingly, it has turned out that for many purposes such a purely geometric
approach does not suffice. This begins with the simple fact that the geometric definition of
formal integrability is not effectively verifiable, as it consists of infinitely many conditions.
Thus geometry had to be complemented by some algebraic (mainly homological) tools, in
particular with Spencer cohomology which is one of the topics of this article. In the Cartan-
Kähler theory the famous Cartan test for involution requires checking a relation between
certain integers (encoding dimensions) as will be explained in more detail below. Serre,
Guillemin and Sternberg [39] showed that this test represents in fact a homological condition,
namely the vanishing of certain Tor groups, and is related to a complex introduced earlier
by Spencer [82] (a dual approach to an algebraic definition of involution was already earlier
given by Matsushima [64]). Later, the theory was thoroughly studied by Spencer [83], Quillen
[66] and Goldschmidt [31, 32].

The arising theory is often called the formal theory of differential equations. Textbook
presentations may be found e. g. in [11, 17, 52, 65]. One interpretation of the name is that
it concerns itself with formal power series solutions for arbitrary systems, i. e. also for under-
and overdetermined ones, and indeed we will use this approach for the brief introduction to
the theory given in Sect. 3. However, restricting the formal theory to this one aspect would
give a much too narrow picture.

It is probably fair to say that the full meaning and importance of the ideas surrounding
involution are still not properly understood. While many facets have emerged, the complete
picture has remained elusive. Recently, it has been shown that in an algebraic context it is
related to the Castelnuovo-Mumford regularity [79] and that in numerical analysis obstruction
to involution may become integrability conditions in a semi-discretization [80].

In more detail, we associate with every system of differential equations of order q in m un-
known functions of n variables a homogeneous degree q subspace Nq ⊆ Cm

q where C is the set
of all polynomials in x1, . . . , xn with coefficients in k. The space Nq is called the geometric
symbol1 of the differential system (see Sects. 3.3 and 3.4).

We set N (s)
q = {f ∈ Nq | ∂f

∂xi
= 0 for i = 1, . . . , s} where f = (f1, . . . , fm) and the

derivatives are taken coordinate-wise. One further defines the first prolongation of the symbol
Nq+1 = {f ∈ Cm

q+1 | ∂f
∂xi

∈ Nq for i = 1, . . . , n} consisting of all integrals of degree q + 1 of
elements in Nq. It is well-known [11, 39] that

(1.1) dimNq+1 ≤ dimNq + dimN (1)
q + · · ·+ dimN (n−1)

q .

The symbol Nq is said to be involutive, if coordinates x1, . . . , xn exist such that (1.1) is
actually an equality.

The theory proceeds by recursively defining higher prolongations Nq+k+1 = {f ∈ Cm
q+k+1 |

∂f
∂xi

∈ Nq+k, for i = 1, . . . , n}. The vector space N =
⋃∞

k=1Nq+k is called the infinite pro-
longation; we will see in Sect. 3.4 that it has the structure of a polynomial comodule. Since
each Nq+k is again a symbol (of a prolonged differential system), what we have said above
about the involutivity of N also applies to each Nq+k and a classic theorem gives that Nq+r

becomes involutive for some r ≥ 0 (see the remark after Theorem 5.2).

1In [11, p. 116] the space Nq is called a tableau and its annihilator N⊥
q a symbol.
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It was noted in [39] that N is dual to a graded A-module M where A = k[x1, . . . , xn] is
the polynomial algebra over k. It was also noted in [39] that the involutivity condition above
is equivalent to the maps

(1.2) Mq+r+1/(x1, . . . , xk)Mq+r
- Mq+r+2/(x1, . . . , xk)Mq+r+1

given by multiplication by xk+1 being one-one for all k = 0, . . . , n − 1 and all r ≥ 0. It is,
of course, now common to say that if the above condition holds, the sequence x1, . . . , xn is
quasiregular for M . In an appendix to [39], Serre showed that the quasiregular condition
for a module M is generically equivalent to the vanishing of TorA(M,k) (see Sect. 5.1) in
positive degrees. The authors observe that the Koszul complex for computing Tor is dual to
the Spencer complex referred to above. Thus, by duality, Serre’s result can be translated to
a statement about the vanishing of Spencer cohomology.

Various authors have discussed the duality between the Spencer complex and the Koszul
complex [11, 31, 63, 72]. First we will show that this duality is not as ad hoc as it seems
to be from the literature. In fact, by introducing coalgebras and comodules, we show that
the duality is a special case of one that exists between comodules over a coalgebra C and
modules over the dual algebra A = C∗ (Sect. 2.12). This leads to the identification of Spencer
cohomology as a Cotor (Sect. 6.7).

Thus, the knowledge of the vanishing of a certain Tor (or Cotor) gives some computational
insight in the completion of general systems of partial differential equations and is also useful
for the concrete determination of formal power series solutions. The actual values of the ranks
of the Tor groups provide us with a coordinate independent criterion for involutive symbols.
Beyond the order at which the system becomes involutive, the unique determination of the
coefficients of power series solutions is straightforward.

For this and other reasons, we are interested in effectively computing TorA(M,k) for a
module M over the polynomial algebra A. Fortunately, there are many ways to do this
explicitly. Perhaps the most familiar to those readers who are acquainted with computer
algebra is the program Macaulay 2 [25]. That program uses what we call Schreyer methods
(Sect. 4.1). We will look at some novel methods for deriving other classes of “small” resolutions
that can be used for computing Tor as well.

In this article, we restrict to the case where the module M is generated by elements of
homogeneous degree q. But we note that there are generalizations to cases where M contains
elements of mixed degrees but still homogeneous. These generalizations are also useful in the
context of formal theory, as they appear in more efficient versions of the basic completion
algorithm [40]. However, as this is a very technical subject, we will study it elsewhere.

We finally introduce an interesting algorithm for computing minimal resolutions of mono-
mial modules (Sect. 7) over the polynomial ring, and give examples in Sect. 8.

2. (Co)Algebra

Throughout this paper, k will denote a field of characteristic zero.
It is assumed that the reader is familiar with basic notions such as the tensor product

of vector spaces, algebras over a field, modules over an algebra, etc. When tensor products
are taken over k, we will omit the subscript in ⊗k. We will quickly review coalgebras and
comodules. More details can be found in [59].

2.1. Coalgebras and Comodules. Recall that a coalgebra over k is a vector space equipped
with a linear map C

∆- C ⊗ C (called the comultiplication) and ε : C - k (called the
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counit) such that the coassociativity and counit axioms hold (see below). It has become
customary to write the result of comultiplication in the following form which is called the
Heyneman-Sweedler (H-S) notation: ∆(c) = c(1) ⊗ c(2) (summation over the indices which
run in parallel is assumed. See [59, Sec. A.3.2]).

Using H-S notation, coassociativity is expressed as

c(1)(1) ⊗ c(1)(2) ⊗ c(2) = c(1) ⊗ c(2)(1) ⊗ c(2)(2)

and the counit axioms are
c(1)ε(c(2)) = c = ε(c(1))c(2)

A vector space N over k is said to be a (right) comodule over the coalgebra C if there is a
k-linear map ρ : M - N ⊗ C such that

(1M ⊗ ε)ρ = 1M

and
(ρ⊗ 1C)ρ = (1M ⊗∆)ρ.

We use an extended H-S notation ([59]) for the action of the structure map ρ in a right
comodule:

ρ(m) = m〈1〉 ⊗m(2) ∈ N ⊗ C.

Similar remarks apply to left comodules.

2.1.1. The Dual Algebra. Recall that the algebra dual to C is given by A = C∗ where C∗ is
the linear dual, C∗ = homk(C,k) and the product is given by

(2.1) 〈αβ, c〉 = α(c(1))β(c(2))

for α, β ∈ A and c ∈ C and where 〈·, ·〉 denotes the bilinear pairing 〈γ, c〉 = γ(c) [59].

2.2. Graded Modules. Let A be an algebra over k. A left-module A-module M is said
to be a (non-negatively) graded module over A if M = ⊕∞

n=0Mn as an Abelian group. The
subgroup Mn is called the set of elements of homogeneous degree n. If x ∈ Mn, we write
|x| = n for its degree. It is convenient, at times, to think of a graded module as the sequence
(M0,M1, . . . ,Mn, . . . ) and work in M degree-wise.

If M and N are two graded modules over A, a module map f : M - N is said to be
graded of degree r if f |Mn : Mn

- Nn+r for some fixed integer r. If r = 0, we simply say
that f is a (graded) module map.

A submodule N of a graded module M is said to be a graded submodule if N is a graded
module and for all n ≥ 0, Nn ⊆Mn. It is clear that the kernel and image of a graded module
map are both graded modules.

A graded module is said to be of finite type if for all n, Mn is finitely generated over A.

2.2.1. Graded Dual. If M is a graded module over k, its graded dual is the module M∗ where
M∗

n = homk(Mn,k). Note that if M is of finite type, then so is M∗.

2.2.2. Sign Convention. We adopt the usual sign convention which states that if one element
x “passes by” another y, the result must be multiplied by (−1)|x||y|. Thus, for example, if f
and g are two maps, their tensor product is given by

(f ⊗ g)(x⊗ y) = (−1)|g||x|f(x)⊗ g(y).
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2.3. Graded Algebras. A graded algebra A over k is a graded module over k such that the
multiplication m : A⊗k A - A satisfies

Ai ⊗Aj
m- Ai+j .

When we talk about a graded module over a graded algebra, it is assumed that the structure
map µ : A⊗M - M satisfies µ|Ai⊗Mj : Ai ⊗Mj

- Mi+j .

2.4. Graded Coalgebras. A graded coalgebra C over k is a graded module over k such
that the comultiplication ∆ : C - C ⊗ C satisfies

Ci+j
∆- Ci ⊗ Cj .

When we talk about a graded comodule over a graded coalgebra, it is assumed that the
structure map ρ : M - M ⊗ C satisfies ρ|Mi : Mi

-
∑

r+s=iMr ⊗ Cs.

2.5. Bialgebras. If a given algebra B is also a coalgebra, we say that it is a bialgebra if
∆ : B - B ⊗ B is a homomorphism of algebras where B ⊗ B has the tensor product
structure (a⊗ b)(a′ ⊗ b′) = (−1)|a

′||b|aa′ ⊗ bb′. See [59, Sect. 1.5] for more details.

2.6. Chain/Cochain Complexes. A chain complex over a k-algebra A is a module X
equipped with a module map d : X - X of degree −1 such that d2 = 0. We call the map
dn the nth differential. The nth homology module of X, denoted by Hn(X) is, by definition,
the quotient module ker(dn)/im (dn+1). Elements of ker(d) are called cycles and elements in
im (d) are called boundries.

A cochain complex over A is a module Y equipped with a module map δ : Y - Y of
degree +1 such that δ2 = 0. The nth cohomology module of Y , denoted by Hn(Y ) is, by
definition, the quotient module ker(dn)/im (dn−1). Elements of ker(d) are called cocycles and
elements in im (d) are called coboundries. Note that if X is a chain complex, then the linear
dual X∗ = Hom A(X,A) is a cochain complex in the obvious way.

2.6.1. Chain Maps and Homotopies. A chain map f : X - Y is a module map that makes
the diagram

Xn
fn - Yn

Xn−1

dn
? fn−1- Yn−1

dn
?

commute. Its easy to see that this condition causes any chain map to induce an A-linear map
on homology H∗(f) : H∗(X) - H∗(Y ) in the obvious way. Note that the identity map on
X is a chain map.

Two chain maps X
f, g- Y are said to be chain homotopic is there is a degree one map

X
φ- Y such that

(2.2) dφ+ φd = f − g.
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2.7. Differential Graded (Co)Algebras. A differential graded algebra over k is a graded
algebra which is also a chain complex. It is furthermore assumed that the differential d is a
derivation, i.e.

d(ab) = d(a)b+ (−1)|a|ad(b).
A differential graded coalgebra over k is a graded coalgebra which is also a chain complex
and for which the differential ∂ is a coderivation. The notion of coderivation is completely
dual to that of derivation, i.e. the differential ∂ must satisfy

∆∂ = (∂ ⊗ 1 + 1⊗ ∂)∆.

The reader is invited to work this out using H-S notation from Sect. 2.1.

2.8. Resolutions. Let M be a (left) A-module. A free resolution [15, 62] of M over A is a
sequence of free A-modules Xi and A-linear maps

· · · - Xn
dn- Xn−1

dn−1- · · · d1- X0
ε- M - 0

such that sequence is exact, i.e. ker(dn−1) = im (dn) for all n ≥ 1 and ker(ε) = im (d0). We
always associate the chain complex X given by

· · · - Xn
dn- Xn−1

dn−1- · · · d1- X0
- 0

to a given free resolution. Note that Hn(X) = 0 for n ≥ 1 and H0(X) = X0/im (d0) ∼=
X0/ ker(ε) ∼= im (ε) = M .

If we give M the trivial differential, we extend ε to all of X by setting it to be zero on
elements of degree greater than zero and we obtain a chain map

(2.3) X
ε- M - 0

such that ε is an isomorphism in homology.
A contracting homotopy for X is a degree one map ψ linear over k (but not generally over

A) such that dψ+ψd = 1, i.e. a chain homotopy between the identity map and the zero map.
Note that more generally, one talks about projective resolutions, i.e. resolutions in which

each Xi is projective over A. An A-module is projective if and only if it is a direct summand
of a free A-module. All the resolutions in this paper however will be free. In fact, we will
only consider resolutions over the polynomial algebra and it is well-known [67, 84] that any
projective module is free in that case.

Similar remarks apply to right modules.

2.9. The Polynomial Bialgebra. Let A = k[x1, . . . , xn] be the polynomial ring in n-
variables over k. Note that A is naturally graded by setting Ai equal to the subspace of
polynomials of homogeneous degree i for i = 0, 1, . . . . Note also that it is of finite type.
Define a map A

ε- k where ε(p) = p(0) (i.e. the constant term of p).
We will write monomials as xα where

xα = xα1
1 . . . xαn

n

and the components of α = (α1, . . . , αn) are non negative integers.
The following relation on monomials

(2.4) xα � xβ iff αi ≤ βi for all i = 1, . . . , n.

will be used later.
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Remark 2.1. A total order on monomials that satisfies u < v =⇒ mu < mv and 1 < m,
for all monomials m,u, v 6= 1 in A, is called a monomial order on A.

The algebra A also possesses a coproduct given as follows.

∆(xi) = 1⊗ xi + xi ⊗ 1(2.5)
∆(fg) = ∆(f)∆(g), for f, g ∈ A.(2.6)

The counit is given by ε above.
It follows by an easy computation that

(2.7) ∆(xα) =
α1,...,αn∑

r1,...,rn=0

(
α1

r1

)
· · ·

(
αn

rn

)
xr ⊗ xα−r

where r = (r1, . . . , rn) and α− r = (α1 − r1, . . . , αn − rn).
Note that combinatorially, the above formula for the coproduct is completely determined by

the binomial expansion of (x + y)α. This means that one can view the coproduct in the follow-
ing way. For any polynomial f(x) consider f(x + y) as an element of k[x1, . . . , xn, y1, . . . , yn] =
k[x1, . . . , xn]⊗ k[y1, . . . , yn]. If we expand f(x + y) and replace yi by xi for i = 1, . . . , n, we
get exactly the formula determined by (2.7) above. Thus we have the following proposition.

Proposition 2.2. The coproduct in the polynomial bialgebra A may be written as

(2.8) ∆(f) =
∑ 1

i1! · · · in!
∂i1+···+inf

∂xi1
1 · · · ∂x

in
n

⊗ xi1
1 · · ·x

in
n .

Proof. For any polynomial f , the Taylor series expansion of f(x + y) is given exactly by the
formula above. �

2.9.1. The Dual Bialgebra. The following is well-known (see e.g. [16]), but we include it for
completeness.

Note that k[x1, ..., xn] ∼= ⊗n
k[x]. Consider the bialgebra dual to k[x]. Letting γi(x) be the

linear dual to xi, we have
〈∆γi(x), xr ⊗ xs〉 = δr+s

i

so that

(2.9) ∆
(
γi(x)

)
=

∑
r+s=i

γr(x)⊗ γs(x).

Also,
〈γi(x)γj(x), xr〉 = 〈γi(x)⊗ γj(x),∆(xr)〉

But recall from above that

∆(xr) =
∑

n+m=r

(
r

n

)
xn ⊗ xn−r.

Thus,

(2.10) γi(x)γj(x) =
(
i+ j

i

)
γi+j(x).

The algebra k[x]∗ is called the divided power algebra and is usually denoted by Γ[x]. Now
recall that k has characteristic zero and so if we write y = γ1(x), we have

(2.11) γi(x) =
yi

i!
.
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This follows immediately from γ1(x)i = i!γi(x). Thus setting zi = yi

i! we have zizj = zi+j and
this is just the polynomial algebra. The analogous results hold for the tensor product ⊗n

k[x]
and therefore for A = k[x1, . . . , xn].

It is left to the interested reader to see that the graded dual A∗ also has a coproduct dual
to the product in A and that A∗ ∼= A as bialgebras.

2.10. Coordinate Free Versions of the Polynomial (Co)Algebra. Let V be a finite-
dimensional vector space over k. The tensor algebra F(V ) is given by

F(V ) =
∞∑
i=0

⊗iV

where ⊗0V = k and ⊗1V = V . The product is given by

(v1 ⊗ · · · ⊗ vk)(w1 ⊗ · · · ⊗ wl) = v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wl.

If “coordinates” are chosen, i.e. a basis {v1, . . . , vn} is chosen for V , one identifies this algebra
as the algebra k < v1, . . . , vn > of non-commuting polynomials in the variables {v1, . . . , vn}.
It is the free non-commutative algebra generated by V . We assume that the elements of V
are all of degree zero (or of even degree). Let I be the ideal of F(V ) generated by the set
{xy − yx | x, y ∈ V }. The symmetric algebra on V is the quotient algebra

S(V ) = F(V )/I.

If one chooses coordinates as above, it is clear that S(V ) is isomorphic to the polynomial
algebra k[v1, . . . , vn].

The tensor coalgebra on V is given by

C(V ) =
∞∑
i=0

⊗iV

with coproduct given by

∆(v1 ⊗ · · · ⊗ vk) =
k∑

i=0

(v1 ⊗ · · · ⊗ vi)⊗ (vi+1 ⊗ · · · ⊗ vk)

where the terms for i = 0 and i = k are 1⊗ (v1⊗ · · ·⊗ vk) and (v1⊗ · · ·⊗ vk)⊗ 1 respectively.
In fact, C(V ) is the cofree coalgebra on V (also see [36] for a more general construction).

Note that the symmetric group Sn acts on C(V )n = ⊗nV in the obvious way, i.e. by
permuting the tensorands. It is clear that the subspace S(V ) of symmetric tensors (i.e. those
left invariant under the action of the symmetric group) are invariant under the coproduct ∆.
Thus, S(V ) ⊆ C(V ) is a sub-coalgebra. If coordinates are chosen, it is not difficult to see that
S(V ) is isomorphic to the polynomial coalgebra k[v1, . . . , vn]. The interested reader should
see [7, 8] for more details.

2.11. The Exterior Bialgebra. The exterior algebra E = E[u1, . . . , un] over k is generated
as an algebra by {u1, . . . , un} and is subject to the relations uiuj = −ujui. As such, it
has a basis given by {uI | I = (i1, . . . , ik), 1 ≤ i1 < · · · < ik ≤ n, k = 0, . . . , n} where if
I = (i1, . . . , ik),then uI = ui1 . . . uik . Generally, we will eliminate the tensor sign in dealing
with elements of E. Note that E is a graded algebra over k where |uI | = |I| and |I| denotes
the cardinality of I.
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The coproduct in E is determined by

∆(ui) = ui ⊗ 1 + 1⊗ ui(2.12)
∆(uv) = ∆(u)∆(v), for u, v ∈ E.(2.13)

Thus, for example, note that

∆(uiuj) = (ui ⊗ 1 + 1⊗ ui)(uj ⊗ 1 + 1⊗ uj)
= 1⊗ uiuj − uj ⊗ ui + ui ⊗ uj + uiuj ⊗ 1

and so on.
The counit is given by ε(r) = r when r is a scalar, while ε(uI) = 0 for |I| > 0.

2.11.1. The Dual Bialgebra. Again, it is well-known that E = E[u1, . . . , un] is self-dual, i.e.
the dual E∗ is a bialgebra and E∗ ∼= E as bialgebras.

2.12. More Duality. We need to recall some basic results concerning a correspondence
between subcomodules and submodules. All of the background material can be found in [59,
§A.4.2, pp. 273]. If V is a vector space over k and W ⊆ V is a subspace, the inclusion map

W
ι- V gives rise to the onto dual map V ∗ ι∗- W ∗. The kernel of this map is usually

denoted by W⊥. Thus,

(2.14) W⊥ = {ν ∈ V ∗ | ν(w) = 0 for all w ∈W} and V ∗/W⊥ ∼= W ∗.

If U ⊆ V ∗ is a subspace, we similarly define

(2.15) U⊥ = {v ∈ V | µ(v) = 0 for all µ ∈ U}.
A subspace Z of either V or V ∗ is said to be closed, if and only if Z = Z⊥⊥. By [59, §A.4],
there is a one-one inclusion reversing correspondance W - W⊥ between subspaces of V
and closed subspaces of V ∗.

Now suppose that C is a coalgebra and N
ρ- N ⊗C is a comodule. Recall that A = C∗

is an algebra (Sect. 2.1.1). The dual vector space N∗ is a (right) module over C∗ with action
determined by

(2.16) 〈να, c〉 = 〈ν ⊗ α, ρ(c)〉 = 〈νc〈1〉〉〈α, c(2)〉.
For the Proposition that follows, we need the following.

Lemma 2.3. If M is locally finite over k, any subspace (including itself) is closed.

Proof. This follows by applying Proposition A.4.2 in [59] degree-wise. �

Recall that if N is a comodule over C and M ⊆ N is a subspace, M is a subcomodule if
and only if ρ(M) ⊆M ⊗ C. We have

Proposition 2.4. Let C be a coalgebra and N a right comodule over C which is locally finite
over k. If M ⊆ N is a subspace, then M⊥ ⊆ N∗ is a submodule, if and only if M is a
subcomodule.

Proof. Note that M is a subcomodule, if and only if for all m ∈ M , m〈1〉 ∈ M . Thus if
µ ∈M⊥ and α ∈ C∗, we have that for all m ∈M ,

〈µα,m〉 = 〈µ,m〈1〉〉〈α,m(2)〉 = 0

and so µα ∈ M⊥. for the converse, suppose that M⊥ is a submodule. Let m ∈ M , we need
to show that m〈1〉 ∈ N . We know that for all α ∈ C∗ and all ν ∈M⊥, 〈ν,m〈1〉〉〈α,m(2)〉 = 0.
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It follows that for all ν ∈ M⊥, 〈ν,m〈1〉〉 = 0 (take α = (m〈1〉)∗, the element dual to m〈1〉 in
the last equation). Thus, m〈1〉 ∈M⊥⊥ = M since M is closed by the last lemma. �

This is analogous to [59, Proposition 1.2.4].

2.13. Polynomial Comodules and Modules. Let C = k[x1, ..., xn] be the polynomial bial-
gebra (2.9) with the coproduct given by Proposition 2.2. Note that N ⊆ C is a subcomodule
if and only if ∆(N) ⊆ N ⊗ C, if and only if for all p ∈ N ,

(2.17)
∂kp

∂xi1
1 · · · ∂x

in
n

∈ N

for all k ∈ N and all ij ∈ N such that i1 + · · ·+ in = k.
In general, if D is a coalgebra, Dn is a comodule over D with the following structure map

(2.18) ρ(d1, . . . , dn) = ((d1)(1), . . . , (dn)(1))⊗ ((d1)(2) + · · ·+ (dn)(2)).

We will call any comodule N over D which is isomorphic to Dn a free comodule over D.
Note that for the polynomial coalgebra C, N ⊆ Cn is a subcomodule, if and only if (2.17)

holds in each coordinate.

Remark 2.5. A module over an algebra A is finitely generated if and only if it is a quotient
of An for some n ∈ N. It is natural to say that a comodule M over a coalgebra D is finitely
cogenerated if it is a submodule of Dn where Dn has the above comodule structure. In fact,
such a definition was given in [68] where more information can be found.

Using Proposition 2.4 we have the following.

Proposition 2.6. Let C be a coalgebra and N ⊆ Cm a subspace that is locally finite. Then
N is a subcomodule, if and only if N⊥ ⊆ Am is a submodule where A is the graded dual
algebra C∗. Furthermore, we have an isomorphism Am/N⊥ ∼= N∗.

Proof. The first assertion is a special case of Proposition 2.4. The second part follows by
applying the second equation of (2.14) coordinate-wise. �

2.14. Cogeneration. Let Y ⊂ C be a set of homogeneous polynomials of degree r. We are
interested in the subcomodule N ⊂ C cogenerated by Y . Let Nr be the k-linear span of Y .
For the components of lower and higher degree, respectively, set

(2.19) Nr−j =
{ ∂jp

∂xi1
1 · · · ∂x

in
n

| p ∈ Nr, i1 + · · ·+ in = j
}
,

and

(2.20) Nr+j =
{
p ∈ C | ∂jp

∂xi1
1 · · · ∂x

in
n

∈ Nr, ∀ i1 + · · ·+ in = j
}

(working coordinate-wise in Cm). Clearly, N =
∑∞

i=0Ni is the comodule cogenerated by Y .

Remark 2.7. Since the notation (m1, . . . ,mk) is in wide use for the submodule generated
by a subset {m1, . . . ,mk} of a module M , we will use the notation

N = )y1, . . . , yk(

for the comodule cogenerated by Y = {y1, . . . , yk} ⊆ Cm.
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3. Differential Equations

We will briefly outline some of the basic ideas of the formal theory of differential equations.
For more details and proofs we must refer to the literature (see e. g. [17, 18, 52, 65, 77] and
references therein); our exposition follows mainly [77]. It should be noted that a number
of alternative approaches to general systems of differential equations exist. This includes
in particular the more algebraic Janet-Riquier theory (some elements of which have been
incorporated into the formal theory) [46, 70], differential ideal theory [51, 71] for equations
with at most polynomial nonlinearities, or the theory of exterior differential systems [11].
The latter one goes mainly back to Cartan and Kähler and is based on representing partial
differential equations with differential forms. While it is equivalent to the theory we will
describe, it is highly non-trivial to exhibit this equivalence.

For notational simplicity we will mainly use a global language in the sequel, although it
must be stressed that most constructions are purely local, in fact often even pointwise.

3.1. Formal Geometry. Geometric approaches to differential equations are based on jet
bundles [73]. The independent and dependent variables are modeled by a fibered manifold
π : E → B (this means that π is a surjective submersion from the total space E onto the base
space B). The simplest example of such a fibered manifold is a trivial bundle where E = B×U
and π is simply the projection on the first factor. In fact, locally, in the neighborhood of a
point e ∈ E any fibered manifold looks like a trivial bundle. Readers unfamiliar with manifolds
may simply think of the example B = R

n and U = R
m.

A section is a map σ : B → E such that σ ◦ π = 1B. This generalizes the notion of (the
graph of) a function, as in a trivial bundle a section is always of the form σ(b) =

(
b, s(b)

)
with

a function s : B → U . A point in the qth order jet bundle JqE corresponds to an equivalence
class of smooth sections of E which have at point b ∈ B a contact of order q, i. e. in local
coordinates, their Taylor expansions at b coincide up to order q.

If (x1, . . . , xn) are local coordinates on B and (u1, . . . , um) are fiber coordinates on E , then
we can extend them to coordinates on JqE by the jet variables pα,µ where the multi index
µ = [µ1, . . . , µn] has a length |µ| = µ1 + · · ·+ µn ≤ q. For notational simplicity, we will often
identify uα with pα,[0,...,0]. Locally, a section σ : B → E may be written as σ(x) =

(
x, s(x)

)
.

Such a section induces a prolonged section jqσ(x) =
(
x, s(x), ∂xs(x)

)
of the fibered manifold

πq : JqE → B. Here ∂xs represents all derivatives of the function s up to order q, i. e. the
variable pα,µ gets assigned the value ∂|µ|sα(x)/∂xµ. This clearly demonstrates that locally we
may interpret the coordinates of a point of JqE as the coefficients of truncated Taylor series
of functions s(x) and thus the jet variables as derivatives of such functions.

The jet bundles form a natural hierarchy with projections πq
r : JrE → JqE for r < q.

Of particular importance are the projections πq
q−1. Let us denote by V E ⊂ TE the vertical

bundle, i. e. the kernel of the map Tπ. It is not difficult to prove the following proposition, for
example by studying the transformation law of the jet coordinates under a change of variables
in E (see below).

Proposition 3.1. The jet bundle JqE of order q is an affine bundle over the jet bundle Jq−1E
of order q − 1 modeled on the vector bundle Sq(T ∗B)⊗ V E (see Sect. 2.10 for notation).

This observation is the key for the introduction of algebraic techniques into the geometric
theory (and sometimes even used for the intrinsic definition of jet bundles). In local coordi-
nates, this affinity has the following meaning. Assume that we perform changes of coordinates
x → y and u → v. They induce via the chain rule changes of the jet coordinates uα,µ → vα,µ.
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For the coordinates of order q, these are of the form vα,µ =
∑m

β=1

∑
|ν|=q Aβ,νuβ,ν +B where

Aβ,ν and B are (polynomial) functions of the jet coordinates uγ,λ with |λ| < q.

Remark 3.2. In the literature one usually considers instead of Sq(T ∗B)⊗V E the isomorphic
vector bundle Sq(T ∗B) ⊗ V E (where Sq denotes the q-fold symmetric product). However,
in view of Prop. 2.2 our choice appears much more natural and more consistent with the
interpretation of the jet variables as derivatives of functions. At this point here, there is
no real difference between using Sq(T ∗B) ⊗ V E or Sq(T ∗B) ⊗ V E , as only the vector space
structure matters. This will change in Sect. 3.4 where the natural comodule structure of
S(T ∗B)⊗ V E is needed.

A differential equation of order q is now defined as a fibered submanifold Rq ⊆ JqE . Note
that this definition does not distinguish between a scalar equation and a system, as nothing
is said about the codimension of Rq. A solution is a section σ : B → E such that the image
of the prolonged section jqσ : B → JqE is a subset of Rq. Locally, such a submanifold is
described by some equations Φτ (x,u,p) = 0 with τ = 1, . . . , t and a section is a solution, if
Φτ

(
x, s(x), ∂xs(x)

)
≡ 0. Thus we recover the familiar form of a system of partial differential

equations and its solutions.
Two natural operations with differential equations are projection and prolongation. The

first one is easy to describe intrinsically but difficult to perform effectively. For the second
one the local description is much easier than the intrinsic one. The projection (to order
r < q) of the differential equation Rq is simply defined as R(q−r)

r = πq
r(Rq) ⊆ JrE . In local

coordinates, the projection requires the elimination (by purely algebraic operations) of the
jet variables of order greater than r in as many local equations Φτ = 0 as possible. Those
equations that do not depend on any of these variables “survive” the projection and define the
submanifold R(q−r)

r . Obviously, for nonlinear equations the elimination might be impossible
to do effectively.

As both Rq and JqE are again fibered manifolds over B, we may form jet bundle over them.
Note that Jr(JqE) is not the same as Jq+rE ; in fact the latter one may be identified with a
submanifold of the former one. Now we may define the (r-fold) prolongation of Rq as the
differential equation Rq+r = Jr(Rq) ∩ Jq+rE ⊆ Jq+rE where the intersection is understood
to take place in Jr(JqE). Thus we obtain an equation of order q + r. Note that this simple
formula is only obtained because we make a number of implicit identifications. A rigorous
expression would require a number of inclusion maps.

In local coordinates, prolongation is performed with the help of the formal derivative. Let
Φ : JqE → R be a smooth function. Then its formal derivative with respect to xk, denoted
by DkΦ, is a real-valued function on Jq+1E locally defined by

(3.1) DkΦ =
∂Φ
∂xk

+
m∑

α=1

∑
0≤|µ|≤q

∂Φ
∂uα,µ

uα,µ+1k
.

Here 1k denotes the multi index where all entries are zero except the kth which is one and the
addition µ+ 1k is defined componentwise (thus effectively, the kth entry of µ is increased by
one). Note that the formal derivative DkΦ is always a quasi-linear function, i. e. it is linear
in the derivatives of order q + 1. The prolonged equation Rq+1 is now locally described by
all the equations Φτ = 0 describing Rq and in addition all the formal derivatives DkΦτ = 0.
More generally, we need for the local description of the r-fold prolongation Rq+r all equations
DνΦτ = 0 where ν runs over all multi indices with 0 ≤ |ν| ≤ r.
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3.2. Formal Integrability. One could be tempted to think that prolongation and projection
are a kind of inverse operations, i. e. if we first prolong and then project back that we obtain
again the original differential equation. However, this is not true. In general, we only find
that R(1)

q = πq+1
q (Rq+1) ⊆ Rq. If it is a proper submanifold, this signals the appearance of

integrability conditions in the classical language. In fact, in many cases the combination of
a prolongation with a projection corresponds to taking cross-derivatives (as the differential
analogue of S-polynomials in the theory of Gröbner bases). Differential equations where at
no order of prolongation integrability conditions appear are particular important and are
therefore given a special name.

Definition 3.3. The differential equation Rq ⊆ JqE is called formally integrable, if the
equality R(1)

q+r = πq+r+1
q+r (Rq+r+1) = Rq+r holds for all integers r ≥ 0.

In order to explain this terminology, we consider the order by order construction of formal
power series solutions for an equation Rq. For this purpose, we expand the solution around
some point b ∈ B with local coordinates x̄ into a formal power series, i. e. we make the ansatz

uα(x) =
∑
|µ|≥0

cα,µ

µ!
(x− x̄)µ .

Entering this series ansatz into a local representation Φτ (x,u,p) = 0 with 1 ≤ τ ≤ t of our
differential equation Rq and evaluating at the chosen point b yields for the coefficients cα,µ

the algebraic equations Φτ (x̄, c) = 0 where the vector c represents all coefficients cα,µ with
0 ≤ |µ| ≤ q. Thus we only have to substitute xi by x̄i and pα,µ by cα,µ. In general, these are
nonlinear equations and the solution space may have a very complicated structure consisting
of several components with differing dimensions etc.

If we apply the same procedure to the prolonged equationRq+1, we obtain further algebraic
equations for the coefficients cα,µ, namely DkΦτ (x̄, c) = 0 where now the vector c represents
all coefficients cα,µ with 0 ≤ |µ| ≤ q + 1. Note that due to the quasi-linearity of the formal
derivative (3.1), we may consider these additional equations as an inhomogeneous linear
system for those coefficients cα,µ with |µ| = q + 1 where both the matrix and the right hand
side depend on the coefficients of lower order.

We may iterate this construction: entering our ansatz into Rq+r and evaluating at b yields
the additional algebraic equations DνΦτ (x̄, c) = 0 where ν runs over all multi indices of
length r. These equations contain all coefficients cα,µ with 0 ≤ |µ| ≤ q + r and may be
interpreted as an inhomogeneous linear system for the coefficients cα,µ with |µ| = q + r
depending parametrically on the coefficients of lower order.

Note that this construction only makes sense for a formally integrable equation. Obviously,
we can do the computation only up to some finite order q̂ ≥ q. If the differential equation is
not formally integrable, we cannot be sure that at some higher order integrability conditions
of order less than or equal to q̂ are hidden. These conditions would impose further restrictions
on the coefficients cα,µ with |µ| ≤ q̂ which we have not taken into account.

Furthermore, the validity of the interpretation of the equations obtained from the prolon-
gation Rq+r as a linear system for the coefficients cα,µ with |µ| = q+ r relies on the following
observation which only holds for a formally integrable differential equation. In general, the
matrix of this system does not have full rank. Thus it may be possible to generate zero rows
by elementary row operations. The corresponding right hand side is guaranteed to vanish
only for a formally integrable equation. Otherwise we would obtain an additional equation
for the lower order coefficients. Indeed, this is just the effect of an integrability condition!
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We may summarize these considerations in form of a local existence theorem for formal
power series solutions which also explains the terminology “formal integrability”.

Proposition 3.4. Let the differential equation Rq be formally integrable. Then it possesses
formal power series solutions.

It should be mentioned that a serious problem with the concept of formal integrability is
an effective criterion for verifying it. Obviously, the definition above contains infinitely many
conditions. This is one of the reason why pure geometry does not suffice for the analysis of
overdetermined systems; it must be complemented by algebraic, mainly homological, tools.
In the sequel, we will not bother with deriving a criterion for formal integrability but instead
introduce at once the stronger notion of an involutive system.

3.3. The Geometric Symbol. As πq
q−1 : JqE → Jq−1E is an affine bundle modeled on

the vector bundle Sq(T ∗B) ⊗ V E , we may consider for any differential equation Rq ⊆ JqE
the vector bundle Nq = V (q)Rq ⊆ V (q)JqE (where V (q)JqE denotes the vertical bundle with
respect to the projection πq

q−1) as a subbundle of Sq(T ∗B)⊗ V E . It is called the (geometric)
symbol of the differential equation Rq. Note that while the geometric symbol is indeed closely
related to the classical (principal) symbol introduced in many textbooks on partial differential
equations (see e. g. [69]), it is not the same.

In local coordinates, the symbol may be described as the solution space of a linear system
of equations. Let as usual the equations Φτ = 0 with 1 ≤ τ ≤ t form a local representation of
the differential equation Rq. We denote local coordinates on the vector space Sq(T ∗B)⊗ V E
by vα,µ where 1 ≤ α ≤ m and |µ| = q (the coefficients with respect to the basis dxµ ⊗ ∂uα).
Then the symbol Nq consists of those points v for which

(3.2)
m∑

α=1

∑
|µ|=q

∂Φτ

∂uα,µ
vα,µ = 0 , 1 ≤ τ ≤ t .

Note that this is a pointwise construction. Strictly speaking, we choose a point ρ ∈ Rq and
evaluate the coefficient matrix of the linear system (3.2) at this point so that we obtain a real
matrix. The rank of this matrix could vary with ρ, but we will always assume that this is not
the case, so that Nq indeed forms a vector bundle over Rq.

The symbol is most easily understood for linear systems. There it is essentially just the
principal part of the system (i. e. the terms of maximal order), however, considered no longer
as differential but as algebraic equations. For a nonlinear system, the local equations (3.2) de-
scribing the symbol at a point ρ ∈ Rq are obtained by first linearizing the local representation
Φτ = 0 at ρ and then taking the principal part.

We may also introduce the prolonged symbols Nq+r = V (q+r)Rq+r ⊆ Sq+r(T ∗B)⊗ V E . It
should be noted that their construction does not require one to actually compute the prolonged
differential equations Rq+r; they are already completely determined by Nq. Indeed, we may
compute them as the intersection Nq+r =

(
Sr(T ∗B) ⊗ Nq

)
∩

(
Sq+r(T ∗B) ⊗ V E

)
(which is

understood to take place in
⊗q+r T ∗B ⊗ V E). Locally, Nq+r is the solution space of the

following linear system of equations:

(3.3)
m∑

α=1

∑
|µ|=q

∂Φτ

∂uα,µ
vα,µ+ν = 0 , 1 ≤ τ ≤ t , |ν| = r .
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Again, this is a consequence of the quasi-linearity of the formal derivative (3.1). We have met
these linear systems already in our discussion of formal integrability: (3.3) is the homogeneous
part of the linear system determining the coefficients cα,µ with |µ| = q + r.

3.4. The Symbol Comodule. The symbolNq and its prolongationsNq+r are defined as sub-
spaces of Sq+r(T ∗B)⊗V E for r ≥ 0. Recall (Sect. 2.10) that the graded vector space S(T ∗B)
possesses a natural coalgebra structure; more precisely it is isomorphic to the polynomial
coalgebra C = k[x1, . . . , xn] with the coproduct ∆ defined by (2.7). Note that no canonical
isomorphism between S(T ∗B) and C exists. We must first choose a basis {ω1, . . . , ωn} of the
cotangent bundle T ∗B; then we have the trivial isomorphism defined by ωi ↔ xi. Given some
local coordinates x on B a simple choice is of course ωi = dxi.

Given such an isomorphism between S(T ∗B) and the polynomial coalgebra C, we may
consider S(T ∗B)⊗V E as a free polynomial comodule of rank m over C. For the proof of the
following proposition, it turns out to be convenient to use as a vector space basis of C not
the usual monomials xν but the multivariate divided powers γν(x) = xν/ν! (cf. Sect. 2.9.1).

Proposition 3.5. Let N = )Nq( ⊆ S(T ∗B)⊗V E be the polynomial subcomodule cogenerated
by the symbol Nq ⊆ Sq(T ∗B)⊗ V E. Then Nq+r = Nq+r for all r ≥ 0.

Proof. This follows immediately from a comparison of (3.3) and (2.20). Recall that an element
of the prolonged symbol Nq+r is of the form f =

∑m
α=1

∑
|ν|=q+r vα,ν∂uα ⊗ dxµ where the

coefficients vα,ν form a solution of the linear system (3.3). We identify this element with the
following vector in Cm:

f =
( ∑
|ν|=q+r

v1,νγν(x), . . . ,
∑

|ν|=q+r

vm,νγν(x)
)
.

It is now a straightforward exercise to verify that f corresponds to an element of Nq+r, if and
only if ∂rf/∂xµ corresponds for all multi indices µ with |µ| = r to an element of Nq. �

Note that this “dual interpretation” of the symbol leads also to a “reversal” of the direction
of differentiation. While in the jet bundles differentiation yields equations of higher order,
here in the comodule N differentiation leads to the components of lower degree. But, of
course, this has to be expected in a dualization and explains why in the proof above we must
use the divided powers as basis: the product xiγν(x) is just the integral

∫
γν(x)dxi.

Dually, we may consider the left hand sides of the equations in (3.2) as elements of the
dual space

(
Sq(T ∗B)⊗V E

)∗ ∼= Sq(TB)⊗V ∗E and similarly for the prolonged symbols. This
leads naturally to considering the graded vector space S(TB) ⊗ V ∗E as a free module over
the polynomial algebra A = C∗. Again an isomorphism between S(TB) and A can be given
only after a basis {w1, . . . , wn} of TB has been chosen. Local coordinates x on B induce as a
simple choice the basis wi = ∂xi .

Now we may take the equations defining Nq and consider the submodule generated by their
left hand sides. Again it is trivial to see that the left hand sides of the equations defining
Nq+r, i. e. (3.3), form the component of degree q + r. In fact, we get by Proposition 2.4 that
these higher components are just (N⊥)q+r. This simple relation does not hold in the lower
degrees, as there our submodule vanishes in contrast to N⊥. As we will see, this is not of any
consequence in terms of the connections with the formal theory as we will see.
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3.5. Involution. As by definition Nq ⊆ Sq(T ∗B)⊗V E , we may interpret an element σ ∈ Nq

as a (V E valued) multilinear form. A coordinate system x on the base manifold B induces a
basis {∂x1 , . . . , ∂xn} of the tangent bundle TB. We introduce for 1 ≤ k ≤ n the subspaces

(3.4) Nq,k =
{
σ ∈ Nq | σ(∂xi , v1, . . . , vq−1) = 0, ∀1 ≤ i ≤ k, v1, . . . , vq−1 ∈ TB

}
and set Nq,0 = Nq. They define a filtration of Nq:

(3.5) 0 = Nq,n ⊂ Nq,n−1 ⊂ · · · ⊂ Nq,1 ⊂ Nq,0 = Nq .

We introduce the Cartan characters of the symbol Nq as the integers

(3.6) α(k)
q = dimNq,k−1 − dimNq,k , 1 ≤ k ≤ n .

Although it is not obvious from their definition, one can show that they always form a
descending sequence: α(1)

q ≥ · · · ≥ α
(n)
q ≥ 0 [11, 77].

Using the identification of Sq(T ∗B) ⊗ V E with Cm
q introduced in the previous section we

may give an alternative description of these spaces

(3.7) Nq,k =
{
σ ∈ Nq |

∂σ

∂xi
= 0, ∀1 ≤ i ≤ k

}
where the differentiations are understood coordinate-wise. This identification also allows us
to introduce the maps ∂k : Nq+1,k−1

- Nq,k−1 and we obtain the following algebraic version
of the famous Cartan test [11].

Proposition 3.6. We have the inequality

(3.8) dimNq+1 ≤ dimNq,0 + dimNq,1 + · · ·+ dimNq,n−1 =
n∑

k=1

kα(k)
q .

Equality holds, if and only if all the maps ∂k are surjective.

Proof. For each 1 ≤ k ≤ n the exact sequence 0 - Nq+1,k
- Nq+1,k−1

∂k- Nq,k−1

implies the inequality dimNq+1,k−1 − dimNq+1,k ≤ dimNq,k−1. Summing over k and using
the definition (3.6) of the Cartan characters yields (3.8). Equality in (3.8) requires equality in
all these dimension relations, but this is equivalent to the surjectivity of all the maps ∂k. �

Definition 3.7. The symbol Nq is involutive, if there exist local coordinates x on the base
manifold B such that we have equality in (3.8).

Here we encounter for the first time the problem of quasi- or δ-regularity. If we obtain in a
given coordinate system a strict inequality in (3.8), we cannot conclude that the symbol Nq

is not involutive. It could be that we have simply taken a “bad” coordinate system. However,
this problem is less severe than it might seem at first glance, as one can show that for an
involutive symbol one finds generically equality in (3.8).

3.6. A Computational Criterion for Involution. Computationally, it is easier to work
with equations instead of their solutions. Therefore we present now an effective realization of
Def. 3.7 of an involutive symbol Nq in terms of the linear system (3.2) describing it locally.
This combinatorial approach is based on ideas from the Janet-Riquier theory,2 in particular

2Note however that within the classical Janet-Riquier theory neither the notion of a symbol nor the concept
of involution appears. Using the more modern theory of involutive bases [29, 30] which may be considered as a
combination of (a generalization of) the Janet-Riquier theory with Gröbner bases one may make the relation
to involutive symbols more precise [77].
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the idea of multiplicative variables, and forms the basis of a computer algebra implementation
of the formal theory [40].

Let us denote the matrix of the linear system (3.2) by Nq. In order to simplify the analysis
we transform it into row echelon form. However, before we order the columns in a certain
manner. We define the class of a multi index µ = [µ1, . . . , µn] as clsµ = min{i | µi 6= 0}.
Then we require that the column corresponding to the unknown vα,µ is always to the left of
the column corresponding to vβ,ν , if clsµ > cls ν. If the multi indices µ and ν possess the
same class, it does not matter how the two columns are ordered. A simple way to achieve
this ordering is to use the reverse lexicographic order defined by vα,µ ≺ vβ,ν , if either the first
non-vanishing entry of µ− ν is positive or µ = ν and α < β

After having computed the row echelon form (without column permutations!), we analyze
the location of the pivots and define β(k)

q as the number of pivots that lie in a column corre-
sponding to an unknown vα,µ with clsµ = k. The numbers β(k)

q with 1 ≤ k ≤ n are sometimes
called the indices of Nq. Obviously, their definition is coordinate dependent: in different co-
ordinate systems x on the base manifold B different values may be obtained. However, it is
not difficult to see that only a few coordinate systems yield different values. Generic coor-
dinates lead to such values of the indices that the sum

∑n
k=1 kβ

(k)
q becomes maximal; such

coordinates are called δ-regular. More precisely, any coordinate system can be transformed
into a δ-regular one with a linear transformation defined by a matrix coming from a Zariski
open subset of Rn×n.

Proposition 3.8. The symbol Nq is involutive, if and only if local coordinates x on the base
manifold B exist such that the matrix Nq+1 of the prolonged symbol Nq+1 satisfies

(3.9) rankNq+1 =
n∑

k=1

kβ(k)
q .

Proof. The Cartan criterion (3.8) is formulated in terms of dimensions of linear spaces; (3.9) is
essentially an equivalent reformulation in terms of the ranks of the associated linear systems.
It is a consequence of the following simple relation between the indices β(k)

q and the above
introduced Cartan characters α(k)

q

(3.10) α(k)
q = m

(
q + n− k − 1

q − 1

)
− β(k)

q , 1 ≤ k ≤ n .

This relation stems from a straightforward combinatorial argument. We consider again the
elements of Nq as polynomials ordered according to the TOP lift of the degree reverse lexico-
graphic term order [2]. Then the Cartan character α(k)

q gives us the dimension of the subspace
of elements in Nq which have a leader of class k, as these elements make the difference between
Nq,k and Nq,k−1. In Cm

q there a m
(
q+n−k−1

q−1

)
monomials of class k and by our above described

preparation of the matrix Nq we have β(k)
q equations for them. This yields (3.10). �

The criterion (3.9) has a simple interpretation. By (3.3), we obtain the equations describing
the prolonged symbol Nq+1 by formally differentiating each equation in (3.2) with respect to
all independent variables. Now assume that we have transformed the matrix Nq to row
echelon form. We assign to each row the multiplicative variables x1, . . . , xk, if the pivot of the
row corresponds to an unknown vα,µ with clsµ = k.
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It is now easy to see that all rows in Nq+1 that stem from a formal differentiation with
respect to a multiplicative variable are linearly independent (each has its pivot in a different
column). As we have β(k)

q rows of class k, this observation implies that for any symbol the
inequality rankNq+1 ≥

∑n
k=1 kβ

(k)
q holds (which is just a dual formulation of Prop. 3.6).

Involutive symbols are precisely those that realize this lower bound so that this important
idea of multiplicative variables (which goes back to Janet [46]) provides us with a unique way
to generate all relevant equations in the prolongations of an involutive symbol.

These ideas concerning involutive symbols can be considerably generalized to a complete
theory of so-called involutive bases which are a special kind of Gröbner bases. These bases
contain much structural information. For more details see [78, 79]. A deeper study of the
problem of δ-regularity (and an algorithmic solution of it) is contained in [40].

3.7. Involutive Differential Equations. Given the above definition of an involutive sym-
bol, we may now finally introduce the notion of an involutive differential equation.

Definition 3.9. The differential equation Rq ⊆ JqE is called involutive, if it is formally
integrable and if its symbol Nq is involutive.

Involutive differential equations have many pleasant properties. For example, one obtains
a much better existence and uniqueness theory than for merely formally integrable systems.
Somewhat surprisingly, involution is also of importance for numerical analysis, as obstructions
to involution may become integrability conditions upon semi-discretization [80].

Recall that our existence result Prop. 3.4 for formally integrable systems does not speak
about unique solutions. In general, the algebraic systems determining the Taylor coefficients
at each order are underdetermined which simply reflects that differential equations usually
have infinitely many solutions. It is the task of initial and/or boundary conditions to remove
this arbitrariness. For involutive systems one may (algorithmically) derive the right form of
initial conditions to ensure the existence of a unique formal solution with the help of some
algebraic theory [77].

The extension of Prop. 3.4 to a strong existence (and uniqueness) theorem in some functions
space is highly non-trivial. A general result is known only for analytic systems. Here the so-
called Cartan normal form of an involutive system allows us via repeated application of the
well-known Cauchy-Kovalevskaya theorem [69] to prove the convergence of our formal power
series solutions.

Theorem 3.10 (Cartan-Kähler). Let Rq ⊆ JqE be an involutive differential equation. As-
sume that Rq is an analytic submanifold, i. e. it has local representations Φτ = 0 with
1 ≤ τ ≤ t where the functions Φτ are real analytic. Then the Cauchy problem for Rq

possesses for real analytic initial conditions a unique real analytic solution.

It is important to note that the uniqueness is only within the space of real analytic func-
tions. Thus the Cartan-Kähler theorem does not exclude the existence of further non-analytic
solutions. However, for linear systems it is straightforward to extend the classical Holmgren
theorem on the uniqueness of C1 solutions [77].

Obviously, Def. 3.3 of a formally integrable system requires to check infinitely many con-
ditions and thus is not constructive. At first sight, one could think that involution does not
help us here, as the definition of an involutive equation includes formal integrability. How-
ever, we have the following proposition showing the power of the concept of involution. It
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requires a simple lemma which will be an easy consequence of looking at things homologically
in Sect. 5.3.

Lemma 3.11. If the symbol Nq is involutive, then the prolonged symbols Nq+r are also
involutive for all integers r > 0.

Proposition 3.12. Let the symbol Nq of the differential equation Rq be involutive. Then Rq

is involutive, if and only if R(1)
q = Rq.

Proof. Essentially, this is a corollary to Lemma 3.11 and a rather technical property of differ-
ential equations with involutive symbol, namely that for such equations (R(1)

q )+1 = R(1)
q+1 (if

we denote a prolongation by ρ and a projection by π, this means that if Nq is involutive, then
ρ ◦π ◦ρ = π ◦ρ2). This property is non-trivial, as it states that for such differential equations
any integrability condition arising after two prolongations is also obtainable by differenti-
ating an integrability condition arising after only one prolongation. For general differential
equations this is surely not the case.

Now, given this result, we may conclude that R(1)
q+1 = (R(1)

q )+1 = Rq+1 by assumption.
As the prolonged symbols Nq+r are again involutive by Lemma 3.11, we may iterate this
argument and find R(1)

q+r = Rq+r for all r ≥ 0. Thus Rq is formally integrable. �

Hence for a differential equation Rq with involutive symbol it is no longer necessary to
check an infinite number of prolongations: if no integrability conditions appear in the next
prolongation, none will show up at higher order. This result is one of the two key ingredients
for the Cartan-Kuranishi theorem below. The second one is the following result which will also
be a easy consequence of looking at things homologically (the proof is given after Theorem
6.5 in Sect. 4).

Proposition 3.13. Every symbol Nq ⊆ Sq(T ∗B) ⊗ V E becomes involutive after a finite
number of prolongations.

The question naturally arises what we should do, if we encounter an equation which is
not involutive. The answer is simple: we complete it to an involutive one. The next theo-
rem ensures that we may always do this without altering the (formal) solution space. The
completion should be considered as a differential analogue to the construction of a Gröbner
basis for a polynomial ideal: the addition of further generators to the original basis does not
change the considered ideal, but many of its properties become more transparent, if we know
a Gröbner basis.

Theorem 3.14 (Cartan-Kuranishi). For every (sufficiently regular) differential equation Rq

there exist two integers r, s ≥ 0 such that the differential equation R(s)
q+r is involutive.

Proof. For lack of space we only sketch a constructive proof of this important theorem. As the
name indicates, it stems originally from the theory of exterior systems and was first proven
in full generality by Kuranishi [53]. Our proof follows the one presented in [65].

A simple algorithm for completing the differential equation Rq to an involutive equation
consists of two nested loops. In the inner one, the equation is prolonged until its symbol
becomes involutive (i. e. we increase the counter r). The termination of this loop follows
immediately from Proposition 3.13. Once we have reached an involutive symbol, we check
whether in the next prolongation integrability conditions appear. If not, we have reached an
involutive equation by Proposition 3.12. Otherwise, we add these conditions (i. e. increase
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the counter s by one) and start anew. The termination of the outer loop can be shown with
the help of a Noetherian argument. �

Note that the two equations Rq and R(s)
q+r are in so far equivalent as they possess the

same (formal) solution space. Indeed, neither prolongations nor the addition of integrability
conditions can affect the solution space, as any of these additional equations is automatically
satisfied by any solution of Rq.

While the above sketched proof is surely constructive, it does not immediately yield an
algorithm in the strict sense of computer science. For a number of steps in the “algorithm” it
is not obvious whether they may be performed effectively. One of the greatest obstacle consists
of effectively checking whether R(1)

q = Rq. In local coordinates, this amounts to checking the
functional independence of equations. Thus we must compute the rank of a Jacobian on
the submanifold Rq. For linear equations this is easily done via Gaussian elimination. For
polynomial equations it can be done with Gröbner bases, although it may become rather
expensive. For arbitrary equations no algorithm is known. A rather direct translation of the
outlined completion procedure into a computer algebra package was presented in [75, 76]. A
much more efficient version for linear equations enhancing the procedure with algebraic ideas
from the theory of involutive bases was presented in [40].

Thanks to the Cartan-Kuranishi theorem, we may always assume in the analysis of a gen-
eral differential equation (i. e. an equation not in Cauchy-Kovalevskaya form) that we are
actually dealing with an involutive equation. This is a considerable simplification, as invo-
lutive equations possess local representations in a normal form (corresponding to the above
described row echelon form of the symbol) making many of its properties much more trans-
parent. The completion to an equivalent involutive equation is therefore a central algorithm
for general equations.

4. More (Co)homological Algebra

There is quite a bit of literature on resolutions over the polynomial algebraA = k[x1, . . . , xn]
(see e.g. [24, 49, 77]). In fact, computer programs exist which can compute such resolutions,
e.g. Macaulay 2 [25].

We are specifically interested in algorithms for computing TorA(M,k) where M is a graded
right A-module. Recall [15, 62] that TorA(M,k) may be computed as follows. Let

X - k - 0

be a free A-module resolution of k. By definition, TorA(M,k) is the homology of the complex
M ⊗A X. It is well-known that Tor is independent of the resolution used to compute it.

In fact, one also has TorA(k, N) for a graded left A-module N . It can be computed by
finding a free A-module resolution

Y - N - 0

of N . One has that TorA(k, N) is the homology of the complex Y ⊗A N . Again, this is
independent of the resolution used. Furthermore, it is also well-known that as vector spaces
over k, one has

(4.1) TorA(M,k) ∼= TorA(k,M)
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where if M is a right A-module, it has the left A-module structure given by am = ma [15, 62].
Similar remarks apply if M is a left A-module. This gives quite a bit of freedom in finding
resolutions for computing Tor. For example consider the following six resolutions.

4.1. Schreyer Type Resolutions. Using the notion of a Gröbner basis, Schreyer [74] es-
sentially proved the following (we follow the exposition in [44, Sect. 2])

Proposition 4.1. Let M be generated by {m1, . . . ,ms} over A and let f : As - M be the
A-linear map given by f(ei) = mi (ei is the standard basis vector in As). There is an explicit
algorithm that computes a finite generating set for ker(f).

The interested reader should see [24] or [44] (which is given in a more general context) for
details. By iterating this construction, one obtains a resolution

· · · - Si
- Si−1

- · · · - S1
- M - 0

which is well-known to be a finite sequence of finite-dimensional free A-modules Si. We call
this the Schreyer resolution S of M over A. Variations of this construction are implemented
in the Macaulay 2 program [25] and other variations in the context of involutive bases can be
found in [79].

The purpose of the following sections is to prepare for a description of a novel explicit
algorithm given in [49] for computing resolutions of M over A.

4.2. The Koszul Resolution. The Koszul resolution K of k over A is the complex K =
A ⊗k K̄ where K̄ is the exterior algebra E[u1, . . . , un] (cf. Sect. 2.11). We add the relation
that uIf = fuI for f ∈ A. The differential in K is given by extending the map d(ui) = xi

A-linearly as a derivation:

d(uIuJ) = d(uI)uJ + (−1)|I|uId(uJ).

Clearly, one has

(4.2) d(uj1 · · ·ujk
) =

k∑
i=1

(−1)k+1xjiuj1 · · · ûji · · ·ujk

where ûji denotes omission. Thus, for any right A-module M , we have that

(4.3) TorA(M,k) = H(M ⊗A K) = H(M ⊗ K̄) = H(M ⊗ E[u1, . . . , un]).

IfM is a graded module, TorA(M,k) inherits a bigrading as follows. Let (M⊗K̄)i,j = Mi⊗K̄j .
From (2.3) and (4.2) above, it follows that

(4.4) (M ⊗ K̄)i,j
1M⊗d- (M ⊗ K̄)i+1,j−1.

and hence TorA(M,k) inherits the bigrading.

Remark 4.2. For simplicity in the exposition, we assume that all modules over A are of the
form M = A/I where I is an ideal in A in the next two resolutions which are valid only for
monomial ideals. The more general case of finitely presented modules M = Am/N where N
is a monomial submodule follows by using what we present coordinate-wise.
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4.3. The Taylor Resolution. For a given set {m1, . . . ,mk} of monomials and for any subset
J = {j1, . . . , js} ⊆ {1, . . . , k}, let mJ = lcm(mj1 , . . . ,mjs), and J i = J \ {ji}.

For a monomial ideal N = (m1, . . . ,mk), the Taylor resolution [85] of M = A/N over A is
given by the following A-linear differential d on the free A-module A⊗ E[u1, . . . , uk]:

d(uJ) =
|J |∑
i=1

(−1)i−1 mJ

mJi

uJi .

This resolution will be denoted by T throughout this paper. An explicit contracting homotopy
for T was given in [27]. We recall it here.

For a monomial xα and a basis element uJ of E, let

(4.5) ι(xαuJ) = min{i | mi � xαmJ}

(recall � from 2.4). Note that ι(xαuJ) ≤ j1. Define a k-linear map

(4.6) ψ(xαuJ) = [ι < j1]
xαmJ

m{ι}∪J
u{ι}∪J

where ι = ι(xαuJ), and [p] is the Kronecker-Iverson symbol [33] which is zero if p is false and
one otherwise. It is straightforward to calculate that ψ is indeed a contracting homotopy, i.e.
we have dψ + ψd = 1 on elements of positive degree.

One can show [81] that the Taylor resolution is a special case of the resolutions obtainable
via Schreyer’s construction. The contracting homotopy ψ is then related to normal form
computations with respect to a Gröbner basis.

Thus one can compute TorA(k,M) as

(4.7) TorA(k, A/N) = H(k⊗A T ) = H(E[u1, . . . , uk]).

4.4. The Lyubeznik Resolution. Suppose again that N = {m1, . . . ,mk} is a monomial
ideal in A. A subcomplex L of the Taylor resolution which is itself a resolution of M = A/N
over A was given in [61]. We recall it here. For a given I ⊆ {1, . . . , k} and positive integer s
between 1 and k, let I>s = {i ∈ I | i > s}. L is generated by those basis elements uI which
satisfy the following condition for all 1 ≤ s < k:

(4.8) ms 6� mI>s .

In [81] it was shown that this corresponds to repeated applications of Buchberger’s chain
criterion [12] for avoiding redundant S-polynomials in the construction of Gröbner bases.

As usual, we denote k⊗A L by L̄. Thus one can also compute TorA(k,M) as

(4.9) TorA(k,M) = H(k⊗A L) = H(L̄).

4.5. The Bar Resolution. The two sided bar construction B(A,A) [15, 62] is defined as
follows.

B̄0(A) = k

B̄k(A) = ⊗kĀ, k > 0,

and Ā = coker(σ) where k
σ- A is the unit. The usual convention is to abbreviate the

product a⊗a1⊗· · · ak⊗a′ as a[a1| · · · |ak]a′ and we will follow that convention. The differential
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in B(A,A) is given by the A-linear map induced by

∂
(
[a1| · · · |ak]a′

)
= a1[a2| · · · |ak]a′

+
k−1∑
i=1

(−1)i[a1| · · · aiai+1 · · · |ak]a′

+ (−1)k[a1| · · · |ak−1]aka
′

The k-linear map B(A,A)
s- B(A,A) is defined by

s
(
a[a1| · · · |ak]a′

)
= [a|a1| · · · |ak]a′.

The map A
σ- B(A,A) is given by

σ(a) = [ ]a

and the map B(A,A)
ε- A is given by

ε
(
a[ ]a′

)
= aa′

ε
(
a[a1| · · · |ak]a′

)
= 0, k ≥ 1.

The map s is a contracting homotopy for B(A,A).

4.6. Bar resolution of k. It is not hard to see that B(A,k) = B(A,A)⊗A k is a resolution
of k over A. Here k is given the A-module structure defined by the augmentation map
ε(p) = p(0) (cf. Sect. 2.9).

Define k
σk- B(A,k) by

σk(r) = [ ]r,

B(A,k)
εk- k by

εk
(
a[ ]r

)
= ar

εk
(
a[a1| · · · |ak]x

)
= 0, k ≥ 1,

and B(A,k)
sk- B(A,k) by

s
(
a[a1| · · · |ak]

)
= [a|a1| · · · |ak].

One then has that sk is a contracting homotopy.
Thus one can also compute TorA(M,k) as

(4.10) TorA(M,k) = H
(
M ⊗A B(A,k)

)
= H

(
M ⊗ B̄(A)

)
.

4.7. Bar resolution of M . For any left A-module M , one has a free A-complex given by
B(A,M) = B(A,A)⊗A M . As an A-module, note that

B(A,M) = A⊗k B̄(A)⊗k M.

The differential is given by ∂M = ∂ ⊗ 1M . Thus,

∂M

(
a[a1| · · · |ak]x

)
= aa1[a2| · · · |ak]x

+
k−1∑
i=1

(−1)ia[a1| · · · aiai+1 · · · |ak]x

+ (−1)ka[a1| · · · |ak−1]akx
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for a, ai ∈ A and x ∈M . Define M
σM- B(A,M) by

σM (x) = [ ]x,

B(A,M)
εM- M by

εM
(
a[ ]x

)
= ax

εM
(
a[a1| · · · |ak]x

)
= 0, k ≥ 1,

and B(A,M)
sM- B(A,M) by

s
(
a[a1| · · · |ak]x

)
= [a|a1| · · · |ak]x.

One then has that s is a contracting homotopy.
Thus one can also compute TorA(k,M) as

(4.11) TorA(k,M) = H
(
k⊗A B(A,M)

)
= H

(
B̄(A)⊗M

)
.

Remark 4.3. The last five resolutions will be involved in the derivation of a new explicit
algorithm for computing resolutions of M over A using homological perturbation theory (Sect.
7). This will involve explicit comparisons between the Lyubeznik complex, the bar complexes
and the Koszul complex. The standard proof that TorA(M,k) and TorA(k,M) are isomorphic
does not produce an explicit map between the resolutions involved. However, it is quite easy
to see that the chain map

(4.12) ϕ(m[a1| · · · |ak]) = [a1| · · · |ak]m

induces an explicit isomorphism of TorA(M,k) and TorA(k,M). We will make use of this
isomorphism in the following sections.

4.8. Strong Deformation Retracts. LetX and Y be chain complexes over k,∇ : X - Y ,
f : Y - X be chain maps and let φ : Y - Y be a degree one k-linear map such that
f∇ = 1X and dφ+φd = 1−∇f , i.e. φ is a chain homotopy between the identity and ∇f (cf.
Sect. 2.2). Such a collection of data is said to form a strong deformation retraction (SDR).
We denote this situation by the diagram

(4.13) X
∇

-
�

f
(Y, φ) .

The so called side conditions [60] are the equations

(4.14) φ2 = 0, φ∇ = 0, and, fφ = 0.

In fact, we may always assume that the side conditions hold [60].

4.9. Relatively Free Resolutions. Will consider resolutions of N over A which have form
X = A ⊗X where X is a vector space over k [15, 62]. Such complexes are called relatively
free [62]. The elements of X above are called reduced elements. An even stronger condition
is that there exists an explicit contracting homotopy ψ which forms an SDR

N
σ
-

�
ε

(X,ψ)

where ε is an A-linear map, but generally, σ and ψ are only k-linear. Here N is given the
zero differential. As we will see, each of the five resolutions in Sect. 4 are of this form. In
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fact, using the maps defined in Sects. 4.6 and 4.7, it is clear that B(A,k) and B(A,M) are
relatively free resolutions. We claim that we also have SDRs

(4.15) k

σk-
�

εk

(B(A,k), s)

and

(4.16) M
σM-

�
εM

(B(A,M), s)

where the maps are also from Sects. 4.6 and 4.7.

Remark 4.4. Recall from Sect. 4.7 that ε(a[ ]x) = ax. Thus, in order to make explicit
calculations, we need a unique representative b ∈ A for each class in N = A/M . In other
words, we need a normal form for elements of M . This can be obtained by the standard
normal form algorithm from Gröbner basis theory [6, 28]. The algorithm depends on a given
term order (cf. Sect. 2.1) and a given set G = {g1, . . . , gr} ⊂ A. Here is a recursive algorithm
for computing the normal form, denoted by remG(p) of a given polynomial p: if there exists
a minimal i such that lt(gi) � lt(p), then

remG(p) = remG

(
p− lt(p)

lt(gi)
gi

)
and

remG(p) = lt(p) + remG(p− lt(p))

otherwise. Here we have used the notation lt(p) for the leading term of a polynomial p with
respect to the given term order. In our case, we have that G is a (minimal) generating set
for M .

Consider again the Koszul resolution K (Sect. 4.2). We need an explicit contracting ho-
motopy for K. For this, we exploit once more the fact that A = k[x1, . . . , xn] = ⊗n

k[x].
In the case of one variable, K = k[x] ⊗ E[u] is just the complex with d(p) = 0, p ∈ A, and
d(pu) = px. Given ε(p) = p(0) and ε(pu) = 0, and σ(r) = r ⊗ 1 for r ∈ k, we need to solve
the equation

dψ(y) + ψd(y) = y − σε(y)

for all y ∈ K. Clearly, we can (and must) take ψ(pu) = 0 (the degree of ψ is +1), and so we
only need consider ψ on xi for i ≥ 1 (ψ is k-linear, but not A-linear). But the equation

dψ(xi) = xi

is easily seen to be satisfied by

(4.17) ψ(xi) = xi−1u.

Now it is clear that the Koszul complex over k[x1, . . . , xn] is just the tensor product complex
⊗n
k[x]⊗E[u]. But as is well-known, chain homotopies can be tensored as well. In this case,

we can use

(4.18) ψn = ψ ⊗ 1⊗ · · · ⊗ 1 + σε⊗ ψ ⊗ 1⊗ · · · ⊗ 1 + · · ·+ σε⊗ σε⊗ · · · ⊗ σε⊗ ψ.
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It is now easy to see that along with the maps σn = ⊗nσ and εn = ⊗nε, we have an SDR

(4.19) k

σ
-

�
ε

(K,ψ) .

4.10. Splitting Off Of the Bar Construction. The well-known comparison theorem [15,
62] in homological algebra states that any two projective resolutions are chain homotopy
equivalent. For the relatively free resolutions of the last section, we will need some explicit
comparisons that actually yield SDRs. For relatively free resolutions X and Y over A with
explicit SDR data

(4.20) N
σX-

�
εX

(X,ψX)

and

N
σY-

�
εY

(Y, ψY )

there are inductive procedures for obtaining explicit chain equivalences f : X - Y and
g : Y - X. As was shown in [16], these procedures essentially follow from the requirements
that f and g are A-linear and are chain maps. One uses the explicit contracting homotopies
to construct them. This was used in [49, 55, 56, 57] for example. In addition, there are
inductive procedures for obtaining explicit chain homotopies of fg and the identity and with
gf and the identity. Generally, the maps defined in this way do not form an SDR. However,
the following lemma was given in [49].

Lemma 4.5. Suppose that X is a relatively free resolution as above and that the contracting
homotopy ψX satisfies ψX(X) = 0 and d(X̄)∩X̄ = 0 and the homotopy ψY satisfies ψY (Y ) ⊆
Y , then the inductive constructions mentioned above give an SDR

X
∇

-
�

f
(Y, φ) .

It is well known (e.g. [56]) that X = K (the Koszul resolution) and Y = B(A,k) satisfy
the hypotheses of the lemma and so we have an SDR

(4.21) K
∇K-

�
fK

(B(A,k), φK) .

We emphasize that these SDRs are explicitly given in terms of the explicit SDRs of the
form (4.20) for the objects involved as given above. In fact, the first author has implemented
these SDRs using computer algebra (specifically the system described in [47]) and these
implementations will be used for all calculations that follow.

4.11. Twisting Cochains. A twisting cochain is a degree minus one map C
τ- A where

C is a differential graded coalgebra and A is a differential graded algebra and τ satisfies

(4.22) dτ + τd = τ ∪ τ
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where the map τ ∪ τ is given by

(τ ∪ τ)(c) = τ(c(1))τ(c(2))

in H-S notation. The following fact is a fundamental property of twisting cochains.

Proposition 4.6. Let C
τ- A be a degree minus one map from a (differential) algebra to

a (differential) coalgebra. Let

A⊗ C
dτ- A⊗ C

be the map defined by the composite

A⊗ C
dτ - A⊗ C

A⊗ C ⊗ C

1⊗∆

?

1⊗ τ ⊗ 1
- A⊗A⊗ C

m⊗ 1

6

then (A⊗ C, dτ ) is a chain complex, if and only if τ is a twisting cochain.

The complex (A⊗C, dτ ) is called a twisted tensor product complex. The interested reader
should see e.g. [9, 34, 35] for details.

Note that an analogous result holds for degree one maps from C to A in which case dτ will
have degree one. Note also that in H-S notation, dτ is given by

dτ (a⊗ c) = aτ(c(1))⊗ τ(c(2)).

5. A Homological Approach to Involution

5.1. A Theorem by Serre. The key to a homological interpretation of involution is a
theorem by Serre given in an appendix to [39]. It gives a criterion for the vanishing of
TorA(M,k) where M is a finitely generated graded module over the polynomial algebra
A = k[x1, . . . , xn]. As shown in Sect. 4.2, TorA(M,k) is bigraded in this case.

Theorem 5.1. Let M be a finitely generated graded module over the polynomial algebra
A = k[x1, . . . , xn]. Then TorA

p,q(M,k) = 0 for all p ≥ 1, and all q ≥ 0, if and only if a basis
{y1, . . . , yn} of the component A1 exists such that for all 0 ≤ i < n and all p ≥ 0 the maps

(5.1) mi+1 : Mp+1/(y1, . . . , yi)Mp
- Mp+2/(y1, . . . , yi)Mp+1

induced by the multiplication with yi+1 are injective.

Serre’s proof is quite lucent and we encourage the reader to read it.
It is customary to call a sequence (y1, . . . , yn) ⊂ A1 satisfying the condition of the theorem

quasiregular. We will see below that for the polynomial modules of interest for us this notion
coincides with the notion of δ-regularity introduced in Sect. 3.6.
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5.2. An Alternative Criterion for Involution. In Sect. 3.4 we introduced the symbol
comodule N which was a comodule over the polynomial coalgebra C. By Prop. 2.6 we have
an isomorphism M = Am/N⊥ ∼= N∗ where M is now a module over the polynomial algebra
A = C∗. The Cartan test (3.8) yields a criterion for an involutive symbol directly in terms of
the comodule N . Now we provide a criterion in terms of the module M .

Theorem 5.2. The symbol Nq is involutive, if and only if there exist local coordinates x of
the base manifold B such that for all r ≥ 0 and all 0 ≤ i < n the maps

(5.2) mi+1 : Mq+r+1/(x1, . . . , xi)Mq+r
- Mq+r+2/(x1, . . . , xi)Mq+r+1

induced by the multiplication with xi+1 are injective.

For technical reasons, it is easier to consider first the submodule N⊥ ⊆ Am and move later
to the factor module M . Furthermore, the following lemma shows the direct link between
the approach via multiplicative variables used in Sect. 3.6 and the new approach presented
in this section.

Lemma 5.3. The symbol Nq is involutive, if and only if there exist local coordinates x of the
base manifold B such that for all r ≥ 0 and all 0 ≤ i < n the maps

(5.3) m̂i+1 : N⊥
q+r+1/(x1, . . . , xi)N⊥

q+r
- N⊥

q+r+2/(x1, . . . , xi)N⊥
q+r+1

induced by the multiplication with xi+1 are injective.

Proof. Let us assume first that Nq was involutive. Following the discussion in Sect. 3.6, this
implies the existence of local coordinates x of B such that we may construct a triangular
(vector space) basis of N⊥

q of the form

(5.4) Bq =
{
hk,` | 1 ≤ k ≤ n, clshk,` = k, 0 ≤ ` ≤ `k

}
,

i. e. we sort the elements of the basis according to their classes. The elements of this basis
correspond to the rows of the matrix Nq appearing in Prop. 3.8. For an involutive symbol, a
basis of N⊥

q+r is given by

(5.5) Bq+r =
{
xi1

1 · · ·x
ik
k hk,` | 1 ≤ k ≤ n, 0 ≤ ` ≤ `k, i1 + · · ·+ ik = r

}
,

i. e. by multiplying each element of Bq by r multiplicative variables. Now we may straight-
forwardly construct explicit bases of the factor spaces N⊥

q+r+1/(x1, . . . , xi)N⊥
q+r, as they are

isomorphic to the linear spans of the subsets B(i)
q+r consisting of only those generators whose

class is greater than i. The assertion follows trivially from these bases, as xi+1 is multiplicative
for all generators in B(i)

q+r.
For the converse, we use an indirect proof: we show that if Nq is not involutive, then it is

not possible that all the maps m̂i are injective. As we consider the maps m̂i for all r ≥ 0,
we may assume without loss of generality that already Nq+1 is involutive. We will prove now
that this implies that at least one of the maps m̂i is not injective for r = 0.

We use again the basis Bq for N⊥
q . However, as Nq is not involutive, Bq+1 generates only

a subset of N⊥
q+1, even if we use a δ-regular coordinate system x on B. Thus there exist

values i, k, ` with i ≥ k such that xi+1hk,` ∈ N⊥
q+1 is not contained in the span of Bq+1. The

equivalence class [xi+1hk,`] ∈ N⊥
q+1/(x1, . . . , xi)N⊥

q is by construction nonzero and linearly
independent of the equivalence classes of all elements in Bq+1 with a class greater than i. We
consider now the action of m̂i+1 on this element.
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Obviously, cls (xi+1hk,`) = k and thus xi+1 is non-multiplicative for this element. By
assumption, Nq+1 is involutive and thus the non-multiplicative product xi+1 · (xi+1hk,`) can
be expressed as a linear combination of other multiplicative products. It is obvious that all
these multiplicative products can only be with respect to the variables x1, . . . , xi+1 and this
implies immediately that m̂i+1 cannot be injective. �

Example 5.4. In Lemma 5.3 it is important that the injectivity holds for all r ≥ 0. Even if
all maps m̂i are injective for r = 0, we cannot conclude that Nq is involutive, as the following
simple example demonstrates. Consider the differential system uxxx = uyyy = 0 where for
notational simplicity we write x1 = x and x2 = y. Then the module N⊥ is generated by the
two monomials x3 and y3. It is trivial that m̂x : N⊥

4 → N⊥
5 is injective. For m̂y we note that

N⊥
4 /xN

⊥
3
∼= 〈x3y, y4〉 and thus it is again easy to see that m̂y is injective.

Nevertheless, the symbol N3 is not involutive. Indeed, consider the non-multiplicative
prolongation Dyuxxx = uxxxy; it is obviously independent of all multiplicative prolongations
and thus the criterion (3.9) is not satisfied. Similarly, the symbol N4 is not involutive, as the
non-multiplicative prolongation Dyuxxxy = uxxxyy is again independent of all multiplicative
prolongations. In contrast, N5 and all higher symbols are trivially involutive, as they vanish.

If we consider the map m̂y : N⊥
5 /xN

⊥
4 → M6/xM5, then we find (using the identification

N⊥
5 /xN

⊥
4
∼= 〈x3y2, y5〉) that m̂y([x3y2]) = [x3y3] = 0 so that m̂y is not injective. This was

to be expected by our proof of Lemma 5.3. The observation that at some lower degree the
maps m̂x and m̂y are injective may be understood by looking at the syzygies of M3. The
syzygy module is generated by the single element (y3,−x3) ∈ k[x, y]2. As it is of degree 3,
nothing happens with the maps m̂i before we encounter M6 and the equation m̂y([x3y2]) = 0
is a trivial consequence of this syzygy. More on the relation between involution and syzygies
may be found in [79].

The proof of Thm. 5.2 consists now of a simple homological argument and two applications
of Serre’s Thm. 5.1.

Proof (of Thm. 5.2). It is a classical result in homological algebra that the short exact se-
quence 0 → N⊥ → Am →M → 0 where the first map is the inclusion and the second one the
canonical projection induces a long exact sequence for the torsion modules. As TorA(Am,k)
trivially vanishes in positive degree, TorA(M,k) ∼= TorA(N⊥,k) in positive degree.

Using Lemma 5.3 and applying Serre’s Theorem 5.1 to the polynomial module N⊥ yields
that involution of Nq is equivalent to the vanishing of TorA(N⊥,k) in positive degree. By
the argument above this implies that TorA(M,k) vanishes in positive degree. Applying again
Serre’s Theorem 5.1, this time to the polynomial module M yields the assertion. �

5.3. Spencer Cohomology. The Spencer cohomology was originally introduced in a com-
pletely different context [82] and only later related to involution. In this section we present
the classical approach to it; in the sequel, we will give a completely different derivation of the
relevant complex. Note that in line with Remark 3.2 we use again the vector space Sq(T ∗B)
instead of the more common Sq(T ∗B).

Consider the vector space homomorphism δ : Sr+1(T ∗B) → T ∗B⊗Sr(T ∗B) defined by the
composition of the natural inclusion map Sr+1(T ∗B) ↪→ T ∗B ⊗

⊗r T ∗B with the canonical
projection T ∗B ⊗

⊗r T ∗B → T ∗B ⊗ Sr(T ∗B). By wedging both sides with Es(T ∗B) (the
s-fold exterior product of T ∗B) and tensoring with the vertical bundle V E we extend δ to a
map Es(T ∗B)⊗Sr+1(T ∗B)⊗ V E → Es+1(T ∗B)⊗Sr(T ∗B)⊗ V E .
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In local coordinates (x,u) of E , we obtain the following picture. Let I = (i1, . . . , ir+1) be
an arbitrary sequence of integers 1 ≤ ik ≤ n and J = (j1, . . . , js) an ascending sequence with
1 ≤ j1 < j2 < · · · < js ≤ n. Then we denote by dx(I) the symmetric product dxi1 · · · dxir+1

and by dx〈J〉 the antisymmetric product dxj1∧· · ·∧dxjs . A basis of Es(T ∗B)⊗Sr+1(T ∗B)⊗V E
consists now of elements of the form dx〈J〉 ⊗ dx(I) ⊗ ∂uα and we obtain

(5.6) δ(dx〈J〉 ⊗ dx(I) ⊗ ∂uα) =
r+1∑
k=1

sgn(J, ik)dx〈sort(J∪ik)〉 ⊗ dx(Ik) ⊗ ∂uα .

Here Ik denotes the sequence I without the element ik. The sequence sort(J ∪ ik) is empty,
if ik already appears in J ; otherwise ik is sorted into place in the natural order. If t is the
number of interchanges needed for this sorting, then sgn(J, ik) = (−1)t.

Setting Si(T ∗B) = 0 for i < 0, we may consider the δ-sequences

(5.7)

0 −→ Sr(T ∗B)⊗ V E δ−→ T ∗B ⊗Sr−1(T ∗B)⊗ V E δ−→ · · ·

· · · δ−→ Es(T ∗B)⊗Sr−s(T ∗B)⊗ V E δ−→ · · ·

· · · δ−→ En(T ∗B)⊗Sr−n(T ∗B)⊗ V E −→ 0

where again n = dimB. The formal Poincaré lemma states that these sequences are exact
for all r ≥ 0.

Given the symbol Nq of a differential equation Rq ⊆ JqE , we set Ni = 0 for i < 0 and
Ni = Si(T ∗B)⊗V E for 0 ≤ i < q. Then the δ-sequence (5.7) may be restricted to a sequence

(5.8) 0 −→ Nq+r
δ−→ T ∗B ⊗Nq+r−1

δ−→ · · · δ−→ En(T ∗B)⊗Nq+r−n −→ 0

which is still a complex but in general no longer exact. Its (bigraded) cohomology is called
the Spencer cohomology of the symbol Nq. We denote by Hs,r(Nq) the cohomology group at
Es(T ∗B)⊗Nr.

Now we can give another homological characterization of an involutive symbol. As it is
the only one of all our criteria for involution that does not require the choice of regular
coordinates, it is often taken as definition of an involutive symbol (see e. g. [18, 31, 65]).

Theorem 5.5. The symbol Nq is involutive, if and only if its Spencer cohomology vanishes
beyond degree q, i. e. Hs,r(Nq) = 0 for all r ≥ q.

This will follow from Theorem 6.5 after which the easy proof will be given.

Remark 5.6. In Sect. 3.4 we introduced the symbol comodule N . Due to (2.19) it possesses
non-trivial components of lower degree, whereas here we simply set Ni = Si(T ∗B)⊗ V E for
0 ≤ i < q. However, for the definition of an involutive symbol only the components of degree
greater than or equal to q matters, so that this difference is of no importance for our purposes.

6. A New View of Spencer Cohomology

6.1. Tor and Cotor. We have seen that the Koszul resolution K = A ⊗ E[u1, . . . , un] is a
“small model” of B(A,k) in the sense that there is the SDR (4.21). There is a dual result
which we will now describe. First, we want to look at the bar construction another way.
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For a given algebra A, we have B̄(A) as in Sect. 4.5. In fact, B̄(A) is a coalgebra with
coproduct given by

∆[a1| · · · |an] =
n∑

i=0

[a1| · · · |ai]⊗ [ai| · · · |an]

where the terms for i = 0 and i = n are respectively, [a1| · · · |an]⊗ [ ] and [ ]⊗ [a1| · · · |an]. It is
well-known that the differential ∂̄ in B(k,k) ∼= B̄(A) is a coderivation. In fact, the coalgebra
B̄(A) is a cofree coalgebra and as such any k-linear map B̄(A) - Ā can be coextended as
a coderivation. The differential ∂̄ is, in fact, the coextension as a coderivation of the map

Ā⊗ Ā - Ā

given by multiplication. See [36, Sect. 2.2] for details.

Now define a degree minus one map B̄(A)
π- A by

π([a]) = a, π([a1| · · · |am] = 0, if m 6= 1.

It is immediate that π is a twisting cochain and the twisted tensor product (A⊗ B̄(A), ∂̄τ ) is
just the bar construction B(A,k). In fact, the Koszul complex is also a twisted tensor product
complex. Giving the polynomial algebra trivial degrees (i.e. all elements are of degree zero),
and zero differential, and giving elements of the exterior algebra degrees determined by |ui| = 1
for all i = 1 . . . n and zero differential, we have that

(6.1) E[u1, . . . , un]
κ- k[x1, . . . , xn]

given by

κ(ui) = xi, for i = 1, . . . , n(6.2)
κ(uI) = 0, for |I| > 1

is a twisting cochain. This is quite easy to see. First of all, since the differentials involved are
zero, the twisting cochain condition reduces to κ ∪ κ = 0. It is easy to see that

∆(uI) =
∑
J⊆I

±uJuI−J

from Sect. 2.11, so since any non zero term of (κ ∪ κ)(uI) must be of the form ui ⊗ uj and
for each such term the term −uj ⊗ ui must also occur. Thus since xixj = xjxi, we must have
(κ ∪ κ)(uI) = 0. The following proposition follows by an easy calculation.

Proposition 6.1. Let A be the polynomial algebra and E be the exterior coalgebra and let
κ : E - A be the Koszul twisting cochain (6.2). Let K = (A⊗E, d) be the Koszul resolution
and let

M ⊗A
µ- M
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be an A-module. The differential dM in the complex M ⊗ E which is suitable for computing
TorA(M,k) is given by the following composite:

M ⊗ E
dM - M ⊗ E

M ⊗ E ⊗ E

1⊗∆

?

1⊗ κ⊗ 1
- M ⊗A⊗ E

µ⊗ 1

6

Dually, one has the loop algebra construction [1, 23, 35, 38] for a coalgebra. Given a
coalgebra C, let C̄ be the kernel of the counit ε : C - k and let Ω̄(C)n = ⊗nC̄. Let
Ω̃(C) =

∑∞
i=0 Ω̄(C)n. Elements of Ω̄(C)n will be written as 〈c1| · · · |cn〉. Note that we can

think of Ω̃(C) as the free algebra generated by C̄ with the identity element given by 〈 〉. Define
δ̃ : Ω̃(C) - Ω̃(C) to be the unique derivation extending the map

C̄
∆- C̄ ⊗ C̄

given by the coproduct. The map ι : C - Ω̃(C) given by

ι(c) = 〈c− ε(c)〉

is in fact a twisting cochain as is easily verified. The twisted tensor product (Ω̃(C)⊗C, δ̃ι) is
called the (one-sided) loop algebra construction.

Remark 6.2. Note that when C is of finite type, B̄(C∗) is the graded dual to Ω̃(C). Also
note that

(
Ω̃(C)⊗C, δ̃ι

)
is not in general suitable for computing Cotor (see, e.g. [38, pp. 15]).

For that we would need
∏∞

i=0 Ω̄(C)n (see [35, §. 5] for a formal defiition of Cotor). In our
case of interest, as will be seen, the smaller complex will be suitable for Cotor.

Given a left comodule N over C, the following composite map δN is a differential on
Ω̃(C)⊗M :

Ω̃(C)⊗N
δN - Ω̃(C)⊗N

Ω̃(C)⊗ C ⊗N

1⊗ ρ

?

1⊗ ι⊗ 1
- Ω̃(C)⊗ Ω̃(C)⊗N

m⊗ 1

6

As might be expected, (4.21) should have a dual. In fact, consider the dual of the Koszul
twisting cochain κ given by (6.2). By Sects. 2.9.1 and 2.11.1, this is a map

(6.3) k[y1, . . . , yn]
κ∗- E[z1, . . . , zn]

where the zi are dual to the ui and the yi are dual to the xi for i = 1, . . . , n and we consider
k[y1, . . . , yn] as a coalgebra and E[z1, . . . , zn] as an algebra. It is easy to see that κ∗ is also a
twisting cochain. Thus, we have a twisted tensor product

(6.4) S =
(
E[z1, . . . , zn]⊗ k[y1, . . . , yn], dκ∗

)
.

It is not difficult to work out the differential dκ∗ explicitly. We have
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Proposition 6.3.

(6.5) dκ∗(uIp) =
n∑

i=1

sgn(I, i)usort(I∪ i)

∂p

∂xi

where I ∪ i is zero if i ∈ I, sort(I ∪ i) is I ∪ i with i sorted into place in the natural order, and
sgn(I, i)(−1)s where s is the number of interchanges needed to sort I ∪ i when i is not in I.

The arguments leading up to (4.21) dualize completely to give the

Proposition 6.4. Let S be the above complex, we have an SDR

S
∇S-

�
fS

((
Ω̃(C), δE

)
, φS

)
.

For a comodule

N
ρ- C ⊗N

over the polynomial coalgebra, give E ⊗N the composite differential δN given by:

E ⊗N
δN - E ⊗N

E ⊗ C ⊗N

1⊗ ρ

?

1⊗ κ∗ ⊗ 1
- E ⊗ E ⊗N

m⊗ 1

6

Using Proposition 2.6 along with the observations of this section, and an observation of
Gugenheim [35], we have the following.

Theorem 6.5. Let C be the polynomial coalgebra and N ⊆ Cm be a subcomodule. Let A = C∗

be the dual polynomial algebra and M = Am/N⊥. Let E denote the exterior bialgebra and
κ : E - A be the Koszul twisting cochain and κ∗ its linear dual. A complex for computing
TorA(M,k) is given by the twisted tensor product

(6.6) (M ⊗ E, dκ)

and a complex for computing CotorC(k, N) is given by

(6.7) (E ⊗N, δN )

Furthermore, there is an isomorphism

(6.8) CotorC(k, N)∗ ∼= TorA(Am/N⊥,k).

Furthermore, CotorC(k, N) is isomorphic to the cohomology of the Spencer complex [83].

Proof. The differential (6.5) is clearly 1-trivial [35, Sect. 6] and hence by Theorem 6.2 of that
paper, the result on Cotor follows. Using the explicit formula for the differential, it is also
clear that it is nothing more or less than the Spencer differential. �

At this point, we can easily give the proof of Proposition 3.13:
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Proof. Theorems 5.1 and 5.2 show that a finitely generated comodule N ⊆ Cm is involutive
if and only if TorA(M,k) vanishes in positive degrees where M = Am/N⊥ as usual. But it is
well known that TorA(M,k) is finite dimensional over k (a simple argument is given e.g. in
[11]). Thus if we define the desuspension of a module by

s−1(M)n = Mn+1

we see that since Tor is finite dimensional over k, it must be the case that Tor(s−r(M),k)
is zero in positive degrees for some r where inductively, s−r(M) = s−1(s−r+1(M)), but by
Proposition 2.6, we have that N∗ ∼= M so it is clear that desuspension corresponds exactly
to prolongation. �

The proof of Theorem 5.5 is also an easy consequence of Theorems 5.1 and 5.2 and the
above Theorem 6.5.

7. Perturbing Resolutions

In [49], it is shown that if I is an ideal of the polynomial algebra A and there is a given term
order (cf. Sect. 2.1) on A and M is the ideal of leading terms of I, the Lyubeznik resolution of
M over A can be “perturbed” into a resolution of I over A. An explicit algorithm for doing
this was given and is based on homological perturbation theory (described below) and Gröbner
basis theory. While we do not need the full thrust of [49], we briefly describe the results in a
section below since we will present a corollary and we also want to elaborate on an algorithm
for calculating minimal resolutions which was used in that paper without discussion.

7.1. The Perturbation Lemma. Given an SDR (4.13)

X
∇

-
�

f
(Y, φ)

and, in addition, a second differential d′Y on Y , let t = d′Y − dY . The perturbation lemma,
[3, 10, 35, 54] states that if we set tn = (tφ)n−1t, n ≥ 1 and if we, for each n, define new
maps on X,

∂n = d+ f(t1 + t2 + · · ·+ tn−1)∇
∇n = ∇+ φ(t1 + t2 + · · ·+ tn−1)∇,

and on Y :

fn = f + f(t1 + t2 + · · ·+ tn−1)φ
φn = φ+ φ(t1 + t2 + · · ·+ tn−1)φ,

then in the limits, provided they exist, we have new SDR data

(X, ∂∞)
∇∞-
�
f∞

(
(Y, d′Y ), φ∞

)
.

Remark 7.1. The difference t of the differentials above is called the initiator in [3]. And
the situation above is called a transference problem. Examples and more information can be
found in [3, 4, 10, 35, 36, 37, 42, 43, 48, 49, 54, 55, 56, 57, 58, 60].
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7.2. Perturbing Resolutions of Monomial Modules. Consider now the Lyubeznik reso-
lution L (4.4). It was shown in [49] that the contracting homotopy ψ defined by (4.6) satisfies
ψ(L) ⊆ L, so that ψ is also a homotopy for L. In order to get an SDR of A/N and L, we need
a normal form as above. As in [49], by defining ε(a ⊗ 1) = a +N and requiring it to vanish
otherwise and defining σ : A/N - L by σ(a+N) = remN (a)⊗ 1 we obtain an SDR

(7.1) N
σ

-
�

ε
(L,ψ)

It was noted in [49] that X = L (the Lyubeznik resolution) and Y = B(k,M) satisfy the
hypotheses of Lemma 4.5. Thus we have an explicit SDR

(7.2) L
∇L-

�
fL

(B(k,M), φL) .

All this brings us to the main theorem of [49].

Theorem 7.2. Let A = k[x1, . . . , xn] be the polynomial algebra and I ⊆ A be an ideal. Let
G be a Gröbner basis for I with respect to some term order. Let N = lt(I) be the ideal
of leading terms of elements of I, so that N is generated by {lt(g) | g ∈ G}. Gröbner basis
theory gives that as vector spaces over k,

A/N ∼= A/I.

Thus, B(k, A/N) ∼= B(k, A/I) as vector spaces (i.e. ignoring differentials). Using this iso-
morphism and the SDR (7.2), we obtain a transference problem. The perturbation formulae
presented in Sect. 7.1 converge in this case and we therefore obtain a relatively free resolution
(L, d∞) of A/M over A of the form

d∞ = d+ P

where d is the ordinary Lyubeznik differential and P is an explicit perturbation. There is
furthermore an explicit SDR

(7.3) (L, d∞)
∇∞-
�
f∞

(B(k, A/N), φ∞) .

We now have the following corollary.

Corollary 7.3. Let Φ be the composite chain map

(L̄, d̄∞)
∇∞- B̄(A)⊗A/N

τ- A/N ⊗ B̄(A)
f̄K- A/N ⊗ K̄

where, as usual, L̄ = k ⊗A L etc. and the second map is determined by (4.1) while the third
map is determined by (4.21). Then Φ induces an isomorphism in homology.

Remark 7.4. When the Taylor resolution involving the monomial ideal I = (m1, . . . ,mk) is
minimal, it is the same as the Lyubeznik resolution and in that case, Fröberg [27] defined an
explicit map ρ from T̄ to the Koszul complex M ⊗ K̄ as follows. When T is minimal, the
monomial generators mi = x

αi,1

1 . . . x
αi,n
n can be arranged so that if i 6= j, αj,j > αi,j . With

the monomials indexed this way, the map is given by

ρ(uI) =
mI

xi1 . . . xir

wi1 . . . wir
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where I = (i1, . . . , ir) and the wj are the generators of the Koszul complex. The map Φ
generalizes this chain equivalence to all cases.

7.3. Finitely Presented Modules. Consider modules M that are finitely presented over
the polynomial algebra A. Thus, M = Ar/I for some finitely generated submodule I ⊆ Ar.
The notion of Gröbner bases extends to this case, i.e. one has the notion of a Gröbner basis
for M with respect to a monomial order and there is a normal form algorithm with respect
to a given monomial order. A good reference for all of this is [44].

A submodule I ⊆ Ar is said to be a monomial submodule, if it has a basis B such that
every element of B is of the form (m1, . . . ,mr) where mi ∈ A is a monomial for all i = 1 . . . r.
Fixing a given monomial order, every element of m ∈ I has a leading term lt(m) just as
in the case r = 1. We let lt(I) = {lt(m) |m ∈ I}. It is clear that lt(I) is a monomial
submodule for any submodule I.

Note that for M = Ar/I, the resolution B(A,M) is exactly as defined in Sect. 4.5. The
resolutions K and B(A,k) are also exactly as defined in Sects. 4.2 and 4.5, so these may
be used to compute TorA(k,M) and TorA(M,k) for any finitely generated module M . The
Taylor and Lyubeznik resolutions can be applied coordinate-wise in this case. With this said,
all of the results of this Sect. apply verbatim.

7.4. Minimal Resolutions of Monomial Modules. If one is only interested in computing
TorA(M,k), this algorithm may seem a bit tautological, but there are reasons that one might
want actual resolutions in general, of course.

We need the notion of a homology decomposition [41]. An explicit algorithm for computing
a homology decomposition of a chain complex X of finite type over k was given in [49, Sect.
7]. A homology decomposition of X is a direct sum decomposition of the form

X = K ⊕B ⊕H

where H is isomorphic to the homology of X, B = im (d) is the subspace of boundries and
furthermore, there are explicit bases for K, B, and H for which the differential d is locally
diagonal. Using the basis for H, we identify it with the homology. It is pointed out in [49,
Sect. 7.2] that such a homology decomposition gives rise to an explicit SDR

H
ι
-

�
f

(X,φ)

where ι is the inclusion and φ is essentially the inverse to d locally (where is is non-zero).
Note that there are very efficient algorithms for computing homology based on Smith nor-

mal form [19, 45]. Using the system described in [47], the first author implemented the
homology decomposition of a chain complex and these programs were used for all the com-
putations in Sect. 8.

If X - M - 0 is a minimal resolution then the complex X ⊗A k for computing
TorA(k,M) has zero differential, i.e. TorA(k,M) ∼= k⊗A X. So suppose that the Lyubeznik
(or some other) resolution is such that the homology decomposition of L̄ = k ⊗A L can be
efficiently computed. We then consider the corresponding homology SDR

H
ῑ
-

�
f̄

(
L̄, φ̄

)
.
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given by a homology decomposition of L̄. We would like to set up a transference problem
(Remark 7.1) and “transfer” the differential from L = A ⊗H to A ⊗ L̄. But it is clear how
to obtain an initiator for this and we have the

Algorithm 7.5. Let L be the Lyubeznik resolution and

H
ῑ
-

�
f̄

(
L̄, φ̄

)
the corresponding homology SDR. Consider the tensor product SDR

(7.4) A⊗H
ι
-

�
f

(
A⊗ L̄, φ

)
where ι = 1A ⊗ ῑ, f = 1A ⊗ f̄ , φ = 1A ⊗ φ̄, and A⊗ L̄ has differential 1a ⊗ d̄.

Let the initiator be t = d−(1⊗ d̄). Note that by the definition of the Lyubeznik differential,
d̄(x), for x ∈ L̄, consists of those terms of d(x) which have constant coefficients. Thus, t(x)
will consist of those terms of d(x) having non-trivial polynomial coefficients. Consider the
perturbed differential given by the perturbation lemma:

(7.5) d∞ = ft+ f(tφt) + · · ·+ f
(
(tφ)nt

)
+ . . .

If d∞ converges, we obtain the minimal resolution of M over A given by

(A⊗H, d∞).

Remark 7.6. At this time, we have not been able to show that, in general, tφ is nilpotent in
each degree, but we have examined many examples using a computer. In each example, the
following is true. For each uI , there is a non-negative integer nI such that (tφ)nI (uI) lands in
A⊗ (K ⊕H) (see the second paragraph of Sect. 7.4). It follows that φ

(
(tφ)nI (uI)

)
= 0 and

so tφ. Examples will be given in Sect. 8.

8. Computations

8.1. Example 1. Consider the example A = k[x, y, z], I = (x2z3, x3z2, xyz, y2), and M =
A/I from [5, Example 3.4]. The Lyubeznik resolution L is the same as the Taylor resolution
in this case and is given by

d(u1) = x2z3

d(u2) = x3z2

d(u3) = xyz

d(u4) = y2
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d(u1u2) = −xu1 + zu2

d(u1u3) = −yu1 + xz2u3

d(u1u4) = −y2u1 + x2z3u4

d(u2u3) = −yu2 + x2zu3

d(u2u4) = −y2u2 + x3z2u4

d(u3u4) = −yu3 + xzu4

d(u1u2u3) = yu1u2 − xu1u3 + zu2u3

d(u1u2u4) = y2u1u2 − xu1u4 + zu2u4

d(u1u3u4) = yu1u3 − u1u4 + xz2u3u4

d(u2u3u4) = yu2u3 − u2u4 + x2zu3u4

d(u1u2u3u4) = −yu1u2u3 + u1u2u4 − xu1u3u4 + zu2u3u4

From this it is easy to see that

TorA
1 (M,k) = k < u1, u2, u3, u4 >,

TorA
2 (M,k) = k < u1u2, u1u3, u2u3, u3u4 >,

TorA
3 (M,k) = k < u1u2u3 > .

Using the algorithm from the last section, we consider a homology decomposition of L̄ to
obtain an SDR

H
∇̄

-
�

f̄

(
L̄, φ̄

)
where H = TorA(M,k) = H(L̄) and corresponding SDR

A⊗H
∇
-

�
f

(
A⊗ L̄, φ

)
where ∇ = 1A ⊗ ∇̄, f = 1A ⊗ f̄ , and L = A⊗ Ā has differential 1A ⊗ d̄. Taking the initiator
to be t = d = d̄, we have a transference problem.

In this case, the homology decomposition is so simple that it can be seen by inspection.
We have

L̄1 = H1

L̄2 = B2 ⊕H2

L̄3 = K3 ⊕B3 ⊕H3

L̄4 = K4

where

H1 = k < u1, u2, u3, u4 >, B2 = k < −uuu4,−u2u4 >,

H2 = k < u1u2, u1u3, u2u3, u3u4 >, K3 = k < u1u2u3, u2u3u4 >,

B3 = k < u1u2u4 >, H3 = k < u1u2u3 >, K4 =< u1u2u3u4 > .
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From this it follows that
φ̄(u1u2u4) = u1u2u3u4

and φ̄ vanishes on all other elements. Thus, the perturbation is zero in this case and we have
the minimal resolution given by

d(u1) = x2z3

d(u2) = x3z2

d(u3) = xyz

d(u4) = y2

d(u1u2) = −xu1 + zu2

d(u1u3) = −yu1 + xz2u3

d(u2u3) = −yu2 + x2zu3

d(u3u4) = −yu3 + xzu4

d(u1u2u3) = yu1u2 − xu1u3 + zu2u3.

Note that this also gives b2,1 = 1, b3,1 = 1, b5,1 = 2, b4,2 = 1, b6,2 = 3, and b7,3 = 1 where
bi,j = dimk(TorA

i,j(M,k) where the bigrading is the one given in Sect. 4.2.

8.2. Example 2. Consider the ideal I = (x3, x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3) in A =
k[x, y, z]. The Taylor resolution has dimension 210 = 1024 and so is not very good for
computations. The Lyubeznik resolution however has dimension 207 and contains “forms”
only up to degree 7 (there is only one 7-form, viz. u1u2u4u7u8u9u10. Using the algorithm
given in [49, Sect. 7] (and a computer), it is quite easy to compute a homology decomposition
of L̄. We find that

K1 = 0, B1 = 0, H1 = k
10,

K2 = 0, B2 = k
20, H2 = k

15,

K3 = k
20, B3 = k

35, H3 = k
6,

K4 = k
35, B4 = k

24, H4 = 0,

K5 = k
24, B5 = k

8, H5 = 0,

K6 = k
8, B6 = k, H6 = 0,

K7 = k, B7 = 0, H7 = 0.

Since Hi for i ≥ 4 are all zero, we need only consider the map φ2 : L2
- L3. We have that

H1 = k < u1, . . . , u10 >

and the differential is as in L. We also have that

H1 = k < u1u2, u1u3, u2u3, u2u4, u2u5, u3u6, u4u5, u4u8, u5u6, u5u9, u6u10, u7u8, u8u9, u9u10 >

and the differential is as in L. Finally,

H3 = k < u1u2u3, u2u3u6 − u2u5u6, u2u4u5, u4u5u9, u4u8u9, u4u7u8, u5u6u10,−u5u9u10 >

and while φ2 is generally non-zero, it vanishes on each of t(x) for x ∈ H3. In fact, each t(x)
for x ∈ H3 is a linear combination of elements in H2, so the perturbation vanishes once more
and the differential is as it is in L.
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8.3. Example 3. Consider the ideal I = (x4y, x3yz, xy3, xy2z, xyz2, y3z) in A = k[x, y, z].
The Lyubeznik resolution has dimension 39 in this case. The non-zero differentials in the
reduced complex are

d̄(u1u2u4) = −u1u4

d̄(u1u2u5) = −u1u5

d̄(u1u2u6) = −u1u6

d̄(u1u3u6) = −u1u6

d̄(u2u3u4) = u2u3

d̄(u2u3u6) = u2u3 − u2u6

d̄(u3u4u5) = −u3u5

d̄(u1u2u3u4) = −u1u2u3 − u1u3u4

d̄(u1u2u3u5) = −u1u3u5

d̄(u1u2u3u6) = −u1u2u3 + u1u2u6 − u1u3u6

d̄(u1u2u4u5) = −u1u4u5

d̄(u1u3u4u5) = u1u3u5

d̄(u2u3u4u5) = u2u3u5

d̄(u1u2u3u4u5) = −u1u2u3u5 − u1u3u4u5

Again, a straightforward calculation gives the homology decomposition

K1 = 0,

B1 = 0,
H1 = k < u1, u2, u3, u4, u5, u6 >,

K2 = 0,
B2 = k < −u1u4,−u1u5,−u1u6, u2u3, u2u3 − u2u6,−u3u5 >,

H2 = k < u1u2, u1u3, u2u4, u2u5, u3u4, u3u6, u4u5 >,

K3 = k < u1u2u4, u1u2u5, u1u3u6, u2u3u4, u2u3u6, u3u4u5 >,

B3 = k < −u1u2u3 − u1u3u4,−u1u3u5,−u1u2u3 + u1u2u6 − u1u3u6,−u1u4u5, u2u3u5 >,

H3 = k < u1u2u3, u2u4u5 >,

K4 = k < −u1u3u4u5, u1u2u3u6, u1u2u4u5, u2u3u4u5 >,

B4 = k < −u1u2u3u5 − u1u2u3u4 >,

H4 = 0,
K5 = k < u1u2u3u4u5 >,

B5 = 0,
H5 = 0.
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The splitting homotopy is zero in degrees 0 and 1. Thus, the differential in degrees 1 and 2
are as they are in L. In degree 3, we have

t(u1u2u3) = y2u1u2 − zu1u3 + xu2u3

t(u2u4u5) = zu2u4 − yu2u5 + x2u4u5.

Note that since u2u3 is not in H2, so we expect some non-trivial action using our method in
this case. In fact, our calculations show that φ vanishes on all terms involved in the right
hand sides above except in one case, viz.

φ(u2u3) = u2u3u4.

We thus consider

α = tφ(y2u1u2 − zu1u3 + xu2u3)
= xt(u2u3u4)
= x(−yu2u4 + x2u3u4)
= −xyu2u4 + x3u3u4.

We now note that φ vanishes on both u2u4 and u3u4, so the perturbation converges, i.e.
φtφ(y2u1u2 − zu1u3 + xu2u3) = 0. We now note that

(d̄φ+ φd̄)(u2u3) = d̄(u2u3u4) = u2u3

and so f(u2u3) = 0. Thus, we have

d∞(u1u2u3) = f(y2u1u2 − zu1u3 + xu2u3 + xyu2u4 − x3u3u4)
= y2u1u2 − zu1u3 + xyu2u4 − x3u3u4.

Finally, we note that φ vanishes on t(u2u4u5) and so we have derived the minimal resolution
of M over A given by

d∞(u1) = x4y

d∞(u2) = x3yz

d∞(u3) = xy3

d∞(u4) = xy2z

d∞(u5) = xyz2

d∞(u6) = y3z

d∞(u1u2) = −zu1 + xu2

d∞(u1u3) = −y2u1 + x3u3

d∞(u2u4) = −yu2 + x2u4

d∞(u2u5) = −zu2 + x2u5

d∞(u3u4) = −zu3 + yu4

d∞(u3u6) = −zu3 + xu6

d∞(u4u5) = −zu4 + yu5
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d∞(u1u2u3) = y2u1u2 − zu1u3 + xyu2u4 − x3u3u4

d∞(u2u4u5) = zu2u4 − yu2u5 + x2u4u5
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