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Abstract

We provide a rigorous formulation of Vessiot’s vector field approach to the analysis of general
systems of partial differential equations and prove its equivalence to the formal theory.
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1 Introduction

Vessiot [12] proposed in the 1920s an approach to deal with general systems of partial
differential equations which takes an intermediate position between the formal theory [8, 9]
and the Cartan-Kähler theory of exterior differential systems [1, 4]: while still formulated
in the language of differential equations (considered as submanifolds of a jet bundle), it
represents essentially a dual, vector field based formulation of the Cartan-Kähler theory
replacing exterior derivatives by Lie brackets.

The Vessiot theory has not attracted much attention. Presentations in a more modern
language are contained in [2, 10]; applications have mainly appeared in the context of
the Darboux method for solving hyperbolic equations, see e. g. [11]. While a number of
textbooks provide a very rigorous analysis of the Cartan-Kähler theory, the above men-
tioned references (and also Vessiot’s original work) are somewhat lacking in this respect.
In particular, the question what assumptions are needed has been ignored.

The purpose of the present article is to close this gap and simultaneously to relate
the Vessiot theory with the key concepts of the formal theory like involution and formal
integrability. We will show that the Vessiot construction succeeds, if and only if it is
applied to an involutive system. This result is not surprising, given the well-known fact
that the formal theory and the Cartan-Kähler theory are equivalent. However, to our
knowledge an explicit proof has never been given. As a by-product, we will provide a
new definition for integral elements based on the contact map making also the relations
between the formal theory and the Cartan-Kähler theory more transparent.

1 Work supported by NEST-Adventure contract 5006 (GIFT).
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2 Formal Theory

We cannot give here a detailed introduction into the formal theory. Our presentation and
notations follow [9]; other general references are [5, 8]. For simplicity, we will mainly work
in local coordinates, although the whole theory can be expressed in an intrinsic way.

Let π : E → X be a (smooth) fibred manifold. We call coordinates x = (x1, . . . , xn) of
X independent variables and fibre coordinates u = (u1, . . . , um) in E dependent variables.
Sections2 σ : X → E correspond locally to functions u = s(x). Derivatives are written
in the form uα

µ = ∂|µ|uα/∂xµ1

1 · · ·∂xµn
n where µ = [µ1, . . . , µn]. Adding the derivatives uα

µ

up to order q (denoted by u(q)) defines a local coordinate system for the q-th order jet
bundle Jqπ which may be considered as the space of truncated Taylor expansions.

The jet bundle Jqπ admits a number of fibrations. For us particularly important are
πq

q−1 : Jqπ → Jq−1π and πq : Jqπ → X . To each section σ : X → E locally defined

by σ(x) =
(

x, s(x)
)

we may associate its prolongation jqσ : X → Jqπ, a section of the
fibration πq given by jqσ(x) =

(

x, s(x), ∂
x
s(x), ∂

xx
s(x), . . .

)

.
The geometry of Jqπ is to a large extent determined by its contact structure. It can

be described in a number of ways. We will use three different approaches. The contact
codistribution C(0)

q ⊆ T ∗(Jqπ) consists of all one-forms such that their pull-back by a
prolonged section vanishes. Locally, it is spanned by the contact forms3

ωα
µ = duα

µ − uα
µ+1i

dxi , 0 ≤ |µ| < q . (1)

Dually, we may consider the contact distribution Cq ⊆ T (Jqπ) consisting of all vector

fields annihilated by C(0)
q . One easily verifies that it is generated by the fields

C
(q)
i = ∂i + uα

µ+1i
∂uα

µ
, 1 ≤ i ≤ n ,

Cµ
α = ∂uα

µ
, |µ| = q .

(2)

Note that the latter fields span the vertical bundle V πq
q−1 of the fibration πq

q−1. Thus
the contact distribution can be split as Cq = V πq

q−1 ⊕H. Here the complement H is an
n-dimensional transversal subbundle of T (Jqπ) and obviously not uniquely determined

(though any local coordinate chart induces via the span of the vectors C
(q)
i one possible

choice). Note that any such complement H may be considered as the horizontal bundle of
a connection on the fibred manifold πq : Jqπ → X (not for the fibration πq

q−1!). Following
Fackerell [2], we call any connection on πq whose horizontal bundle consists of contact
fields a Vessiot connection4.

2 Although we will exclusively consider local sections, we will use throughout a “global” notation in order
to avoid the introduction of many local neighbourhoods.
3 Throughout the article we use the convention that a summation over repeated indices is understood.
4 In the literature the name Cartan connection [6] is more common.
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As a third approach to the contact structure we consider, following [7], the contact map.
It is the unique map Γq : Jqπ×XTX → T (Jq−1π) such that the diagram

Jqπ×XTX
Γq

// T (Jq−1π)

TX
((jqσ)◦τX )×idTX

eeKKKKKKKKKK T (jq−1σ)

99ttttttttt

(3)

commutes for any section σ. Because of its linearity over πq
q−1, we may also consider it as

a map Γq : Jqπ → T ∗X⊗Jq−1πT (Jq−1π) with the local coordinate form:

Γq : (x,u(q)) 7→
(

x,u(q−1); dxi ⊗ (∂xi + uα
µ+1i

∂uα
µ
)
)

. (4)

Now one can see that im Γq = Cq−1 and hence Cq = (Tπq
q−1)

−1(im Γq).

Proposition 2.1. A section γ : X → Jqπ is of the form γ = jqσ for a section σ : X → E ,
if and only if im Γq

(

γ(x)
)

= Tγ(x)π
q
q−1

(

Tγ(x) im γ
)

for all points x ∈ X where γ is defined.

Thus for any section σ : X → E the equality im Γq+1

(

jq+1σ(x)
)

= im Tx(jqσ) holds
and we may say that knowing the (q + 1)-jet jq+1σ(x) of a section σ at some x ∈ X is
equivalent to knowing its q-jet ρ = jqσ(x) at x plus the tangent space Tρ(im jqσ) at this
point. This observation will later be the key for the Vessiot theory.

A differential equation of order q is a fibred submanifold Rq ⊆ Jqπ locally described as
the zero set of some smooth functions on Jqπ:

Rq :
{

Φτ (x,u(q)) = 0 , τ = 1, . . . , t . (5)

(Note that we do not distinguish between scalar equations and systems). We denote by
ι : Rq →֒ Jqπ the canonical inclusion map. Differentiating every equation in (5) yields
the prolonged equation Rq+1 ⊆ Jq+1π defined by the equations Φτ = 0 and DiΦ

τ = 0
with the formal derivative Di. Iteration of this process gives the higher prolongations
Rq+r ⊆ Jq+rπ. A subsequent projection leads to R(1)

q = πq+1
q (Rq+1) ⊆ Rq which can be a

proper submanifold, if integrability conditions are hidden. Rq is formally integrable, if at

any prolongation order r > 0 the equality R(1)
q+r = Rq+r holds.

A solution is a section σ : X → E such that its prolongation satisfies im jqσ ⊆ Rq. In
local coordinates, this obviously coincides with the usual notion of a solution. For formally
integrable equations it is straightforward to construct order by order formal power series
solutions. Otherwise it is very hard to find solutions. A key insight of Cartan was to
introduce infinitesimal solutions or integral elements at a point ρ ∈ Rq as subspaces
Uρ ⊆ TρRq which are potentially part of the tangent space of a prolonged solution.

Definition 2.2. Let Rq ⊆ Jqπ be a differential equation. A linear subspace Uρ ⊆ TρRq is
an integral element at the point ρ ∈ Rq, if a point ρ̂ ∈ Rq+1 exists such that πq+1

q (ρ̂) = ρ
and T ι(Uρ) ⊆ im Γq+1(ρ̂).
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The above definition of an integral element is not the standard one. Usually, one
considers the pull-back ι∗C0

q of the contact codistribution or more precisely the differential
ideal I[Rq] = 〈ι∗C0

q 〉diff generated by it (recall that algebraically I[Rq] is thus spanned
by a basis of ι∗C0

q and the exterior derivatives of the forms in this basis) and an integral
element is a subspace on which this ideal vanishes.

Proposition 2.3. Let Rq be a differential equation such that R(1)
q = Rq. A linear

subspace Uρ ⊆ TρRq is an integral element at the point ρ ∈ Rq, if and only if T ι(Uρ) lies
transversal to the fibration πq

q−1 and every differential form ω ∈ I[Rq] vanishes on Uρ.

Proof. Assume first that Uρ is an integral element. Thus there exists a point ρ̂ ∈ Rq+1 such
that πq+1

q (ρ̂) = ρ and T ι(Uρ) ⊆ im Γq+1(ρ̂). This implies firstly that T ι(Uρ) is transversal
to πq

q−1 and secondly that every one-form ω ∈ ι∗C0
q vanishes on Uρ, as im Γq+1(ρ̂) ⊂ (Cq)ρ.

Thus there only remains to show that the same is true for the two-forms dω ∈ ι∗(dC0
q ).

Choose a section γ : Rq → Rq+1 such that γ(ρ) = ρ̂ and define a distribution D of
rank n on Rq by setting T ι(Dρ̃) = im Γq+1

(

γ(ρ̃)
)

for any point ρ̃ ∈ Rq. Obviously, by
construction Uρ ⊆ Dρ. It follows from the coordinate form (4) of the contact map that

locally the distribution D is spanned by n vector fields Xi such that ι∗Xi = C
(q)
i +γα

µ+1i
Cµ

α

where the coefficients γα
ν are the highest-order components of the section γ. Thus the

commutator of two such vector fields satisfies

ι∗
(

[Xi, Xj]
)

=
(

C
(q)
i (γα

µ+1j
)− C

(q)
j (γα

µ+1i
)
)

Cµ
α + γα

µ+1j
[C

(q)
i , Cµ

α ]− γα
µ+1i

[C
(q)
j , Cµ

α ] . (6)

The commutators in the second line vanish whenever µi = 0 or µj = 0, respectively.
Otherwise we obtain −∂uα

µ−1i
and −∂uα

µ−1j
, respectively. But this implies that the two

sums in the second line cancel each other and we find that ι∗
(

[Xi, Xj ]
)

∈ Cq. Thus we
find for any contact form ω ∈ C0

q : that

ι∗(dω)(Xi, Xj) = dω(ι∗Xi, ι∗Xj) = ι∗Xi

(

ω(ι∗Xj)
)

−ι∗Xj

(

ω(ι∗Xi)
)

+ω
(

ι∗([Xi, Xj])
)

. (7)

Each summand in the last expression vanishes, as all appearing fields are contact fields.
Hence any form ω ∈ ι∗(dC0

q ) vanishes on D and in particular on Uρ ⊆ Dρ.
For the converse, note that any subspace Uρ ⊆ TρRq satisfying the imposed conditions

is spanned by linear combinations of vectors vi such that T ι(vi) = C
(q)
i ρ + γα

µ,iC
µ
α ρ

where γα
µ,i are real coefficients. Now consider a contact form ωα

ν with |ν| = q − 1. Then

dωα
ν = dxi ∧ duα

ν+1i
. Evaluating the condition ι∗(dωα

ν ) ρ(vi, vj) = dω
(

T ι(vi), T ι(vj)
)

= 0
yields the equation γα

ν+1i,j
= γα

ν+1j ,i. Hence the coefficients are actually of the form
γα

µ,i = γα
µ+1i

and a section σ exists such that ρ = jqσ(x) and Tρ(im jqσ) is spanned by the
vectors T ι(v1), . . . , T ι(vn). But this implies that Uρ is an integral element.

For many purposes the purely geometric notion of formal integrability is not sufficient
and one needs the stronger algebraic concept of involution. An intrinsic definition of
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involution requires the Spencer cohomology. We give here only a simplified coordinate
version requiring that one works in “good”, so-called δ-regular, coordinates x (this is
not a strong restriction, as generic coordinates are δ-regular and there are possibilities to
construct systematically “good” coordinates – see e. g. [3]).

The (geometric) symbol of a differential equation Rq is Nq = V πq
q−1 ∩ TRq, i. e. the

vertical part of the tangent space to Rq. Locally, Nq is the solution space of the following
linear system of (algebraic) equations in the unknowns vα

µ (coordinates on Sq(T
∗X )⊗V E):

Nq :







∑

α,|µ|=q

(

∂Φτ

∂uα
µ

)

vα
µ = 0 . (8)

Thee prolonged symbols Nq+r are simply the symbols of the prolonged equations Rq+r.
The class of a multi-index µ = [µ1, . . . , µn] is the smallest k for which µk is different

from zero. The columns of the symbol matrix (8) are labelled by the vα
µ . After ordering

them by class, i. e. a column with a multi-index of higher class is always left of one with
lower class, we compute a row echelon form. We denote the number of rows where the
pivot is of class k by β

(k)
q and associate with each such row the multiplicative variables

x1, . . . , xk. Prolonging each equation only with respect to its multiplicative variables yields
independent equations of order q +1, as each has a different leading term. If prolongation
with respect to the non-multiplicative variables does not lead to additional independent
equations of order q + 1, in other words if

rankNq+1 =

n
∑

k=1

kβ(k)
q , (9)

then the symbol Nq is involutive (Cartan test).
The differential equation Rq is called involutive, if it is formally integrable and its

symbol is involutive. Involutive equations possess a number of pleasant properties; for
our purposes the most important one is the Cartan-Kähler theorem asserting the existence
and uniqueness of analytic solutions for the formally well-posed initial value problem with
an analytic involutive differential equation.

For notational simplicity, we will consider in our subsequent analysis mainly first-order
equations R1 ⊆ J1π. Furthermore, we will assume that any present algebraic (i. e. zeroth-
order) equation has been explicit solved, reducing thus the number of dependent variables.
From a theoretical point of view this does not really represent a restriction, as any differ-
ential equation Rq can be transformed into an equivalent first-order one and under some
mild regularity assumptions the algebraic equations can always be solved locally.

For later use, we define now a local normal form, the Cartan normal form, for such
an equation. It arises by solving each equation for a derivative uα

j , the principal derivat-
ive, and eliminating this derivative from all other equations. Furthermore, the principal
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derivatives are chosen in such a manner that their classes are as great as possible. All
the remaining derivatives are called parametric. Ordering the obtained equations by their
class, we can decompose into subsystems:

uα
n = φα

n(x,u, uγ
j )







1 ≤ α ≤ β
(n)
1

1 ≤ j ≤ n

β
(j)
1 < γ ≤ m

(10)

uα
n−1 = φα

n−1(x,u, uγ
j )







1 ≤ α ≤ β
(n−1)
1

1 ≤ j ≤ n− 1

β
(j)
1 < γ ≤ m

(11)

...

uα
1 = φα

1 (x,u, uγ
j )







1 ≤ α ≤ β
(1)
1

1 = j

β
(j)
1 < γ ≤ m

(12)

Note that the values β
(k)
1 are indeed exactly those appearing in the Cartan test (9),

as the symbol matrix of a differential equation in Cartan normal form is automatically
triangular with the principal derivatives as pivots. The Cartan characters of R1 are
defined as α

(k)
1 = m−β

(k)
1 and thus equal the number of parametric derivatives of class k.

For a differential equation R1 in Cartan normal form it is possible to perform an
involution analysis in closed form. We remark that an effective test of involution proceeds
as follows. Each equation in (10) is prolonged with respect to each of its non-multiplicative
variables. The arising second-order equations are simplified modulo the original system
and the prolongations with respect to the multiplicative variables. The symbol N1 is
involutive, if and only if after the simplification none of the equations is second-order any
more. The equation R1 is involutive, if and only if all new equations simplify to zero, as
any remaining first-order equation would be an integrability condition.

In order to apply this test, we set B :=
{

(α, i) ∈ N
m×N

n : uα
i is a principal derivative

}

and for each (α, i) ∈ B we define Φα
i := uα

i −φα
i . Now a straightforward calculation yields

DjΦ
α
i = uα

ij − C
(1)
j (φα

i )−
i
∑

h=1

m
∑

γ=β
(h)
1 +1

uγ
hjC

h
γ (φα

i ) . (13)

For j > i, the prolongation DjΦ
α
i is non-multiplicative, otherwise it is multiplicative.

Now let j > i, so that (13) is a non-multiplicative prolongation. According to our test,
the symbol N1 is involutive, if and only if it is possible to eliminate on the right hand
side of (13) all second-order derivatives by adding multiplicative prolongations. As a first
step we compute the difference DjΦ

α
i −DiΦ

α
j −

∑i

h=1

∑m

γ=β
(h)
1 +1

Ch
γ (φα

h)DhΦ
γ
j eliminating
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all second-order derivatives explicitly present in (13). Expansion of the formal derivatives
yields after a tedious but straightforward computation:

DjΦ
α
i −DiΦ

α
j +

i
∑

h=1

m
∑

γ=β
(h)
1 +1

Ch
γ (φα

h)DhΦ
γ
j

= C
(1)
i (φα

j )− C
(1)
j (φα

i )−
i
∑

h=1

m
∑

γ=β
(h)
1 +1

Ch
γ (φα

h)C
(1)
h (φγ

j )

+
i−1
∑

a=1

m
∑

δ=β
(a)
1 +1

uδ
aa







β
(j)
1
∑

γ=β
(a)
1 +1

Ca
γ (φα

a )Ca
δ (φγ

j )







+
∑

1≤a<b<i











β
(b)
1
∑

δ=β
(a)
1 +1

uδ
ab







β
(j)
1
∑

γ=β
(b)
1 +1

Cb
γ(φ

α
b )Ca

δ (φγ
j ) +







+

m
∑

δ=β
(b)
1 +1

uδ
ab







β
(j)
1
∑

γ=β
(a)
1 +1

Ca
γ (φα

a )Cb
δ(φ

γ
j ) +

β
(j)
1
∑

γ=β
(b)
1 +1

Cb
γ(φ

α
b )Ca

δ (φγ
j )

















+
i
∑

a=1
b=i











β
(i)
1
∑

δ=β
(a)
1 +1

uδ
ai






−Ca

δ (φα
a ) +

β
(j)
1
∑

γ=β
(i)
1 +1

Ci
γ(φ

α
i )Ca

δ (φγ
j )







+

m
∑

δ=β
(i)
1 +1

uδ
ai






−Ca

δ (φα
a ) +

β
(j)
1
∑

γ=β
(i)
1 +1

Ci
γ(φ

α
i )Ca

δ (φγ
j ) +

β
(j)
1
∑

γ=β
(a)
1 +1

Ca
γ (φα

a )Ci
δ(φ

γ
j )

















+

i−1
∑

a=1

∑

δ=β
(j)
1 +1

uδ
aj






Ca

δ (φα
a ) +

β
(j)
1
∑

γ=β
(a)
1 +1

Ca
γ (φα

1 )Cj
δ (φ

γ
j )







+
i
∑

a=1
i+1≤b<j

m
∑

δ=β
(b)
1

uδ
ab







β
(j)
1
∑

γ=β
(a)
1 +1

Ca
γ (φα

1 )Cb
δ(φ

γ
j )







+

m
∑

δ=β
(j)
1 +1

uδ
ij






Ci

δ(φ
α
i )− Cj

δ (φ
α
j ) +

β
(j)
1
∑

γ=β
(i)
1 +1

Ci
γ(φ

α
i )Cj

δ (φ
γ
j )






.

(14)
In the first line we collected all terms of lower than second order. Furthermore, none
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of the now appearing second-order derivatives is of a form that it could be eliminates by
adding some multiplicative prolongation. Hence the symbol N1 is involutive, if and only
if all the expressions in square brackets vanish. The differential equation R1 is involutive,
if and only if in addition the first line vanishes, as it represents an integrability condition.
Thus (14) provides us with an explicit form of all obstructions to involution for R1.

3 The Vessiot distribution

By Proposition 2.1, the tangent spaces Tρ(im jqσ) of prolonged sections at points ρ ∈ Jqπ
are always subspaces of the contact distribution Cq ρ. If the section σ is a solution of Rq,
it furthermore satisfies by definition im jqσ ⊆ Rq and hence T (im jqσ) ⊆ TRq. These
considerations motivate the following construction.

Definition 3.1. The Vessiot distribution of a differential equation Rq ⊆ Jqπ is the
distribution V[Rq] ⊆ TRq defined by

T ι
(

V[Rq]
)

= T ι
(

TRq

)

∩ Cq Rq
. (15)

Again, this is not the usual definition found in the literature. But the equivalence to
the standard approach is an elementary exercise in computing with pull-backs:

Proposition 3.2. The Vessiot distribution satisfies V[Rq] = (ι∗C0
q )

0.

The Vessiot distribution is not necessarily of constant rank along Rq; for simplicity,
we will assume its rank does not vary over the differential equation. Note that the
symbol Nq as the vertical part of TRq is always contained in V[Rq]. In general, V[Rq]
is not involutive (an exception are formally integrable equations of finite type), but it
may contain involutive subdistributions; among these, those of dimension n which are
transversal (to the fibration Rq → X ) are of special interest for us.

Lemma 3.3. If the section σ : X → E is a solution of the equation Rq, then the tangent
bundle T (im jqσ) is an n-dimensional transversal involutive subdistribution of V[Rq]|im jqσ.
Conversely, if U ⊆ V[Rq] is an n-dimensional transversal involutive subdistribution, then
any integral manifold of U has locally the form im jqσ for a solution σ of Rq.

This simple observation forms the basis of Vessiot’s approach to the analysis of Rq: he
proposed to search for all n-dimensional, transversal involutive subdistributions of V[Rq].
Before we do this, we first show how integral elements appear in this program.

Proposition 3.4. Let U ⊆ V[Rq] be a transversal subdistribution of the Vessiot distribu-
tion of constant rank k. Then the spaces Uρ are k-dimensional integral elements for all
points ρ ∈ Rq if, and only if, [U ,U ] ⊆ V[Rq].

8
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Proof. Let {ω1, . . . , ωr} be a basis of the codistribution ι∗C0
q . Then an algebraic basis of

the ideal I[Rq] is {ω1, . . . , ωr, dω1, . . . , dωr}. Any vector field X ∈ U trivially satisfies
ωi(X) = 0 by Proposition 3.2. For arbitrary fields X1, X2 ∈ U , we have dωi(X1, X2) =
X1

(

ωi(X2)
)

−X2

(

ωi(X1)
)

+ωi

(

[X1, X2]
)

. The first two summands on the right hand side
vanish trivially and the remaining equation implies our claim.

For obvious reasons, we call a subdistribution U ⊆ V[Rq] satisfying the conditions
of Proposition 3.4 an integral distribution5 for the differential equation Rq. Note that
generally an integral distribution is not integrable; the name only reflects the fact that it
is composed of integral elements.

Since the symbol Nq of the equation Rq is contained in the Vessiot distribution, we
can split the Vessiot distribution into V[Rq] = Nq ⊕H where H is some complement. By
analogy to the above discussed decomposition of the full contact distribution, this leads
naturally to connections: provided dimH = n, it may be considered as the horizontal
bundle of a connection of the fibred manifold Rq → X and we call any such connection a
Vessiot connection for Rq. The existence of n-dimensional complements is connected to
the absence of integrability conditions.

Proposition 3.5. If the differential equation Rq satisfies R(1)
q = Rq, then its Vessiot

distribution possesses locally a decomposition V[Rq] = Nq ⊕ H with an n-dimensional
complement H.

Proof. The assumption Rq = R(1)
q implies that to every point ρ ∈ Rq at least one point

ρ̂ ∈ Rq+1 with πq+1
q (ρ̂) = ρ exists. We choose such a ρ̂ and consider im Γq+1(ρ̂) ⊂ Tρ(Jqπ).

By definition of the contact map Γq+1, this is an n-dimensional transversal subset of
Cq ρ. Thus there only remains to show that it is also tangential to Rq, as then we can
define a complement by T ι(Hρ) = im Γq+1(ρ̂). But this tangency is a trivial consequence
of ρ̂ ∈ Rq+1; using for example the local coordinates expression (4) for Γq and a local
representation Φτ = 0 of Rq, one immediately sees that the vector vi = Γq+1(ρ̂, ∂xi) ∈
Tρ(Jqπ) satisfies dΦτ

ρ(vi) = DiΦ
τ (ρ̂) = 0 and thus is tangential to Rq.

Hence we have proven that it is possible to construct for each point ρ ∈ Rq a complement
Hρ such that Vρ[Rq] = (Nq)ρ ⊕ Hρ. Now we must show that these complements can
be chosen in such a way that the form a distribution (which by definition is smooth).

Our assumption Rq = R(1)
q implies that the restricted projection π̂q+1

q : Rq+1 → Rq

is a surjective submersion, i. e. it defines a fibred manifold. Thus if we choose a local
section γ : Rq → Rq+1 and then always take ρ̂ = γ(ρ), it follows immediately that the
corresponding complements Hρ define a smooth distribution as required.

Any n-dimensional complement H is obviously a transversal subdistribution of V[Rq],
but not necessarily involutive. Conversely, any n-dimensional subdistribution H of V[Rq]

5 In the literature the terminology “involution” is common for such distributions which, however, is quite
confusing in our opinion.
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is a possible choice as complement. Hence we may reformulate Vessiot’s goal as the
construction of all flat Vessiot connections. Choosing a “reference” complement H0 with
a basis {X1, . . . , Xn}, a basis for any other complement H arises by adding some vertical
fields to the vectors Xi. We will follow this approach in the next section. For the remainder
of this section we turn our attention to the choice of a convenient basis of V[Rq] that will
facilitate our computations.

Since the symbol Nq is an involutive distribution, there is a basis (Y1, Y2, . . . Yr) for it
with r = dimNq whose Lie brackets vanish: [Yk, Yℓ] = 0 for all 1 ≤ k, ℓ ≤ r. Since the
vertical bundle V πq

q−1 is also involutive, we can decompose V πq
q−1 = Nq ⊕ Z where Z

is again an involutive distribution. Z can be spanned by vector fields Z1, . . . , Zs where
s =

∑n

k=1 β
(k)
q equals the number of principal derivatives which are chosen such that we

have [Za, Zb] = 0 for all 1 ≤ a, b ≤ s. In local coordinates, a particularly convenient choice
for the fields Yk and Za exists. We choose for any 1 ≤ k ≤ r a parametric derivative uα

µ

such that (α, µ) /∈ B and Yk = Y α
µ = ι∗(∂uα

µ
), and for any 1 ≤ a ≤ s there is a principal

derivative uα
µ such that (α, µ) ∈ B and Za = Zα

µ = ∂uα
µ
.

The reference complement H0 is chosen as follows. Any basis of it must consist of
n transversal contact fields. Since the fields Cµ

α are vertical, we can always use a basis

(X̃1, . . . , X̃n) of the form X̃i = C
(q)
1 + ξα

iµC
µ
α with some coefficient functions ξα

iµ chosen

such that X̃i is tangential to Rq. The fields Cµ
α also span the vertical bundle V πq

q−1 and
hence we may exploit the above decomposition for a further simplification of the basis.
By subtracting from each X̃i a suitable linear combination of the fields Yk spanning the
symbol Nq, we arrive at a basis (X1, . . . , Xn) where Xi = C

(q)
i + ξα

i Za.
As already mentioned above, generally, the Vessiot distribution V[Rq] is not involutive.

Hence it is not very surprising that its structure equations will be of great importance
later. Since the only non-vanishing Lie brackets of the contact fields are

[Cν+1i
α , C

(q)
i ] = ∂uα

ν
, |ν| = q − 1 , (16)

we may extend the above chosen basis (Xi, Yk) of V[Rq] to a basis of the derived Vessiot
distribution V ′[Rq] by adding vector fields Zs+1, . . . , Zt where for each a there exists a
derivative uα

µ of order q − 1 such that Za = ∂uα
µ
. By construction, the non-vanishing

structure equations of V[Rq] take now the form

[Xi, Xj] = Aa
ijZa and [Xi, Yk] = Ba

ikZa (17)

with some smooth functions Aa
ij and Ba

ik.
For a first-order equation R1 with Cartan normal form (10) satisfying the assumptions

of Proposition 3.5 it is possible to perform this process explicitly. We choose as reference
complement H0 the linear span of the vector fields

Xi = C
(q)
i +

∑

(α,µ)∈B

C
(q)
i (φα

µ)Cµ
α . (18)

10
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One easily verifies in a rather straightforward computation that this is a valid choice.
Using this reference complement, we can explicitly evaluate the Lie brackets (17) on R1

and obtain for the coefficient Aa
ij with i < j and Za = Zα

i = Zα
j = ∂uα that

Aa
ij =







0 : (α, i) 6∈ B and (α, j) 6∈ B

C
(1)
i (φα

j ) : (α, i) 6∈ B and (α, j) ∈ B

C
(1)
i (φα

j )− C
(1)
j (φα

i ) : (α, i) ∈ B and (α, j) ∈ B

(19)

and for Ba
ik with Yk = Y β

j and Za = ∂uα

Ba
ik =







0 : (α, i) /∈ B and (α, i) 6= (β, j)
−1 : (α, i) /∈ B and (α, i) = (β, j)

−Cj
β(φα

i ) : (α, i) ∈ B
. (20)

We collect these coefficients into vectors Aij and matrices Bi where, for Za = ∂uα , the
m rows are ordered according to increasing α, and the dimN1 = r columns are ordered,
according to increasing j, in n blocks (empty for those j with m = β

(j)
1 ) and within each

block according to increasing β (β
(j)
1 < β ≤ m). Note that for a differential equation

with constant coefficients all the Aij vanish and for a maximally overdetermined equation
there are no Bi. The matrices Bi have a special form: for any class i, the matrix Bi has
m−β

(i)
1 rows where all entries are zero with only one exception: for each 1 ≤ ℓi < m−β

(i)
1

we have B
β

(i)
1 +ℓi

i,k = −δℓ k where ℓ :=
∑i−1

h=1(m− β
(h)
1 ) + ℓi.

The entries in the remaining β
(i)
1 rows are −Cj

β(φα
i ). Some of these vanish, too: all of

the parametric derivatives on the right side of an equation in the Cartan normal form
(10) are of a class lower than that of the equation’s left side as otherwise we would solve
this equation for the derivative of highest class. This means −Cj

β(φα
i ) = 0 whenever

j = class(uβ
j ) > class(uα

i ) = i, and it follows that for each i, 1 ≤ i ≤ n the matrix Bi

looks like

Bi =

(

−C1
β1(φα

i ) · · · −Ci−1
βi−1(φ

α
i ) −Ci

βi(φα
i ) 0 · · ·0

0 · · · 0 −1
α

(i)
1

0 · · ·0

)

. (21)

Here, for 1 ≤ j ≤ i, we have β
(j)
1 + 1 ≤ βj ≤ m. The unit block leads immediately to the

estimate

α
(i)
1 = m− β

(i)
1 ≤ rank Bi ≤ min{m,

i
∑

j=1

α
(j)
1 } . (22)

Since the matrices Bi are made up of block matrices and we are going to calculate with
these blocks, we introduce the following notation: let for any i, 1 ≤ i ≤ n, b

a[Bi ]dc denote
the block in Bi consisting of the entries from the ath row to the bth row and from the cth
column to the dth column.

11
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4 Flat Vessiot connections

Recall that our goal is the construction of all n-dimensional transversal involutive subdis-
tributions U within the Vessiot distribution V[R1]. Taking (Xi, Yk) as a basis for V[R1],
we make for the basis (U1, . . . , Un) of such a distribution U the ansatz Ui = Xi + ζk

i Yk

with yet undetermined coefficient functions ζk
i . This ansatz follows naturally from our

considerations above, as the fields Xi span a reference complement to N1 and all fields Yk

are vertical. Since the fields Ui are in triangular form, the distribution U is involutive, if
and only if their Lie brackets vanish, and using (17) this means:

[Ui, Uj ] = [Xi, Xj] + ζk
i [Yk, Xj] + ζk

j [Xi, Yk] + (Ui(ζ
k
j )− Uj(ζ

k
i ))Yk

= (Aa
ij −Ba

jkζ
k
i + Ba

ikζ
k
j )Za + (Ui(ζ

k
j )− Uj(ζ

k
i ))Yk = 0 .

(23)

By definition of the Yk and Za, these fields are linearly independent, so their coeffi-
cients must vanish for U to be involutive. Thus (23) yields two sets of conditions for the
coefficient functions ζk

i : a system of algebraic equations

Aa
ij − Ba

jkζ
k
i + Ba

ikζ
k
j = 0 ,

{

1 ≤ a ≤ t ,
1 ≤ i < j ≤ n

(24)

and a system of differential equations

Ui(ζ
k
j )− Uj(ζ

k
i ) = 0 ,

{

1 ≤ k ≤ r ,
1 ≤ i < j ≤ n .

(25)

The vector fields Yk lie in V[R1]. Thus, according to Proposition 3.4, U is an integral
distribution, if and only if the coefficients ζ i

k satisfy the algebraic conditions (24). This
observation permits us immediately to reduce the number of unknowns in our ansatz.
Assume that we have values 1 ≤ i, j ≤ n and 1 ≤ α ≤ m such that both (α, i) and (α, j)
are contained in B, i. e. uα

i and uα
j are both parametric derivatives (and thus obviously

the second-order derivative uα
ij, too). Then there exist two symbol fields Yk = ι∗(∂uα

i
) and

Yl = ι∗(∂uα
j
). Now it follows from the coordinate form (4) of the contact map that U can

be an integral distribution, if and only if ζk
j = ζ l

i .

As the unknowns ζj
k may be understood as labels for the columns of the matrices Bh,

this identification leads to a contraction of these matrices. We introduce now contracted
matrices B̂h which arise as follows: whenever ζk

j = ζ l
i then the corresponding columns of

Bh are added. Similarly, we introduce reduced vectors ζ̂h where the redundant components
are left out. From now on we always understand that in the equations above this reduction
has been performed.

Now the question arises, when the combined system (24,25) has solutions. We begin
by analysing the algebraic part (24). As a system for the vectors ζ̂i, we seek to build a
solution step by step with i increasing. Thus we begin the construction of the integral

12
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distribution U by first choosing an arbitrary vector field U1 and then aiming for another
vector field U2 such that [U1, U2] ∈ V[Rq]. During the construction of U2 we regard the

components of the vector ζ̂1 as given parameters and the components of ζ̂2 as the only
unknowns of the system

B̂1ζ̂2 = B̂2ζ̂1 − A12 . (26)

Since the components of ζ̂1 are not considered as unknowns, the system (26) must not
lead to any restrictions for the coefficients ζ̂k

1 . Obviously, this is the case, if and only if

rank B̂1 = rank (B̂1 B̂2) . (27)

Assuming that (27) holds, the system (26) is solvable, if and only if it satisfies the aug-
mented rank condition

rank B̂1 = rank (B̂1 B̂2 −A12) . (28)

Now we proceed by iteration. Given i − 1 vector fields U1, U2, . . . Ui−1 of the required
form spanning an involutive subdistribution of V[R1], we construct the next vector field
Ui by solving the system

B̂1ζ̂i = B̂iζ̂1 −A1i

...

B̂i−1ζ̂i = B̂iζ̂i−1 − Ai−1,i .

(29)

Again we consider only the components of the vector ζ̂i as unknowns and (29) may not
imply any further restrictions on the components of the vectors ζ̂j for 1 ≤ j < i. The
corresponding rank condition is

rank











B̂1

B̂2
...

B̂i−1











= rank











B̂1 B̂i

B̂2 B̂i 0
... 0

. . .

B̂i−1 B̂i











. (30)

Assuming that it holds, (29) is solvable for the components of ζ̂i, if and only if it satisfies
the augmented rank condition

rank











B̂1

B̂2
...

B̂i−1











= rank











B̂1 B̂i −A1i

B̂2 B̂i 0 −A2i

... 0
. . .

...

B̂i−1 B̂i −Ai−1,i











. (31)

The following theorem relates the satisfaction of these rank conditions and thus the
solvability of the algebraic system (24) by the above described step by step process to
intrinsic properties of the differential equation R1 and its symbol N1.

13
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Theorem 4.1. Assume that δ-regular coordinates have been chosen for the differential
equation R1. The rank condition (30) is satisfied for all 1 ≤ i ≤ n, if and only if the
symbol N1 is involutive. The augmented rank condition (31) holds for all 1 ≤ i ≤ n, if
and only if the differential equation R1 is involutive.

Proof. In order to prove (30), we transform the matrices into row echelon form. Since
each matrix B̂i contains a unit block, there is an obvious way to do this. We describe the
procedure using the above introduced notation for subblocks. As we shall see, the relevant
entries in this row echelon form are the coefficients of the second-order derivatives uδ

ab in
(14) and therefore their vanishing is equivalent to involution of the symbol N1.

We start with i = 1, i. e. with (27). Since B̂1 is a negative unity matrix of α
(1)
1 rows

with a β
(1)
1 × α

(1)
1 -matrix stacked upon it and only zeros for all other entries, we have

rank(B̂1) = α1. Next, we transform the matrix (B̂1 B̂2) into row echelon form using the
special structure of the matrices B̂i as given in equation (21); the blocks are replaced in
this way:

β
(1)
1

1 [B̂1]
α

(1)
1

1 ←
β

(1)
1

1 [B̂1]
α

(1)
1

1 +
β

(1)
1

1 [B̂1]
α

(1)
1

1 · m
β

(1)
1 +1

[B̂1]
α

(1)
1

1 , (32)

β
(1)
1

1 [B̂2]
α

(1)
1

1 ←
β

(1)
1

1 [B̂2]
α

(1)
1

1 +
β

(1)
1

1 [B̂1]
α

(1)
1

1 · m
β

(1)
1 +1

[B̂2]
α

(1)
1

1 , (33)

β
(1)
1

1 [B̂2]
α

(1)
1 +α

(2)
1

α
(1)
1 +1

←
β

(1)
1

1 [B̂2]
α

(1)
1 +α

(2)
1

α
(1)
1 +1

+
β

(1)
1

1 [B̂1]
α

(1)
1

1 · m
β

(1)
1 +1

[B̂2]
α

(1)
1 +α

(2)
1

α
(1)
1 +1

. (34)

If, for the sake of simplicity, we use the same names for the changed blocks, then we have

β
(1)
1

1 [B̂2]
α

(1)
1

1 =






−C1

δ (φ
α
2 ) +

β
(2)
1
∑

γ=β
(1)
1 +1

C1
γ(φα

1 )C1
δ (φ

γ
2)







1≤α≤β
(1)
1

β
(1)
1 +1≤δ≤m

, (35)

β
(1)
1

1 [B̂2]
α

(1)
1 +α

(2)
1

α
(1)
1 +1

=






−C2

δ (φ
α
2 ) +

β
(2)
1
∑

γ=β
(1)
1 +1

C1
γ(φα

1 )C2
δ (φ

γ
2) + C1

δ (φα
1 )







1≤α≤β
(1)
1

β
(2)
1 +1≤δ≤m

. (36)

A comparison with the obstructions to involution obtained by evaluating (14) for i = 1
and j = 2 shows that all these entries vanish, if and only if the obstructions vanish. It
follows that the first β

(1)
1 rows of the matrix (B̂1 B̂2) are zero. The last α

(1)
1 rows begin

with the block −1
α

(1)
1

and hence rank(B̂1 B̂2) = α
(1)
1 = rank B̂1. Thus we may conclude

that the rank condition (27) holds, if and only if no non-multiplicative prolongation D2Φ
a
1

leads to an obstruction of involution.
The claim for the augmented condition (28) follows from the explicit expression (19) for

the entries Aa
ij. Performing the same computations as above described with the augmented

14
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system yields as additional relevant entries exactly the integrability conditions arising from
(14) evaluated for i = 1 and j = 2. Hence (28) holds, if and only if no non-multiplicative
prolongation D2Φ

a
1 yields an integrability condition.

As one might expect from the above considerations for i = 1, the analysis of (30) for a
general 1 ≤ i ≤ n will require the non-multiplicative prolongations DiΦ

α
1 , DiΦ

α
2 , . . .DiΦ

α
i−1.

It follows trivially from the block form (21) of the matrices Bi that the rank of the matrix

on the left hand side of (30) is
∑i−1

k=1 α
(k)
1 .

For lack of space we skip the details for the general case. We follow the same steps as
in the case i = 1. The transformation of the matrix on the right hand side of (30) can
be described using block matrices, and the resulting matrix in row echelon form has as
its entries in the rows where no unit block appears the coefficients of the second-order
derivatives in (14). Thus we may conclude again that satisfaction of (30) is equivalent
to the fact that in the non-multiplicative prolongations DiΦ

α
1 , . . . , DiΦ

α
i−1 no obstructions

to involution arise. In the case of the augmented conditions (31), it follows again from
the explicit expression (19) for the entries Aa

ij that the additional relevant entries are
identical with the potential integrability conditions produced by the non-multiplicative
prolongations DiΦ

α
1 , . . . , DiΦ

α
i−1.

At this point it becomes apparent why we had to introduce the contracted matrices B̂i.
As we are dealing with smooth functions, partial derivatives commute: uα

ij = uα
ji. In (14)

each obstruction to involution actually consists of two parts: one arises as coefficient of
uα

ij, the other one as coefficient of uα
ji. Of course, we do not see this in (14) because of the

commutativity of the derivatives. However, in the matrices Bi these two parts appear in
different columns and in general the rank condition (30) will not hold, if we replace the
contracted matrices B̂i by the original matrices Bi (see the example below). The effect of
the contraction is to combine the two parts in order to obtain the right rank.

There remains to analyse the solvability, if we add the differential system (25). We
first note that one can show in a straightforward computation that (25) alone is again an
involutive system. If the original equationR1 is analytic, then the quasi-linear system (25)
is analytic, too. Thus we may apply the Cartan-Kähler theorem to it which guarantees
the existence of solutions.

The problem is that the combined system (24,25) is in general not involutive, as the
prolongation of the algebraic equations (24) leads to additional differential equations.
Instead of analysing the effect of these integrability conditions, we proceed as follows.
If we assume that R1 is involutive, then we know from Theorem 4.1 that the algebraic
equations (24) are solvable. In the proof of the theorem we even produced an explicit
row echelon form of the system matrix which we can now exploit to eliminate some of the
unknowns ζ̂k

i as a linear combinations of the remaining ones.

Theorem 4.2. Assume that δ-regular coordinates have been chosen for the differential
equation R1 and that R1 is analytic. Then the combined system (24,25) is solvable.
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Proof. Following the strategy outlined above, we eliminate some of the unknowns ζ̂k
i .

Because of the simple structure of (25), it turns out that we must take a closer look only
at those equations where the leading derivative is of one of the unknowns we eliminate. A
somewhat lengthy but straightforward computation shows that these equations actually
vanish. The remaining equations still form an involutive system. Thus we eventually
arrive at an analytic involutive differential equation for the coefficient functions ζ̂k

i which
is solvable according to the Cartan-Kähler theorem.

Example 4.3. Consider the first-order equation

R1 :

{

ut = vt = wt = us = 0 , vs = 2ux + 4uy ,
ws = −ux − 3uy , uz = vx + 2wx + 3vy + 4wy

. (37)

It is obviously formally integrable, and its symbol is involutive with dimN1 = 8. Thus R1

is an involutive equation. For the matrices Bi, all of which are 3× 8-matrices, we have

B1 =
(

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0

)

, B2 =
(

0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0

)

,

B3 =
(

0 −1 −2 0 −3 −4 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

)

, B4 =
(

0 0 0 0 0 0 0 0
−2 0 0 −4 0 0 0 0
1 0 0 3 0 0 0 0

)

, B5 = 03×8 .

(38)

For the first two steps in the construction of the fields Ui, the rank conditions are
trivially satisfied even for the non-contracted matrices. But not so in the third step where
we have in the row echelon form of the arising 9× 32-matrix in the 7th row zero entries
throughout except in the 12th column (where we have −2) and in the 17th column (where
we have 2). As a consequence, we obtain the equality ζ4

1 = ζ1
2 and the rank condition for

this step does not hold. However, since both ux and uy are parametric derivatives and in
our ordering Y1 = ι∗(∂ux

) and Y4 = ι∗(∂uy
), this equality is already taken into account in

our reduced ansatz and for the matrices B̂i the rank condition is satisfied.
Note that the rank condition is first violated when the rank reaches the symbol dimension

(which is 8). From then on, the rank of the left matrix in (30) stagnates at dimR1 while
the rank of the augmented matrix may rise further. The entries breaking the rank condition
only differ by their sign, since they correspond to coefficient sums in (14) that do the same.
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